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1. TINTRODUCTION

For a general multivariate linear model (which includes the one-sample and
two-sample location models as special cases), robust sequential point as well as
interval estimators based on suitable rank order statistics are proposed and
studied. In a non-sequential set up, parallel procedures were considered by Sen
and Puri [14]. Also, the sequential point estimation problem based on sample
means (in the univariate case) has been studied earlier by Blum, Hanson and
Rosenblatt [3], and later, in a more general set up, by Mogyorodi [10], among
others. Finally, the sequential interval estimation procedures, based on the
principles of Chow and Robbins [4], extends the univariate theory developed in
Sen and Ghosh [13], and Ghosh and Sen [5, 6, 7] to the general multivariate case.

In Section 2, along with our basic model, we briefly sketch the problems.
Preliminary notions and basic assumptions are then considered in Section 3.
Section 4 is devoted to the study of the asymptotic properties of sequential

point estimators based on robust rank order statistics. The problem of robust
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Force Systems Command, U. S. Air Force, Contract F33615-71-C-1927. Reproduc-
tion in whole or in part is permitted for any purpose of the U. S. Government.



sequential interval estimation is then treated in Section 5. The last section
is devoted to a comparison with the corresponding parametric procedures, and

presents the allied asymptotic relative efficiency (ARE) results.

2. THE PROBLEMS
Consider a sequence {gi = (Xil,...,XiP)', i>1} of p(>l)-variate stochastic
vectors, defined on a probability space (Q,A,P), where gi has an absolutely con-
tinuous cumulative distribution function (cdf) Fi(§)’ §€Rp, the p-dimensional

Euclidean space. It is assumed that

F,(®) = Fxo-Bey), 21, (2.1)

where g=(al,...,ap)' and §=(Bl,...,6p)' are unknown parameters (vectors), and
{ci, i>1} is a sequence of known (scalar) constants.

Robust point as well as interval estimators of (g,@) based on suitable
rank order statistics when the sample size is large but non-random were studied
in detail in Sen and Puri [14]. We are primarily concerned here with the follow-
ing two sequential extensions of this theory.

Let {Nv, v>1} be a sequence of non-negative inter-valued random variables,

such that

1

v Nv + A, in probability, as \vow, (2.2)

where A is a positive random variable having an arbitrary distribution

H(u) = P{A<u}, O<u<w, (2.3)
and defined on the same probability space (Q,A,P). Consider then an estimator
(@Nv, §N ) of (g,g) based on §1"'°’§N through a general class of rank order

\Y)
statistics, to be precisely defined in section 3. Our first problem is to derive



(along the lines of Blum, Hanson and Rosenblatt [3], and Mogyorodi [10]) the
asymptotic normality of NE[(@N —gL(@N —@)] (as Vo). This enables us to study
various asymptotic properties Xf (QNvYENv).
In the second problem, our sample size Nv remains a random variable, but
so determined by a "stopping rule' that we have a simultaneous confidence interval
for (g,@), with the property that the confidence coefficient is asymptotically
equal to a predetermined l-e: 0<e<l, and the length of the interval for each
component of o (or @) is bounded above by 2d (or by a known multiple of 2d), where
d>0 is a predetermined (small) number. The theory is an extension of the corre-
sponding univariate theory developed in Sen and Ghosh [13], and Ghosh and Sen
[5, 6, 7]. It is also a sequential extension of the theory developed in Sen and

Puri [14), and a nonparametric analogue of the theory developed in Gleser [8]

and Albert [2].

3. PRELIMINARY NOTIONS AND BASIC ASSUMPTIONS
Let F be the class of all p-variate absolutely continuous cdf's with

finite Fisher information matrix, and let F; be the subclass of Fp for which the

distribution is diagonally symmetric about 0.

Assumption I. If we are only interested in B, we assume that FEFP, otherwise,

we assume that FEF;, where F is defined in (2.1). For every v>1, let

Vv
- _ 1 2 _ _T N2
c. =V z C., Cv 'z (ci cv) . (3.1)
i=1
We have then the following problems: (a) estimation of @ assuming §=Q;
(b) estimation of B treating 0 as a nuisance parameter; (¢) simultaneous esti-
mation of (a,B). For (a) no assumptions are needed on'{ci, iZl}§ for (b) and

(¢c) our assumptions are respectively (II, III) and (II, III', IV), where,



Assumption II. As Vo,

max T N2 02 .
Assumption III.
lim  _ C2 = o
Vo Y ?
Assumption III'.
lim v_lcé = ¢2 (0<C<w) 3
Agsumption IV.
11m.\)_)°° c, = ¢ (finite).

