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ABSTRACT

KLEINBAUM, DAVID GEORGE. A General Method for Obtaining Test Criteria
for Multivariate Linear Models with More Than One Design Matrix and/or

Incomplete in Response Variates.

In this paper a test of a general linear hypothesis for the
More General Linear Multivariate Model (MGLMM) is obtained under normal-
ity assumptions on the original data by using a test criterion given in
a general form by Wald [12]. The asymptotic distribution of the test
statistic under the null hypothesis is a central chi-square variable.
As a special case of the above test, we obtain a test of the standard
MANOVA linear model which is Hotelling's trace criterion. Other special
cases of the general model include the HM, GIM and MDM models given by
Srivastava [4], [5], [8]1, [91.

The test statistic uses estimators of the parameters which need only
be asymptotically equivalent in probability to the maximum likelihood

estimators.
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A GENERAL METHOD FOR OBTAINING TEST CRITERIA FOR
MULTIVARIATE LINEAR MODELS WITH MORE THAN ONE DESIGN MATRIX AND/OR
INCOMPLETE IN RESPONSE VARIATES

David G. Kleinbaum
1. INTRODUCTION AND SUMMARY

The standard multivariate linear model (SM) given by:
E(Y) = A g

Var(Y) = In 8 X

where Y(n x p), A(n X m), &(m X p), Z(p X p)
contains two assumptions inherent to the experimental situation which are
not always met in practice. These are

(i) each response variate is measured on each experimental unit
(i.e., on each experimental unit is observed a p-variate vector).

(ii)  the design matrix, A, is the same for each response (e.g., the
same blocking system is applicable to each variate).

Situation (i) will, in general, not hold whenever it is physically
impossible, uneconomical or inadvisable to observe each response variate
on each experimental unit. Situation (ii) will not hold when differenf
blocking systems are applicable to different response variates and when
some of the response variates are insensitivevto certain treatments.

This paper is concerned with testing linear hypotheses under normal-~
ity assumptions on the original data for multivariate linear models in
which assumptions (i) and/or (ii) are relaxed. In this connection, we

define a model, called by the author the More General Linear Multivariate



Model (MGLMM)l. Special cases of the MGLMM are the HM, GIM and MDM
models of Srivastava ([4], [5], [7], [8] and [9]) and the incomplete
variable designs of Monahan [2]. A test of a general linear hypothesis
for the MGLMM is proposed, which uses a test criterion given in a general
form by Wald [12]. The Wald test statistic uses estimators of the un-
known parameters which need only be asymptotically equivalent in probabil-
ity to maximum likelihood estimators. The asymptotic distribution of the
test sta;istic under the null hypothesis is a central chi-square variable,
When restricted to the SM model, we obtain Hotelling's trace criterion as

a special case.
2. THE MORE GENERAL LINEAR MULTIVARIATE MODEL

Assume there are n experimental units and p-response variates

Vl""’ Vp in total. The n experimental units are divided into u dis-

joint sets of experimental units Sl’ Sz,..., Su with nj units in S,.
On each unit in the set Sj’ we measure qj (< p) responses

V% s Vg seees Vz . (The remaining p - q, response variates are not
it 732 ja J

measured in Sj).

lThere are meaningful multivariate linear models which are not special
cases of the MGLMM (e.g., growth curve models). Hence we have used '"More"
instead of "Most" in the model name. Nevertheless, the technique used in
this paper for obtaining test statistics can be used for linear models which
are not special cases of MGLMM.
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Then the MGLMM is given by

| |
éﬁ,jz Joooanj Aj,Q/ éQ/ ] nj X q

E(Y,) = [A,
J J | | jq. iq.

VA,
LY
Var(Y.) = 1 8@ B! © B,
J n, J J
J
j=1,.00,u5 1< qj < p, le j_ljz < e iqu

and for each i, i = 1,...,p there exists at least one pair (j,k) such

that éﬁ'k = éi’ i.e., ij = i (so that the total set of unknown parameters
]

is (Egseees ép’ ).

