ASPECTS OF EXTREME VALUE THEORY
FOR STATIONARY PROCESSES - A SURVEY

by

M. R. Leadbetter

Department of Statistics
University of North Carolina at Chapel Hill

Institute of Statistics Mimeo Series No. 951
September, 1974
ASPECTS OF EXTREME VALUE THEORY
FOR STATIONARY PROCESSES - A SURVEY

by

M. R. Leadbetter

Department of Statistics
University of North Carolina at Chapel Hill

SUMMARY

The primary concern in this paper is with the distributional results of classical extreme value theory, and their development to apply to stationary processes. The main emphasis is on stationary sequences, where the theory is well developed. Results available for continuous parameter processes are also described, but with particular reference to stationary normal processes.

1. **INTRODUCTION**

This paper is concerned with certain aspects of extreme value theory of independent and identically distributed (i.i.d.) random variables, and their generalization to apply to stationary sequences, and continuous parameter processes. If \(\{\xi_n\} \) is any sequence of random variables we shall write

\[
M_n = \max(\xi_1, \xi_2, \ldots, \xi_n)
\]

for the maximum of the first \(n \) terms. Specifically the following topics from classical extreme value theory will be considered:

(i) Gnedenko's Theorem - giving the possible types of asymptotic distribution of \(M_n \), i.e. the possible distributions \(G \) such that

\[
P(a_n (M_n/b_n) \leq x) \to G(x)
\]

(ii) The relation \(P(M_n \leq u_n) \to e^{-\tau} \) when \(P(\xi_1 > u_n) \sim \tau/n \)

(iii) The form of the limiting distribution in the normal case

(iv) The Poisson limiting distribution for the number of exceedances of \(u_n \) by \(\xi_1 \ldots \xi_n \) where \(u_n \) is chosen as in (ii)

(v) The asymptotic distribution of the \(r^{th} \) largest of \(\xi_1 \ldots \xi_n \) for fixed \(r \).

In Section 2 these results will be stated (together with indications of methods of proof) for i.i.d. random variables. Section 3 contains a brief discussion of dependence conditions which have been used in the past, and
those which are used here, in order that the asymptotic results for the maximum may apply to stationary sequences, as will be seen in Section 4. These results will be compared with those of Berman [1] for stationary normal sequences.

In Section 5, we look at the "exceedances" of high levels by stationary sequences, and indicate their weak convergence as point processes, to a Poisson process, by means of a simple and useful general point process convergence theorem of Kallenberg [13]. The desired properties of the r^{th} largest value, $M_n^{(r)}$, will follow as immediate consequences of this convergence.

Certain of the results are known to apply to the supremum

$$M(T) = \sup \{ \xi(t) : 0 \leq t \leq T \}$$

of a continuous parameter stationary process $\xi(t)$ as $T \to \infty$. These are described in Section 6. The most detailed properties presently known concern the case when $\{ \xi(t) \}$ is a normal process, and these are also discussed in Section 6.

Finally we remark that other questions besides distributional ones, are of interest in extreme value theory. For example convergence questions akin to laws of large numbers are clearly important. We do not consider such matters here, but concentrate on the distributional results indicated.

2. Extreme Value Theory for i.i.d. Random Variables

In this section we shall look briefly at each of the topics mentioned in the Introduction, for i.i.d. random variables.
(i) Gnedenko's Theorem.

This theorem is central to classical extreme value theory and is stated precisely as follows:

THEOREM 2.1 (GNEDENKO): Let ξ_1, ξ_2, \ldots be i.i.d. random variables, and let $M_n = \max(\xi_1, \xi_2, \ldots, \xi_n)$. Suppose that for some sequences of constants \(\{a_n > 0\}, \{b_n\}\),

\[P\{a_n(M_n - b_n) \leq x\} \to G(x) \quad \text{(at continuity points of } G) \]

where G is a non-degenerate d.f.. Then G belongs to one of the three "extreme value types":

Type I $G(x) = \exp(-e^{-x})$ $-\infty < x < \infty$

Type II $G(x) = 0$ $x < 0$

\[= \exp(-x^{-\alpha}) \quad x \geq 0 \quad (\alpha > 0) \]

Type III $G(x) = \exp\left\{-(-x)^{\alpha}\right\}$ $x < 0$ $(\alpha > 0)$

\[= 1 \quad x \geq 0 \]

(In saying that G is one of these "types" it is to be understood that x may be replaced by $ax + b$ for any fixed $a > 0$, b in the functional form.)