It is easy to verify that all these assumptions hold true
variate one sample (where ci=0 V&) and two-sample (where cy is
models.

For every v>1, let R(j) (or Réj) ) be the rank of X (or

X X . (or lej|,...,Iij|) for 1<i<v, 1<j<p. To estimate

137777 7V3

following linear (regression) rank statistics

=7V (3) .
Svj ~ Lisy(esmey )ay’ (Rv Y. seL2,.p,
= '
§\) (S\)l’""s\)p) ’

where the rank scores a\(,j)(i), 1<i<v, j=1,...,p are defined by
2D (i) = B0, (U ) [or 0,4/ OVHN],  d=1,...,v;
\Y joovi 3 ’ 303V

¢j(u) is non-decreasing and absolutely continuous inside [0,1],

(3.2)

(3.3)
(3.4)

(3.5)
for the multi-

either 0 or 1)

|Xl |) among

B, consider the

(3.6)

(3.7)

(3.8)

<...
le— <va

are the ordered random variable in a sample of size Vv from the rectangular

[0,1] distribution. Regarding the score functions ¢1,...,¢P one assumes as in

Ghosh and Sen [6] that for every j(=1,...,p),



‘ |¢j(u)| < K[-log(u(l-u))]1, ](bj'(u)l < Klu(l-u)]™Y,  O<u<l (3.9)
where 0<K<». This implies the existence of a to(>0) such that

[+ ]

Mj(t) = f exp(t¢j(u))du < » for all t: |t| j_to, (3.10)

=00

for all j=l,...,p.
For estimating @, we need an alignment procedure and the following type

of one sample rank order statistics

-
1, = LYy et @Ph, =1, (3.1D)
' T, = (Tvl,...,Tvp)', (3.12)

where c(u) = 1, % or 0 according as u >, = or <0,

aD* @) = Bo¥(u,) lor o3/ )], Lsicy, (3.13)

¢§(u) = ¢j(l%E) and assume that ¢j(u)+¢j(l—u) = 0. (3.14)
Some well-known cases of Sy and I, are the normal scores and the Wilcoxon
scores statistics which relate respectively to ¢j(u) as the inverse of the

standard normal cdf and ¢j(u) = 2u-1l, O<u<l. Let us also define for later use

L= (Orye))s Yyp = [ 05 0q (g )Ry (eoy) =gy, (3.15)

for j,%1,...,p, where F[j] is the jth marginal cdf and F[jﬁ] is the bivariate

‘ (j,2)th joint cdf in the joint cdf F, and



® 1
u, = J ¢5(w)du,  3=1,...,p. (3.16)
. I 0

Assumption V. For every j(=1l,...,p), the density function £ and its

. 317714

first derivative fij]

exist and are bounded for almost all x (a.a.x), and

lim |¢5(F[j](x))f[j](x)| is finite. (3.17)

X->1o0

Let us then denote by

Bj = B(F[j]’¢j) = -i (d/dX)¢j(F[j](X))dF[j](X), j=1:‘°"P; (3'18)

I = ((sz))’ sz = sz/[Bszl; Jsf=l,...,p (3.19)

‘ Note that Bj>0 Vj, and T is positive semi-definite.
4, ASYMPTOTIC PROPERTIES OF ROBUST SEQUENTIAL
POINT ESTIMATORS OF (g,B)

We find it more convenient to consider separately the following three
problems:
(I) Estimation of 0 assuming that §=9 (one-sample model),
(I1) Estimation of § treating o to be a nuisance parameter,
(II1) Joint estimation of (g,@).
In the first problem, assume that Fng, and denote by Réi)+(aj), the rank

of |Xij—a| among |le—a|,...,lxvj-a|, 1<i<v, 1<j<p; the resulting rank statistics,

defined in (3.11) are denoted by ij(a), j=l,...,p. Note that

ij(a) is ¥ in a for all j=1,...,p. (4.1)

‘ Define for each positive integer v,



ASi) = supla: T, (a)>0}, &éﬁ) = infla: T (a)<0}; (4.2)
A a(1) | 2(2) ‘o .

a\)j ’5( \)J a\)j ), j=l,...,p3 (4.3)

G, = @peeendy )t (4.4)

We intend to study various asymptotic properties of @N , and towards this goal,
v

we have the following.

Theorem 4.1. When FeF) and £=0, under (2.1), (2.2), (2.3), (3.9), (3.13), (3.14)

and (3.17), as v

S“<N13f§‘nv'9‘1> > N ©Q.D, (4.5)

where T is defined by (3.19).

