A NOTE ON THE P-ARY REPRESENTATION OF INTEGERS

by

S. Ikeda and I. Maeda

Dept. of Statistics, Nihon Univ. and Dept. of Economics, Dokkyo College

Institute of Statistics Mimeo Series 580

May 1968

This research was partially supported by U.S. Army Grant No. 325-ARM-1 and the Nihon University.

DEPARTMENT OF STATISTICS

University of North Carolina

Chapel Hill, N. C.
A NOTE ON THE P-ARY REPRESENTATION OF INTEGERS

By

S. Ikeda and I. Maeda

Dept. of Statistics, Nihon Univ. and Dept. of Economics, Dokkyo College

This article gives a new form of the p-ary representation of any non-negative integer for prime p, which is a generalization of Ikeda's formula for p = 2 [1].

For any non-negative integer N, the usual formula of the binary representation is given by

\[N = \sum_{k=0}^{s} c_k \cdot 2^k \]

where \(c_k = \left[\frac{N}{2^k} \right] - 2 \left[\frac{N}{2^{k+1}} \right] \), \(k=0, 1, \ldots, s \); \(s = \max \{ h; 2^h \leq N \} \).

On the other hand, Ikeda [1] showed that N is expanded in the form

\[N = \sum_{k=0}^{s} \binom{N}{2^k} \cdot 2^k \]

where, for any positive integer R, \(R_2 = 0 \) if R is even, and = 1 if R is odd.

This implies, by the uniqueness of the binary representation, that

\[\left(\frac{N}{2^k} \right) = \binom{N}{2^k} \quad (\text{mod. } 2). \]
The purpose of this article is to prove the following identity.

(2) \[\left[\frac{N}{p^k} \right] - p \left[\frac{N}{p^{k+1}} \right] = \left(\frac{N}{p^k} \right)_p, \]

or, equivalently,

(3) \[\left[\frac{N}{p^k} \right] = \left(\frac{N}{p} \right)^k \pmod{p}, \]

where \(N \) and \(k \) are non-negative integers, \(p \) is any given prime, \([\cdot] \) is the ordinary Gauss symbol, and \(\left(\frac{N}{n} \right)_p \) denotes the remainder when \(\binom{N}{n} \) is divided by \(p \). Here, we use the convention that the number of \(n \)-combinations out of \(N \), \(\binom{N}{n} \), is equal to zero if \(n > N \).

PROOF OF (2)

(I) In the case \(0 \leq N < p^k \), it is evident that

\[\left[\frac{N}{p^k} \right] - p \left[\frac{N}{p^{k+1}} \right] = 0 = \left(\frac{N}{p^k} \right)_p \]

for any non-negative integer \(k \).

(II) In the case \(p^k \leq N < p^{k+1} \), \(N \) is expressed uniquely in the following form

\[N = jp^k + i, \]

for some integers \(j \) and \(i \); \(1 \leq j \leq p-1 \) and \(0 \leq i \leq p-1 \).

Then, for the left hand side of (2) it is easy to see that

\[\left[\frac{jp^k + i}{p^k} \right] - p \left[\frac{jp^k + i}{p^{k+1}} \right] = j \]

for any non-negative \(k \). Thus, putting

\[I_{j,i}^k = \left(\frac{N}{p^k} \right)_p = \left(\frac{jp^k + i}{p} \right)_p \]

we have to show that the relation

(4) \[I_{j,i}^k = j \]
holds true for any non-negative integer k.

In the first place, we shall prove the relation (4) when $i = 0$, that is,

$$I_{j,0}^k = j,$$

or equivalently,

$$\left(\frac{jp^k}{p^k} \right) = j \quad \text{(mod. } p\text{).}$$

Since

$$\left(\frac{jp^k}{p^k} \right) = j (\frac{jp^k}{p^k} - 1),$$

it suffices to prove that the relation

$$(5) \quad \left(\frac{jp^k}{p^k} - 1 \right) \equiv 1 \quad \text{(mod. } p\text{)}$$

holds true for any non-negative k. When $k = 0$, this relation is trivial.

Let us consider the expansion

$$\left(\frac{jp^k}{p^k} - 1 \right) = \prod_{h=1}^{p-1} \frac{jp^k - h}{h}$$

for any positive k.