Yj(nj X qj) is the matrix of observations for the jth set Sj

A, (n, Xm ) is the design matrix for response V in the
jL. j 2. 9.
ik ik \ ik
set S,, and rank A, =m
J Py gy
& (m x 1) is the parameter vector for response V
L, L, 2.
jk ik jk
(and m = whenever £,. = &,
Rjk Qﬁ'k' jk J'k'>

Bj(p X qj) is the incidence matrix for response variates consisting
of 0's and 1's and rank Bj = qj.

If the variates Vr’ VS are not measured together in any set Sk’

we set 0. = 0 and o 0in % = ((0..)).
rs ST ij

. . p
For testing the hypothesis H : C, £, = 0 where C, (c, x m.)

is of full rank = cj we will assume that

¢D) Yj and Y% are independent if j # j'



(2) the rows of Y, are also independent and distributed as a
J
qj—variate multinormal vector with variance covariance

matrix Bj I B,.

From (1) and (2) we can write the log of the likelihood function for

MGLMM as
u 0.4, u 0,
log ¢ = - £ ——-L 1log2n - ¥ -2 log |B! I B,|
PR 2 . 2, J J
j=1 j=1
1 5 1 -1 1
-5 L tr[B} B.] [y, - E[Y,]]"' [Y, - E[Y,]]
i=1 k| i h| | 3 j

We must use log ¢ to obtain our test statistic. The technique used is

described in section 4.

2.1, Special Cases of MGLMM

2.1.1. Multiple Design Multivariate Model - MDM (Srivastava [4}, [8],

[9]) u = 14 n, =03 q; = Pp; Yl =Y Bl Ip. Thus we get
E(Y) = [Al §1 A2 §2 eeo A (n x p)
Var(Y) = In 8z

2.1.2. Hierarchical Model - HM (Srivastava [4], [8], [9])

u=p; qj = 3, j=1,...,pP3 ij =k, k=1,...,]33
B, = I,
] J
o . .
P-]s]

Thus we get

L R IR F R RCHEED

Var(Y,) = I ® B' I B,
J nj J ]




In [8] and [9], Srivastava assumes A,, = A,., = ... = A.. = A..
’ 31 j2 33 ]

Note that if we let

Ur = the set of all experimental units on which the response

variate Vr is measured

then for the HM model we have

UlDUzj...DUP

The HM model thus deals with a situation in which the response variates

can be graded in descending order of importance, and, further, if

Vr is more important than Vs’ then Vr is observed on each experimehtal

unit on which VS is observed.

— ’

2.1.3. General Incomplete Multivariate Model -~ GIM (Srivastava [5], [7],

[8]; Monahan [2])

A,, =A,, = ...=A, ZA,3=1,0.,u
2’. QI Q, Y ’ >

J j1 J j2 J qu J

3 is (m X 1), where m is independent of j and %, .
L

—jk ik

Thus

E() = ALE, & ... ] (= A, £3B,)
oo Fy %jqj@jqu) o

Var(¥,) = 1 ® B' I B,
J nj J J

t
b

L]

Monahan ([2]) considers the special case qj z q; nj = n/u; Aj =

j=1,...,u.

g ]



3. REVIEW OF THE LITERATURE

A number of different approaches have been used to obtain tests of
hypotheses for the MDM, HM and GIM models. -The tests obtained are generally
impractical with regard to computation and require more assumptions with
regard to the hypotheses and design matrices than the usual estimability
requirement. For example, the necessary and sufficient conditions given by
Srivastava in [9] for reparameterizing the MDM model to the SM model (for
which there are several good test criteria) is that the vector spaces spanned
by the columns of the different design matrices are all the same. In [5],
Srivastava restricts the GIM model (actually a slightly more general form

of the GIM model in which éj is (mj x 1) and Aj is (nj X mj)) to be what

he calls a "strongly regular" design. 1In [4], he proves to be not strongly

regular a particular example of the kind of design likely to be considered

in practice. In [7], however, he works through a GIM model which is strongly
regular and specifies the general computational method for reparameterization.