Proof. We use a recent powerful result of Mogyorodi [10] (Theorem 2), according

to which we are only to show that for non-stochastic v,
1 N
SOG gD ~> N (0,1, as v, (4.6)

and for every e€>0 and n>0, there exists a §>0 and an n, = no(e,n), such that for

n>n _,
- 0

Ple: mok|<snl RS > €} <, (4.7)

where ”5“ = max s §=(xl,...,xp)'. Now, (4.6) has already been proved in

1<i<p! 5]
Theorem 6.2.3 (on page 226) of Puri and Sen [11]. On the other hand, the left

hand side of (4.7) is bounded above by

max

P ~ A
L1 Bli: |kn]<sn valey 570y 51 > € (4.8)



and hence, by the same technique as in Lemma 5.3 of Sen and Ghosh [13], it can
be shown that (4.8) can be bounded by N(>0) but a proper choice of §(>0) and n.
For brevity, the proof is therefore omitted.

Since A, defined by (2.2), is a positive random variable, for every 0<e<l,
there exists a A€(>0), such that P{XEAE} > 1-¢, and hence, Nv+w, in probability,

as »®, Consequently, by (4.5)
§N + 0, in probability, as v, (4.9)
Vv

Consider now the problem of estimating § treating 0 as a nuisance parameter.
Assume that FEFP and that II and III hold. Let Réi)(b) be the rank of Xij-bci
among le—bcl,...,an
defined by (3.6) are then denoted by Svj(b) (1<j<p; v>1). It follows from Sen

~be (1<i<v; 1<j<p), b real; the resulting rank statistics

([12], section 6) that
Svj(b) is ¥ in b for all j=1,...,p. (4.11)

Define for each v>1,

A A(2 .
86;) = gsup{b: Svj(b)>0}’ Béj) = inf{b: Svj(b)<0}’ 1<j<p; (4.12)
2 _ ) 4 2(2) .
B\)j = l5(8\)3 + BVJ )’ 1_<_,]§Ps (4 ~l3)
ﬁ\) = (B\)l,u-,va)' (4.14)

Then, parallel to theorem 4.1, we have the following.

Theorem 4.2. For FEFP, when (2.1), (2.2), (2.3), (3.2), (3.3), (3.9), and (3.17)

hold, as v,

S.(chthv—gn >N (0,1, (4.15)



where T is defined by (3.19).

Proof. As in the proof of theorem 4.1, we require only to show that for non-

stochastic v,
e, (B,-8D) > N (0,1) as v, | (4.16)

and for every £€>0 and n>0, there exist a >0 and an no=no(€,n), such that for

n>n _,
—0

max ~A
Ple: |nk|<sn CdlBBall > €} <n- (4.17)

Now, (4.16) has already been proved in theorem 5.1 of Sen and Puri [14], while
(4.17), by virtue of an inequality similar to that in (4.7)-(4.8), follows from
Lemma 4.4 of Ghosh and Sen [6]. Hence, the details are omitted.

By (4.16), (3.3) and the discussion preceding (4.9), as Vv,

§N > §, in probability. (4.18)

\Y
Finally, consider the joint estimation of (g,g). Assume that Fng and
assumptions II, III', IV and V hold. Define the estimators év as in (4.12)-(4.14),
and then for estimating &, consider the following aligned rank statistics.

A
-a-B .c

~(j)+ _ _A _ —A
Let R}y (a) be the rank of |Xij a ijcil among Ile a ijcll,..., ij iy

(1<i<v, 1<j<p). The resulting one-sample rank-order statistics defined by (3.11)

are denoted by ij(a), (1<j<p, v>1). Define

~(1) _ - ~(2) _ . .
ayy" = sup{a: ij(a)>0}, G5 inf{a: ij(a)<0}, w1, 1<j<p; (4.19)
~ (1) ~(2) , .
CN '5(°‘vj + %5 ), 1<i<p, w13 (4.20)
g ~ vy
g" = (a\)l’.“,a\)P) > \)Z_l- (4.21)
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For notational simplicity, let §=(g',§')' and §V=(§¢,§G)'. Then, we have the

following theorem.

Theorem 4.3. Under (2.1)-(2.3), (3.9), (3.13), (3.14) and assumptions I, II,

IIT', IV and V, as W,
L o
L2, -9 > Ny, (0, 48D), (4.22)
A%

where T is defined by (3.19) and

1+c?/c? - ¢/c?

>
1]

(4.23)
- ¢/c? 1/c?