While we shall not prove Gnedenko's Theorem here (see [10] or [5] for detailed proof) it does seem worthwhile to point out the main ideas of the proof, since these are also used later. The main part of the proof given by Gnedenko may be displayed as the three lemmas given below.
First note that if the common distribution function (d.f.) of the \(\{\xi_i\} \) is \(F \), then \(M_n \) has the d.f. \(P\{\xi_1 \leq x, \xi_2 \leq x \ldots \xi_n \leq x\} = F^n(x) \) and

\[
P\{a_n (M_n - b_n) \leq x\} = F^n\left(\frac{x}{a_n} + b_n\right).
\]

If the left-hand side converges to some \(G(x) \) then for any \(k = 1, 2, 3 \ldots \),

\[
P\{a_{nk} (M_n - b_{nk}) \leq x\} = F^k\left(\frac{x}{a_{nk}} + b_{nk}\right) \to G^{1/k}(x).
\]

Stating this formally we have

Lemma 2.2 Let \(\xi_1, \xi_2 \ldots \) be i.i.d. . If

\[
(2.1) \quad P\{a_{nk} (M_n - b_{nk}) \leq x\} \to G^{1/k}(x) \quad \text{as} \quad n \to \infty
\]

holds for \(k = 1 \), then it holds for all \(k = 1, 2, 3 \ldots \).

In particular if the assumptions of Theorem 2.1 are satisfied then (2.1) holds for all \(k \). On the other hand if (2.1) holds for all \(k \), \(G \) must have certain "stability properties" indicated in the following lemma.

Lemma 2.3 If (2.1) holds for all \(k \) and \(G \) is non-degenerate then for each \(k \), there exist constants \(a_k > 0, \beta_k \) such that

\[
(2.2) \quad G^k(a_k x + \beta_k) = G(x) \quad \text{for all} \quad x
\]

(Sometimes such a d.f. is called *stable* (e.g. [5]) though this is, of course, not the usual definition of stability.)

This result is due to Khintchine and is given in [11]. A very general result of this type (from which this lemma follows as a special case) is given
by Feller [7, p. 246]. This result states that if \(\{F_n\} \) is any sequence of d.f.'s such that

\[
F_n(\lambda_n x + \mu_n) \to G(x), \quad F_n(\lambda_n^* x + \mu_n^*) \to G^*(x),
\]

for some sequences \(\lambda_n > 0, \mu_n, \lambda_n^* > 0, \mu_n^* \), where \(G, G^* \) are assumed non-degenerate, then \(\lambda_n / \lambda_n^* \to 1, \ (\mu_n - \mu_n^*) / \lambda_n \to 0 \) and \(G^*(x) = G(ax + b) \) for some \(a > 0, b \). This theorem may be applied to (2.1) with \(\lambda_n = 1/a_n, \mu_n = b_n, \lambda_n^* = 1/a_{nk}, \mu_n^* = 1/b_{nk}, G = G^{1/k} \), to give the lemma.

The following lemma now completes the proof of Gnedenko's Theorem for i.i.d. random variables.

Lemma 2.4 If \(G \) is a non-degenerate d.f. satisfying (2.2) for each \(k \) (and some constants \(\alpha_k > 0, \beta_k \)) then it is an extreme value d.f. of Type I, II, or III.

The proof of this lemma is the major part of Gnedenko's derivation in [10] and we do not give it here.

To summarize, if the \(\xi_n \) are i.i.d. it follows that

(a) If (2.1) holds for \(k = 1 \) it holds for all \(k = 1, 2 \ldots \). In particular (2.1) holds for all \(k \) under the assumptions of Gnedenko's Theorem.

(b) If (2.1) holds for all \(k \) then \(G \) (if non-degenerate) has the stability properties (2.2),

(c) If (2.2) holds for each \(k \), \(G \) is a Type I, II, or III extreme value d.f. and hence
(d) under the assumptions of Gnedenko's Theorem, (2.1) holds and hence (2.2) does and hence G is an extreme value d.f. .

Looking ahead, we note that the same proof will apply under any circumstances in which the truth of (2.1) for $k = 1$ implies its truth for all k. This will be used in the next section to obtain the desired generalization of Gnedenko's Theorem.

(ii) Convergence of $P\{M_n \leq u_n\}$ to $e^{-\tau}$ when $1 - F(u_n) \sim \tau/n$.

Suppose that a sequence $\{u_n\}$ may be chosen so that

$$1 - F(u_n) = P(\xi_1 > u_n) \sim \tau/n$$

for some fixed $\tau > 0$. (Note that this is not always possible - e.g. if F_1 increases only by jumps at 1, 2, 3... with $F(j) = 1 - \tau/(2^j - 1)$, as may be checked.) Then

$$P\{M_n \leq u_n\} = [1 - (1 - F(u_n))]^n = [1 - \tau/n + o(1/n)]^n = e^{-n\tau}.$$

Conversely it is easily seen that (2.3) is also necessary for (2.4). (If (2.4) holds then

$$n \log[1 - (1 - F(u_n))] \to -\tau$$

from which (2.3) follows.) Thus the following result holds.
THEOREM 2.5. For the i.i.d. case \(P\{M_n \leq u_n\} \to e^{-\tau} \)

\[(\tau > 0) \text{ if and only if } 1 - F(u_n) \sim \tau/n.\]

(iii) The limiting distribution in the normal case.