"strongly regular designs' needs to be better

Nevertheless, the class of
described in terms of GIM models likely to be used in practice. This problem
seems formidable since the computations needed for validating the "strongly

regular'" property are quite complex. Furthermore, the reparameterized form

| < A..

< 1 where
ij =

of the model has a ¥ matrix which is restricted by lpij

Aij may be < 1 for some i # j and pij is the correlation between variates

Vi and Vj. The problem of testing a hypothesis in a SM model with the above

type of restriction on I has not yet been solved and is likely to require a

laborious computer procedure,
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In [11] Trawinski (i.e., Monahan) and Bargmann summarize the main
results of Monahan's thesis [2] in which is obtained a likelihood ratio

test for the very special case of the GIM model in which u = P» nj = n,

qj = q and Aj Z A, j=1,..., p. The maximum likelihood equations require

for solution an iterative technique based on the Newton-Raphson method.
In demonstration of the method for a particular set of data, the initial

estimate Zo of I used in the iteration turned out to be very comparable

to the final estimate obtained after several iterations. The Zo estimate
(or a more general form of ZO) is a likely candidate to be studied for use

in the Wald statistic proposed by this author. It is a pooled estimate,
in which the(% - s) element gzs is obtained by averaging estimates of Grs
from all the sets Sj in which both Vr and VS are measured.

In [10], Srivastava has suggested several different union-intersection

type tests for the HM model, one of which was obtained in his earlier paper
[4] and which involves a generalization of J. Roy's step-down procedure [3].
The model that he uses in [4] includes the MDM model as a special case.
The testing procedure involves making a sequence of independent F tests and
rejecting the hypotheses if any of the F tests are rejected. As is the case
in general with union-intersection type tests, little can be said about the
properties, asymptotic or otherwise, of the step-down method.

The Wald statistic proposed in this paper was used by Allen [1] in
connection with nonlinear multivariate models, a special case of which is

the SM model. Allen showed that the likelihood ratio criterion and the Wald



4.1

criterion for his nonlinear model are asymptotically equivalent. In small
samples, however, Wald's criterion proved not to be a good approximation
of a chi-square variable, Nevertheless, this may have been due to the use
of a linear approximation of the test criterion (which is not necessary for
the linear MGLMM).

In [8], Srivastava considers distribution-free estimation of linear

functions of the design parameters for the HM, GIM and MDM models. Srivastava

p
gives necessary and sufficient conditions for 6 = ¥ Ei 51 to have a BLUE.
i=1

These are conditions on the vector spaces spanned by the columns of the

design matrices corresponding to the different response variates. The

proofs have been simplified considerably by this author.

4, DERIVATION OF RESULTS

Lemma. Let ¢(X 5.0, Kn’ﬁp be the joint density of independent random

variables X

1000 §h’ where zﬁ ~ PiCK’-Q)’ i=l,...,n. The gi are vectors

which may or may not be of the same length., Assume that the total number
of parameters, say u, in § is independent of n.

Let  § = M.L.E. of

W\
and B (/ 1/n E 36 86 )}

Then under suitable regularity conditions on the pi(g, 8) we have that

(u x u)

W  Latie @-0)— mw o D
(1) (n@-9'Bx® € -0) — X

@ii) £« n(é -9 Bg(_Ae_) (_5_ -8)) — X
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9
provided the following conditions are satisfied:
|
1 B !azlog Pi(gi,_) 1+6
o9 %5 L E l N6 56 { — 0 as n7>» for all j,j=1,...,u, and 0<8<1
n i=1 i 3! :
and
= (1+ é) ' {246
r’ 1 D 8210 l 27 n | 3log Pi(zi,§)|
(2) ng | - o b) -———%;'t z E§ 55 | — 0 as n+» for §>0,3=1,...,u
L i=1 Sej_J i=1 - i l

Comments: This is a direct generalization of a well known theorem for

maximum likelihood estimators in which the 51 are i.i.d. random variables.