Proof. First note that by the same technique as in the proofs of results in

section 7 of Sen and Puri [14] (who considered the particular case of Ev=0 for

all v>1), one gets,
L5 5
3,8 > Ny (0, 48D (4.24)

Hence, similarly as in theorems 4.1 and 4.2, one needs to show that for every

€>0 and n>0, there exists a §>0 and an no=no(e,n) such that for ano,

max b~
Ple, on|<sn 17 @8l > €} < 2n. (4.25)

Now, the left hand side of (4.25) is bounded above by

max %on ; max LA A
Ple: [ronf<onl® Gdll>el + 2O, 130 colln @B Ibed (4.26)

By virtue of (4.17) and Bonferroni inequality, it suffices to show now that

ijl P{k: |Ef:l<6n“n%(§k_§n)”>€} < (4.27)
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For simplicity, instead of proving (4.27) we shall consider the following:

2+ i (e.s 5 ez
Let R%’ be the rank of lXij-a-ij(ci-cv)| among Ile—a—ij(cl—cv)|,...,

vi

|ij-a—8vj(cv—zv)|, 1<i<v, 1<j<p. The resulting one sample rank order statistics

defined by (3.11) will now be denoted by %vj(a) (1j<p; v>1). Define

(1) _ X 22 _ e B .
ij = sup{a: ij(a)>0}, Svj = inf{a: ij(a)<0}, v>1, 1<j<p; (4.28)
2 L) | 2(2) .
ij 4(6vj + évj ), 1<i<p, v>1; (4.29)
A - A ad v
8y = Bupoeenby )t w2l (4.30)

It follows from the results of Adichie [1] that

(1<i<p; v>1), (4.31)
i.e.,

§. =4d +§v2 (v>1). (4.32)

In view of (4.25)-(4.27) and (4.31)-(4.32) it now suffices to show that for
every >0 and n>0, there exists a ¢>0 and an n = no(a,n) such that for ano,
2j=1 P{ lIn (§k_§n»‘>€} <n. (4.33)

k: |k-n|<én

"~

To prove (4.33) we prove the following two lemmas. Since Qv and Bv (and hence
§V) are translation invariant for every v (see [14]), we may, for proving these

lemmas, assume that a=6=9.

Lemma 4.4. Under the assumptions of Theorem 4.3, for every s>0, there exist

and c

(1) (2)
s s

positive constants c and a positive integer Vg such that for g=g=0,

and all V2V o
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(2) -s

8 1y < Dy, (4.34)

p{ W v, (a)—Tv.(a)|>c§l)v (Log V)
|al<k_(1og V)™ i o

where Ko is a positive constant, k any positive integer and § fixed (0<8<%).

Before proving the above lemma, we may note that taking s>1 and on using

the Borel-Cantelli Lemma, (4.34) implies that

sup

AR ~
L v T .(a)-T .(a)| + 0 a.s. as v, (4.35)
|a|§K0v *(log V)k V3 Vi

The proof of the lemma is accomplished in several steps. First we show that for
any real b, defining ij(a,b) as similar to ij(a) with §V replaced by b, for

vzy;l) (depending on s),

sup sup

P{ - .
|al§K0v %(log v)k |b|§Klv “(log v)k
I

- ~
\V 6|ij(a,b)-ij(a)|

> céB)v_é(log v)k+l} < 024)v—s, - (4.36)

3 (4

where Kl is a positive constant, e Ty ey " are positive constants depending on

s. Next, in analogy to lemma 4.1 of Ghosh and Sen [6], one can show that for

(5) (6)

every s(>0), there exist positive constants g and Cq and a positive integer

V_, such that for V2V

s2 2°

Paoo (CylBy;1 > e (Log w2} < {7, (4.37)

1 (@)

Defining now cg s Cg and Vg appropriately on the basis of cél) (i=3,4,5,6),

v;l) and V(Z)’ one gets (4.34) from (4.35), (4.37) and (3.4). Let HV . (x) =

S sJsasb
-1 Vv -
Vv zi=l u(x-(Xij-a-b(ci—cv)» be the sample df of Xi

-1 vV
i=1

o _ 3
a b(ci cv) s, and let

3

Gv,j,a’b(x) =V u(x—|Xij—a-b(ci—cv)|) = Hv’j,a’b(x)-Hv’j’a’b(-x-) be the

sample cdf for lXij-a-b(ci—Ev)l's. The corresponding population cdf's are
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‘ _wlywv -
denoted respectively by F V.i.a, px) =V Zi=1F[j](x+a+b(ci-Cv)) and
- D, . = F -F -x-). iting o*. (4 = 2 *
V,J,a,b(x) v,i,a (x) ,J,a,b( x-). Writing ¢vj(1/(v+1)) a (1)

(1<i<v, v>1), one can now write

- ~ _ * \)
VT, (ab)-T (@) = é o3 e (x))dH

V,J ’a,b(X)