In the above expansion, h is expressed in general as

$$h = p^{m(h)} \cdot \delta(h)$$

where $\delta(h)$ is prime to p and $m(h)$ is an integer such that $0 \leq m(h) \leq k-1$.

If h is prime to p, then $m(h) = 0$ and hence $h = \delta(h)$.

Thus, it follows from (6) that

$$(7) \quad \left(\frac{jp^k}{p^k} - 1 \right) = \prod_{h=1}^{p-1} \frac{jp^{k-m(h)} - \delta(h)}{h}$$

Here, we have

$$\prod_{h=1}^{p-1} \left(\frac{jp^{k-m(h)} - \delta(h)}{h} \right) = p \cdot Q(p) + (-1)^{p-1} \prod_{h=1}^{p-1} \delta(h),$$

where $Q(p)$ is a polynomial in p.
Thus, we obtain

\[
\frac{(j^p - 1)}{p^k - 1} = \frac{p \cdot Q(p)}{\prod_{h=1}^{p-1} \delta(h)} + (-1)^{p-1}.
\]

Recalling that \(p^k - 1\) is even when \(p \geq 3\), we thus have,

\[
\frac{(j^p - 1)}{p^k - 1} = \frac{p \cdot Q(p)}{\prod_{h=1}^{p-1} \delta(h)} + 1.
\]

Since \(\prod_{h=1}^{p-1} \delta(h)\) is prime to \(p\), it divides \(Q(p)\), and hence we have (5) for \(p \geq 3\).

When \(p = 2\), it holds that

\[
\frac{(j \cdot 2^k - 1)}{2^k - 1} = 2 \cdot \frac{Q(2)}{\prod_{h=1}^{2^k-1} \delta(h)} - 1 \equiv 1 \pmod{2}.
\]

Thus, the relation (5) is true for any prime \(p\).

In the second place, we shall prove the relations

(8) \[
\frac{1^k}{i,j,l} = \frac{1^k}{i,j,i-1}
\]

for \(i=1,2,\ldots,p^k-1\) and \(j=1,2,\ldots,p-1\), (\(k \geq 1\)).

Putting, as before, \(h = p^{m(h)} \cdot \delta(h)\) for \(h=1,2,\ldots,p^k-1\), we have

\[
\frac{(j^p + 1)}{p^k} - \frac{(j^p + 1 - h)}{p^k} = \prod_{h=1}^{p^k-1} \frac{j^{p-k} + 1 - h}{\delta(h)}
\]

\[
= p^{k-m(i)} \cdot \prod_{h=1, h \neq i}^{p^k-1} \frac{(j^{k-m(h)} + p^{m(i)-m(h)} \cdot \delta(i) - \delta(h))}{\prod_{h=1}^{p^k-1} \delta(h)}
\]
Since the product \(\prod_{h=1}^{p-1} \delta(h) \) is prime to \(p \) and \(0 \leq m(i) \leq k-1 \), the second factor of the last expression of the above equalities should be a positive integer.

Hence

\[
\left(j p^k + 1 \right) \pmod{p^k} - \left(j p^k + 1 - 1 \right) = 0
\]

which proves (8).

This completes the proof of (4) in the case (II).

(III) In the case \(p^{k+1} \nmid N \), we may put for some \(q, j \) and \(i \),

\[
N = q p^{k+1} + j p^k + i,
\]

where \(q \) is a positive integer, \(j=0,1,...,p-1 \) and \(i=0,1,...,p^{k-1} \).

Let us put

\[
j_{j,i}^k = \left(q p^{k+1} + j p^k + i \right) p^k.
\]

Then, by a similar argument in the case (II), we have

\[
j_{j,0}^k = j_{j,1}^k = \ldots = j_{j,p-1}^k, \quad j=0,1,...,p-1
\]

for any \(k \) positive and

\[
j_{j,0}^k = j, \quad j=0,1,...,p-1
\]

for any non-negative \(k \). This implies that (2) is true in the case (III).

Hence, in all the cases, we proved the relations (2) for any prime number \(p \) and non-negative integer \(k \).

Reference