The statistic given in (iii) was first suggested for use in hypothesis
testing by Wald [12]. Conditions (1) and (2) are not severe restrictions
for the modeis discussed in this paper; the coﬁditions merely require
that each design point be repeated often enough and each distinct variate
(e.g., blood pressure) observed often enough in large samples.

Corollary. Given the same situation as in Lemma 4.1, and suppose that

N

8'= (€', g') so that & = M.L.E. of § and 0 = M.L.E. of g.

Let

Then if (1) and (2) of Lemma 4.1 hold, and, in addition,

2
E, 13—195—9 =0 for all i,j

Laii aoj

we have that
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4.3

) E- D BE, D (E- D)=y

@ L (A8 (G o (E-5) — MW@, D

(111) J (a(E*- B BA(EY, 0¥ (£% - ©)> ) where £* is asymptotically

equivalent to §, i.e., vh (_g*— £— 0, and 9*'*52 .
P p

Theorem Given the standard MANOVA model:
EY) =AE
Var(Y) = ]Zn &
where Y(n x p), A(n xm), E(m x p), Z(p x p), rank A = m.

Suppose the rows of Y are distributed p-variate multinormal.

Let HO : C &= 0where C(q x m) is of rank q.

~

Let § = [_g_l gp] and I be the usual M.L.E. of £ and I respectively.

Then under H0 we have l
A I T 1 g |
-— ! .\ O E [Z—l A'A]_l \\ O . l I
Do e 8 . :
c'g ! ° \c { ° C cg | '
e T I S - [ -P_‘
is distributed asymptotically as Xép' l
Proof:
logd(Y, &, I) = = 212’- log2m - -‘23 log|Z| - % tr z'l(Y - AE)' (Y - AD) l
-1
log 193tr T ~ (Y~ '(Y-A ~1
aag t - 7 = (agAg) (88) o pr(v-ap)s '
gé—%‘?i = (k-0 element of A'(v-aE)z T
k& . .
i) n P n m
= I I a,y._ -2 § 3 a By O
z=1l u=1l u z=1 u=1 w=1 *° l



where A(n X m)

((y

Y(n X p)

Now

aﬂalog¢i
98 .

o0

Also
L,gkﬂ,! - _

Thus

X

Y-
(%‘Elé & |

((a
uw

orl {(q-k)th

2
)| - oten
qr ki

).

uz

A' (Y - Af)

3%
o]
qr

A'E(Y - A%)

= 0 (m X p)

|
ey
el

q,r,ﬁ‘

n rl rl th
L a ka o = -0 {
u=1 9k ug

independent of Y,

- r

is asymptotically MNmp (Q_,n[Z_

1

A](mp X mp)

o A'A]_l)

11

)y E@xp) = (5,0, 2 e xp) = (@),

(¢ col. of A)-(kth col. of A}

element of A'A}, which is a constant
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4.4

Similarly
[[ei! jed]) £ <
/H-} E - EA Z}is asymptotically MNaég’n O"O [2_18 A'A]—l .
o . : .
IR - ¢

Thus if Ho is true we amy use Lemma 4.2(iv) to obtain

.l![=o -1 "\oz =

-1
= \ . '
W L0 [Z B A'A] o

€&, i, C S j LF éEJ
is asymptotically distributed as Xﬁq .

qg.e.d.

We will show later that W is equivalent to Hotelling's trace criterion.

Main Theorem (A test of Ho :

p
C. &, =0 for MGLMM).
j=1 J 7] -

Suppose we have observation matrices Yj(nj X qj), j=1l,...,u from
a MGLMM. Suppose also that Yj and Yj' are independent if j # j' and

that for a given j, the rows of Yj are independent and distributed

qj - variate multinormal.
Let I be an estimate of I such that Z - % and éi’ i=l,...,p be e
p
mates of §,, i=1,...,p such that §, - &, , i=1,...,p, as in Corollary 4
24 p =i

t

Let

- rs ' P
mB(EE) = ((Zol® AL A )RR
j rs rs rs r r

rs r=1 r=1

where

1) 3 runs over all integers k for which both responses V_ and
rs T

°1)
C i
sti- l
L2(111). l |
\Y

S i
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are measured in Sk'

2) "% is the element of [B! 2 B, ]—l which corresponds to
rs rs Jrs

the variate pair (Vr’ VS).