+1"v,j,a,b

- f ¢vJ v+l v i,a o(x))de,j,a,o(x)'

A result analogous to theorem 3.6.6 of Puri and Sen [11] give

03 (1 (D) =43(1/ () | = 007

maxl§i§y|

for some §>0, j=1,2,...,p. Hence, one can write,

‘ v'l[Tv’j(a,b)-T\)j (a)] =1 .,(a,b) + I\)jz(a,b) + o(v'l"f“s), (4.38)

vil
where

I,51(a:b) = f [0S, 40,5 )03 HCre PR CODN E- WO (4.39)

I,;,0a:0) = f O3 GHTCy 50,00, | L GOH L ()] (4.40)

On integration by parts, one can write, using (3.9), (3.13) and (3.14),

o

(a,b) = [ [, ;. GOH, o 01636

iz 0 ,353,0 TV, 1, a,0 F5C (x).  (4.41)

v+1 Vyj,a,o

We shall now state a lemma. The proof follows the same line as lemma 4.1

of Sen and Ghosh [13] and theorem 3.1 of Ghosh and Sen [6]. For brevity, the

-

. details are omitted.



14

. o)) (2)

Lemma 4.5. For every s(>0), there exist two positive constants KS and KS ,

and a positive integer vg (all of which may depend on s) such that for vzyg,

k>1 and 0<8<%

p{ sup : sup s?p 0o (x)-H -
~o<x<o | al<K v “(1og »)* |b| <K,V F(log )& Vsds3sb V,35a,0
- F 7 (1) -%-¢ k (2) -s

F\)3j9asb(X) * F\),jsaso(X)l Z KS v (log v) } < Ks Vo (4.42)

(x)~F

o.9.8,00 = vV [FGetatb (e =T )

Using also the fact that F.
8 e tact that %y,j.asb

—_ -l
-F(x+a)] = 0(v 1(1og v)Zk), uniformly in x, a and |b|§Klv 6(log v)k, one gets,

P{ sup sup sup (X) -H

: ° > 1 . (x) |
- . —00< }<00 IaliKoV l)i(log \))k |inKl\) ;ﬁ(log \))k V,jsasb V]850

L -
> Kél)v z 6(log v)k} 5_K§2)v ® for vzy:*, say. (4.43)

Thus, by (4.41) and (4.43), one gets by using (3.9), (3.13) and (4.14) that

sup sup

- - |1...(a,b)|
|a|§Kov lﬁ(log V)k |b]§K1v %(log v)k vj2 e’

In

00 (10g w1 2 1,0 Kl-1/ )]

o T (10g v¥ T, (4.44)

with probability 3_1—K;2)v's, for V>V¥*.

Again, write



15

=V - 1NV

. I,51(8:P) = \)+1-é 16y, 4,2,y 5,a,0 @1} 7 166 5 (0 +
_ 1-0)6, ; . GODE @, (0<o<D). (4.45)

Since G ,j,a,b(x)_Gv,j,a,o(x) = [Hv,j,a,b(x)—Hv,j,a,o(X)] [HV,J, (-x)-

Hv,j,a,o(_x)]’ it follows from (4.43) that
sup sup
sup G x)-G (x)
—oo< k<o IaI<K v ’i(log \)) IbliKo\)-li(log \))k | \)sj’a,b vsjsa,o |

.
Kél)v 2 6(103 v)k

(Z)v—s

with probability Z.l'KS for large y. Using arguments analogous to (4.20)-

(4.27) of theorem 4.3 in Sen and Ghosh [13], one can prove now that
sup sup

-1 k -1 (a, b)l < K(B) 5= 6(1og v)
|a|5Kov Z(log v) lblsKlv 4(log v)

k I vil

with probability Z_l—Ké4)v_S

for large v. Hence, the lemma.
For proving (4.33) we need another lemma which we prove below. For proving

this lemma, we take aéj)*(i) = ¢Sj(i/(v+l)) ¢j(U ) (licv, I<i<p).