(Note (1) oS zcir

rs rs
(2) If the variates Vr and Vs are not measured together in any

Sk’ then we set

T 0% A' A, =0(m xm) *
j Jrs JysT Jpgs e = Mg
rs
ST ' =
and ; Oj Aj s A.j . 0(m X m ) .)
3 rs -rs rs s T
rs
P
Then under H : N\ C, §, =0
o 1= J 73 -
J
where
C.(c, X m,) is of full rank = C,
J( J J) ( J)
we have
<. £ T 7 | r Nl o £ 7
¢ & 1'% ; G T k|
NI \
C & | O A v 0 €y & |
W=n . i 110 VBT, B [0 : |
c £ C c | ) cC_ & |
P7P i \L P, -~ B L PP

is asymptotically distributed as a central chi-square variable with

Proof: This follows as a direct extension of Theorem 4.3. Detailed proofs
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4.5

4.5.1

4.5.2

are given for the MDM, GIM and HM special cases.

Special Cases of the Main Theorem

MDM:
2 1711 Ap, g, -l ) -1 7
c, i} v |° Aphpees TR G 157
R ‘ 0" . 0 { N
C C_|'~pl ~ C | :
| PP p| o° AlA ... GPPA’A ) P )' P gm
-1 rs
where & ~ = ((@ 7)).
HM and GIM (assuming A, = A, = ... = A, =A,) :
%, % 2.
SR 3 ja, 3
- -1 ~
[-Cl ql o' U -—l'ql ‘\l [El _§_1
w= | 0‘3 [ % {B,[B! & Bj] B'} & A'A.] o [
-A ~\ j=l N : ' Wal
¢ | C c
1% ) | P [ p &
Proof of 4.5.1 :
log ¢ = & log 27 - 5 loglz| - 5 er 27 MY-E @) ] [Y-E() ]

i '

where E(y) = [Al él; A2 §2 :...: Ap ‘E“p] and

Z_l{Y—[Algi? A2§2,i...; A gp]} {y-[A gl» AL,

p p k2

= I I o7 (3, -4AE)"(@ - )
el o1 g " Agky) e T Ak

since [Y-E(M]'[T-EM] = (g, - A8) '@ = A5

Now
Mogd _ .2 1L 3 3 oy, - aE) (g - AE]
&, &y k=1 %=1

p
1l 9o ww 1
- T [0-(zw-A£)(1w-A§)+22§lG
So W =
L#w

wi

MED AL

A§p]}

NS e E e ;!!: GaE NS OB TS S BE Bm m e



P
o W _ W
o} AW (y AE) + 251 o
2w
P
_ wi _
= 251 o AL (yy -~ AgEg)
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p
wl
L¢w

g
Ay (2~ A8y

m
p n P n 2
o ogb . 7§ M, - T % oa, . a,. £ 0™
BBy el e Gomder T2 o n fw ekt (L) tzek
here A (n X = x 1 —f ‘1|
where A (n X m ) = ((a(w)tk)) and &, (my ) = | g: |
e Y
I
Szlog ¢ _ ; a a ST
BikWBEqr =1 W tk"(r)tq
= {(k—q)th element of A%Ar} . o¥E
[ 11, .,
: g AlAl crerees o AlA
. _; 21 , 2p,
.".nB(&,L) = o) AZAl ...... .. O AZA
| s
GPIATA Liiii... PPATA
; p1l i
q.e.d

T M

-1
2
i

u
% tr(B! I B,
_ i i

lnilog |B£ X Bil

-1 '
) (Yi - AiEBi) (Yi - AiEBi)
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where £ = [él §p]
u BtrU_lP P! I
31logd - 1 i 1i1i - _ ' . .
3 2 121 __——BE where Pi (Yi Ai Bi) , which is (qi X 1) l
= ] . . x
Ui Bi z Bi’ which is (qi qi)
P -1 II
- ' - 1
iElAl (Yi AiEBi)Ui Bi
. 5l N p -
. ologd =1k-@h element of I A'(Y,- A.EB.) U,l l
SEkQI : j=1 11 1771 i
P q, By 94 .
=5 5 r % ey, 0y '
i=1 221 uel o1 LUK iU t
P ¢ P 1B ¢ m - .
- Lokl _E z aiukaiuwgwcbiczu it

i=1l z=1 c=1 u=1l t=1 u=1l

where B, (p % q;) = ((b ), A (n, X m) = ((a )

Y, % q) = (7)) Uy ey X g = (@*9)

q; 1y 4y

2 i i .
e %_1_0_%5_¢__= - g L L I a, k21 b, Tl e
gk!l, qr i=1 z=1 u=1 t=1 *TU¢ 1ud irz +
P M : i i izt
=~ I (% aa ) {Z b (I o, )}
i=1 y=1 *tU* 1w z=1 * t=1

P q' -1
=~ I —q) element of A Ay 1 { Z b, Kz—SZ, element of U, B.J}
i=1 i'i

p
_ th ' . _o\th -1.-1
= - E.l[(k—cb element of AiAi] [(r—ﬁl) element of BiUi Bi ]

P -1
*.nB(§,Z) = I {B Uy

i=1

B! 8 A'A,}
1 1 1
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o

. - ' -1, '
i.e., nB(,X) .Z Bi[Bi z Bi] Bi B AiAi

i=1

THE EQUIVALENCE OF THE WALD STATISTIC AND

HOTELLING'S TRACE STATISTIC

5.1 Theorem The Wald Statistic (W) obtained for SM is equivalent to Hotelling's

. . 2
trace criterion (To).

Proof:
2 - a1 1y Long=l o8
TO = trSHSE where SH = (CE)'[c(a'A) ~C'] (c&)
sp = Y'[T - A(A'A)—lA'] Y
Now
L = l-S is the M,L.E, of %
n E
'. Thus
' %Ti = tr (C&)' [c(a'a) Ter1t (cfy §71
Now
l cg e LA Bl
L, ; 0: .a-1 =1l L0l .
W=i. ot [Z 8 A'A] (o .
? LN } \ : , * A
l Lffép“ i Cl LT, Eép_
l CE'[C ¢ 17 ek
] : 0! -1 L0 .
= | ¢ : PN : ! * : .
= §0\‘§[26(AA)] 0.‘§§ 5
cE |l C C! c &
l M T S A MY
— A — a7
| ' =
ic.g‘l A 1, -1 C.g‘l
. =1 . [Z 8 C(A'A) ~ C'] tA
ic £ cE
I L. 7PJ | 7P

°
I ;
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& . oy
= A izl e ety et I “a l
\C %4 !C gpm
P P s s A - _ A ~_ .
= 31 oee) e e e, where 1 = (@)
i=1 j=1 *
= tr ©8)' o) et oy 5t
g.e.d.

6. CONCLUSION AND FURTHER RESEARCH

In Theorem 4.4, we have obtained a general test criterion for testing

linear hypotheses in multivariate linear models which are incomplete in

response variates and/or in which different response variates have differ-

ent design matrices. When restricted to the standard MANOVA model, our

test criterion becomes Hotelling's trace criterion. The general test
criterion uses estimators of the unknown parameters which are asymptotically
equivalent in probability. Maximum likelihood estimators could therefore

be used, but even for simple cases of the general model (e.g., Monahan

[21) outsidé of the standard model, an iterative method is required.
Computationally simpler estimators can probably be obtained, nevertheless,
since we only require them to be asymptotically equivalent in probability

to maximum likelihood estimators. In any case, further work needs to be
done here. Also it is necessary to study the small sample properties

of the test criterion.
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