Lemma 4.6. For g=R=0, for every s>0, there exist positive constants dél) and
(2) e
dS and a positive integer Veo such that for V2V
p(|3 5| 2 a{Pv(log Y < 4fPVT (4.46)

A -l
Proof. We prove only the case of P{ij Z_d;l)v é(log v)k} as the other case

- follows similarly. Note that
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P{gvjzﬁil)v_%(log v)k} 5_P{§5§)Zdél)v_%(log v)k}

= 2(8 ) (aPv(10g 200 = 2007 @Dy Log w920} - 4.47)

It follows from Lemma 4.5 that for every s>0, for large v, with probability

1—c(2)v_s

s 1

bd
~ -1 -1 -
VEE L@ og vFH-T L @ PV Eog w1 < Py 0g WK, (4.48)
v] s vi s s
Further, from theorem 4.3 of Sen and Ghosh [6 ], we have

vz, @y og W - 1,01 - 4l Gog W < 4PV WE,  (4u49)

(2) -s

with probability Z_l-cS v -, for large v. Hence, from (4.47)-(4.49), it suffices
to show that for large v, for every s>0, there exist constants dél) and diz) such
that

P{v_%ij(O) > dél)(log vk s,déz)v_é(log wE. (4.50)

Since, 0=B=0, for every v, R(J)+ = (R(J)+,...,R(j)+)' is independent of
~ 2~ ~V vl Y
§éJ) = (S(le)s---ss(xvj)), where s(u) = 2c(u)-1 i.e,, s(u) =1, 0 or -1,

according as w, =, or <0. Now

e v I+s (X, )

i=1 2

i)+
v (i) )

vir (0) E ¢*(U R
v] ivviv

U R(?)+)
VvV vl

]

11 -1
%v‘é ¢ (wdu + 37 Ty s (X, DEGRC

Since, (3.10) holds, we get from (3.13) and (3.14) the first term to be 0(v).

Hence, (4.49) will be proved if one can show that for large v
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P{\)—%‘rvjo(o)ﬂdél) (log \))k} < déz)\)-s, (4.51)
where

i)+
Ty30(0 = 2i\=)1s(xij)Ed”;’f(U\)R\()Ji) s I

1
Writing 8, = ZdSl)vé(log v)k, and using the Bernstein inequality, one gets,

P{ijo(o) gv} < t:g E[exp{t(ijo(O)-gv)}] (4.52)
Now,

E[eXP{t(ijo(O)-g\)}] = eXP(—tg\))E[exp(tijo(O))]-

Again,

Elexp(t T,;,(0))] = E E[Hi:]_exp(ts(Xij)E¢3.‘(UVR\()?:L)+)) |B\()j)+]

() and B(J)+ and also the elementary inequality

Using the independence of Sy »

lﬁ(ex + e_x).i exp(x2/2), one gets,

BV, O exp(erss 0 RDM) + %5 exp(emosw R )1

E[exp(tTVjo(O))] Vv Vi vvi

v t2 )+
<EIL. exp(y (EO¥(U R

A _ti *2 (j)+
<enY e aetar ™)

V .
E exp(%; .21 E¢§2(U R(J)+))

£ Vi
2V vt2A?
= L %2 =
E exp(5 izl E¢¥2(U,;)) exx>(—'12 )
1
where A; = f ¢§2(u)du. Thus, from (4.52),

0

vt2A? gf)

P{ijo(0)>gv} < inf exp(—tgv + ——5—1) = exp(- E;K?)

t>0 (1)2 j

2d 2k
= exp(- ZZ (log V)7),

J
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and hence, (4.50) follows. Hence, the lemma.
-l ~ A
It follows from Lemmas 4.4 and 4.6 that for large v, Vv 1[ij(év) -
ij(Sv)] = O(v-a(log v)k) with probability > l-const. v e, Again, it follows
_li ~ ;izs _
from theorem 4.3 of Sen and Ghosh [13] that Vv [ij(ﬁv) ij(O)] + Vv Gij =
O(v_é(log v)k) with probability > l-const. Voo, Hence, with probability
_ e T T N 52 - -s k
> l-const. Vv , V [ij(6v) ij(O)] +V 6ij = 0(v "(logVv) ). i.e.,
V%§ B, - v-%T 0 = O(v—a(log V)k) noting that T (8 =20 (4.33) now
V' j Vj ? Vitv : :

follows from theorem 4.5 of Sen and Ghosh [13]. Hence the theorem.

5. BOUNDED LENGTH (SEQUENTIAL) CONFIDENCE BANDS FOR §

Parallel to problems (I)-(III) of section 4, we consider here the follow-

ing three problems.

Problem I' Confidence estimation of O assuming that §=Q. More specifically
we want a p-dimensional confidence rectangle for o such that the length of each
side < 2d (d>0, preassigned) and the confidence coefficient > l1-a. This can be
achieved by a direct extension of the results of Sen and Ghosh [13].

. . =R= = 1 1
To see this, first note that under g=g=0, Ivo (TVlO""’Tvpo) . (ijo s

defined after (4.51)) has a distribution independent of F diagonally symmetric

about 0. Hence, there exists a known constant Tv e such that

Pg=3=0 { max ITvJo

2T b= le > 1oe as we. (5.1)
~~ 1<2p

V,€

For large v, W T

V,E s

- X;,e where X; e is the upper 100c% point of the distri-

bution of the maximum of Yl""’Yp where Yy = (Yl,...,yp)' is N(Q,v). Define now

~

%L,3,v

N

“U,3,v

sup{a: ijo(a) > Tv’e}, (5.2)

inf{a: ijo(a) < _Tv,e}’ (5.3)
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where ijo(a) is defined in the same way as Tv. ijo(O), replacing Xi's by

Jjo

X;-a's (1<j<p, 1<i<v). Then, P {a < 0y < O . \)Vlﬁj_<p}=
3

a=g=0""L,3,v = % < %,
} =

<T. <T _Vii<p

P ~-T _ _
Q‘=§=9{ V,E = "Vvjo — "v,&e 1 E\) + l-g as oo,

We define the stopping variable N = N(d) to be the least positive integer

N

) < 2d. Now, using Theorem 4.3 and Lemma 5.1

> a -
n(_po) such that max (aU,j,n O n,n? S

1<j<p
of Sen and Ghosh [13],

R IT, Gy y ) = Ty (0 + 4y 5 BT = 00 (log W)*) (5.4)

with probability > l-const. v_s, for every s>0, large v. Thus noting that when
1

a\()j)*(i) - E[¢§(Uvi)]’ 1<i<v, ijo(a) = 2ij(a) - é ¢§(u)du, for all real a, it

follows from (5.3) and (5.4) that

-k - 3
X3 e N ijo(o) + /G-GU,. B, ~ 0 a.s. as Vo,

JsVv ]
Similarly,
x - AT, +/Na . B, .S.
X3 e N \)JO(O) /\TaL,J’\) M 0 a.s. as V>
Thus,
. 3.e
/\-)_(OLU’j ,\)—OtL’j ,\)) - Bj a.s. as o
Hence,
2y
max W @, . 0. . ) > — B 4 5. as . (5.5)
s U,J,\) L,J:V min B
1<j<p . ]
1<i<p
It follows now from the definition of N that lim N(d)/s(d) = 1 a.s., where
d»0
s(d) = x*2 /d? min B%, and as to the rate of convergence, we can make a similar

€ 1
statement as (5.4). Thus, generalizing the results of Sen and Ghosh [13], we

get the following theorem.

Theorem 5.1. Under the assumptions Fng, (2.1)-(2.3), (3.9), (3.13)-(3.14) and




(3.17),
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N(=N(d)) is a non-increasing function of d; N(d)<»

with probability 1, EN(d)<» for all d>0,

lim N(d)=®* a.s., and lim EN(d)=%.
d-0 d>0

1imd+0 N(d)/s(d) =1 a.s.

Limg,g Pal0y g,y £ 0 < &y 5 V1<isp} =

limg EN(d)/s(d) =

We now suggest an alternate procedure for the same problem. We find a

confidence region RN for a such that the maximum diameter of RN < 2d. Our

procedure is analogous to the one proposed by Srivastava [15].

We define

A(n)

n n
Vi = LG a0 G 101a )4 00

(5.6)

(5.7)
1-€. (5-8)

(5.9)
(x,y)-ujug', (5.10)

for 1<j#&<p where F[ In (x) and F[ R]n(x,y) are the empirical df's correspond-
’

ing to the true df's F[ ](x) and F[ Ql(x,y) respectively, for j=4, Y

(n)

= $2 (u)du-p?, 1<j<p. Also, define Bj , 38 the estimator of Bj (1_j§p)

Y33 Oj ] | ,
as in Lemma 4.2 of Ghosh and Sen [ 6]. Define then

A(n) ~(n) _ o) s 3 .
(( ))s TJQ, sz / J,n JL n J"Q'—l’ oy (5°11)
We denote by
Xn = max. ch. root of fn; A = max. ch. root of T, (5.12)

where T is defined by (3.19); finally, x; e is defined as the upper 100€Z point
1

of the chi square distribution with p degrees of freedom.

follows.

Our procedure is as



21
Starting with an initial sample of size no(>p), we continue drawing
observations one at a time according to a stopping time N defined by
= = > A 2 2

N[=N(d)] smallest n>n such that knfd n/xp’a (5.13)

When sampling is stopped at N=n, construct the region Rn defined by
= . N VT (A - 2
R, = {z: (2 -2)'(q -2) <d°} (5.14)

Then, we have the following theorem.

Theorem 5.2. Under the assumption that 0<A<» and the hypothesis of Theorem 5.1,

the results of Theorem 5.1 all hold for the stopping variable N(d), defined by

(5.13) and RN’ defined by (5.14), provided we replace s(d) in (5.7) and (5.9) by

v(d) = x; a A/d2. (5.15)

Proof. Running down the proof of Srivastava [16], it suffices to show that

An+A a.s., as n*o; by the Courant Theorem, it thus suffices to show that

in + T a.s., as n>o. (5.16)
Since, ﬁj 0’ j=1,...,p, converge a.s. to Bj’ j=l,...,p as m»> (See [13]), it
b

suffices to prove the following lemma.

Lemma 5.3. Under (3.4), (3.17), (3.18) and (3.19),

?;E) > Yjq 8-5e» as mo, for all 1<j#2<p. (5.17)

Proof. Since ¢j(u) is assumed to be non-decreasing, absolutely continuous and

square integrable inside [0,1], by Lemma 5.1 of Hiajek [9], we may write for

O<u<l,
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AOR ¢§1)<n) - ¢§2)<u) + ¢§3)(u), (5.18)

where ¢§l)(n) is a polynomian (i.e., has bounded second derivative) and

1 (k) 1
[ {6 @PPdu < % [ $2(w)du], k=2,3, (5.19)
o 4 0 3

where €>0 is arbitrarily small. By (3.8), we may decompose the scores aéJ)(i),
1<i<v, also in three parts. On the first part, involving ¢§l), almost sure

convergence of F and F[j 2]n to F[j] and F_, 2] (respectively) implies the
’

[3]n (i,

a.s. convergence of the corresponding component of §§2) to that of sz; on the
other components, the Schwarz inequality and (5.19) imply that the same can be

made arbitrarily small by proper choice of €(>0). Q.E.D.

Remark. In (5.14), we could have taken a region {g: (@n—g)'é_l(gn—g) f_dz},
where A is any given positive definite matrix. 1In that case, we need to define
in = max. ch. root of é_lIn and A = max. ch. root of é_lg. The proofs follows

on parallel lines.

Problem II'. Confidence band for B treating 0 as a nuisance parameter

(i) Rectangular regions. Note that under B=0, svj's have a completely specified

~

distribution generated by (n!)p equally likely realizations of the ranks. Hence,

there exists a known Sv e such that
b

P =O{ max |S

<S }= 1—ev + 1-g as v,
B2 1ciep

vjl - “v,e

For large v, VS,

vie X; e the upper 100€% point of the distribution of the
? H

maximum of Yl""’Yp where Yy = (Yl,...,Yp)' is N(Q,v). Define now

A

BL,j,\)

sup{b: Svj(b) > Sv,e}
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= inf H . < -
By, j,v = inflb: 8, (®) < -5 1
Then,
P g . < B, < B . 1<4§<
§=Q{BL’J sV BJ - BU’J sV v J_P}
= l—EV > 1-€ as v, (5.20)

We define the stopping variable N=N(d) to be the least positive integer
nlax N A
(

1<4<p ) < 2d. Using Lemma 4.2 of Ghosh and Sen

n(>n such that , - .
(—-o) U,j,n BL,J,n —

[6], we can now prove the following theorem. The proof is omitted because of

its obvious analogy to Theorem 5.1.

Theorem 5.4. lﬁ_FEFP, then under (2.1)-(2.3), (3.9) and (3.17), N(d) as de-

fined above and the related confidence band for B satisfy the results of

Theorem 5.1 provided we define

s(d) = Q'l(nge/[d212;§P B§]), (5.21)

where Q(n) = C; for n>1 and is obtained by linear interpolation for non-integer
t(>0).

(ii) Sprerical or Ellipsoidal regions. Here, we start by taking no{zp) observa~-

tions Xl,...,Xn and continue sampling one observation at a time in accordance
0

with the stopping variable

- 22,2
N(d) = smallest n(zpo) such that kn-i d Cn/Xp,e’

where Xn and X; e are defined in (5.12) and after that. When sampling is stopped
H

at N=n, we construct the region Rn defined by

R = {B: (B -B)'(B -B) < d®}, (5.22)

n

where @n is defined by (4.14). Then, we have the following.
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Theorem 5.5. The conclusions of Theorem 5.2 holds for N(d) and Rn, defined as

above, provided we let

V(@) = QA /ah).

The proof follows along the same line as in Theorems 5.1 and 5.2.

Problem III'. Confidence bands for 8. Here also, we can have either a rectangular

or an ellipsoidal region for 6=(a,B). We need to change X; e and X; e to
~ ’ ’
x* and X2 respectively, and therefore, in view of the similarity with
2p,€ 2p,€
problems I' and II', the details are omitted.
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