If \(\xi_i \) are i.i.d. standard normal r.v.'s we may choose \(u_n \) so that

\[1 - \phi(u_n) = \tau/n \quad \text{(for a given } \tau > 0) \quad \text{where } \phi \text{ is the standard normal d.f.} \]

Now \(1 - \phi(x) \sim \phi(x)/x \) as \(x \to \infty \) where \(\phi \) is the standard normal density so that \(n\phi(u_n)/u_n \to \tau \). It follows by taking logs and rearranging that

\[(2.5) \quad \frac{u_n^2}{n} = 2 \log n - \log 2\pi - 2 \log u_n - 2 \log \tau \]

and dividing by \(\log u_n \) shows that \(\log u_n = o(\log n) \). It then follows from (2.5) that \(u_n^2 \sim 2 \log n \) or \(u_n^2/(2 \log n) \to 1 \), whence by taking logs we have

\[(2.6) \quad \log u_n = \frac{1}{2} \log 2 + \frac{1}{2} \log \log n + o(1).\]

By substituting (2.6) in (2.5) and taking the square root we may obtain

\[u_n = (2 \log n)^{\frac{1}{2}} \left[1 - \frac{1}{2} \frac{\log \log n}{\log n} + \frac{\log \tau}{2 \log n} + o\left(\frac{\log \log n}{\log n}\right)^2 \right] \]

\[= b_n - \frac{\log \tau}{a_n} + o\left(\frac{1}{a_n}\right) \]

where

\[
\begin{aligned}
\begin{cases}
 a_n = (2 \log n)^{\frac{1}{2}} \\
 b_n = (2 \log n)^{\frac{1}{2}} - \frac{1}{2}(2 \log n)^{-\frac{1}{2}} (\log \log n + \log 4\pi).
\end{cases}
\end{aligned}
\]
Hence, writing $\tau = e^{-X}$ in Lemma 2.5, we have

$$P\{a_n (K_n - b_n) + o(1) \leq x\} \to \exp(-e^{-X})$$

so that also $P\{a_n (K_n - b_n) \leq x\} \to \exp(-e^{-X})$.

Thus in the normal case the asymptotic distribution for M is of Type I with the normalizing constants a_n, b_n given by (2.7).

(iv) Limiting Poisson distribution of Exceedances of u_n.

Let ξ_1, ξ_2, \ldots be i.i.d. and suppose $\{u_n\}$ may be chosen to satisfy (2.3). Any j for which $\xi_j > u_n$ will be called an exceedance of u_n by $\{\xi_k\}$. The number N_n of exceedances of u_n by $\{\xi_k\}$ for $1 \leq k \leq n$ is binomial with parameters $n, 1 - F(u_n)$. Since $n(1 - F(u_n)) \to \tau$ it follows that N_n is asymptotically Poisson, i.e. the following result holds.

Theorem 2.6. If N_n is the number of exceedances of u_n (satisfying (2.3)) by the i.i.d. random variables $\xi_1, \xi_2, \ldots, \xi_n$, then

$$P\{N_n = r\} \to e^{-\tau} \frac{\tau^r}{r!}$$

for any fixed $r = 1, 2, 3, \ldots$.

Thus the exceedances have this "asymptotic Poisson character" whatever the form of F (provided (2.3) can be satisfied). This notion will be developed much more in Section 5 where the exceedances will be regarded as a point process.
(v) Asymptotic distribution of \(M_n^{(r)} \), the \(r \)th largest of \(\xi_1 \ldots \xi_n \).

Let \(\{u_n\} \) be a sequence such that (2.3) holds, and hence by Theorem 2.6, (2.8) holds. But the event \(\{M_n^{(r)} \leq u_n\} \) is precisely the event \(\{N_n < r\} \) so that \(P\{M_n^{(r)} \leq u_n\} = \sum_{s=0}^{r-1} P(N_n = s) \cdot e^{-\tau} \sum_{s=0}^{r-1} \frac{\tau^s}{s!} \). Summarizing this formally we have the following result.

Theorem 2.7. If \(\{u_n\} \) satisfies (2.3) and \(M_n^{(r)} \) is the \(r \)th largest of the i.i.d. random variables \(\xi_1, \xi_2 \ldots \xi_n \) then

\[
P\{M_n^{(r)} \leq u_n\} \to e^{-\tau} \sum_{s=0}^{r-1} \frac{\tau^s}{s!}
\]

as \(n \to \infty \), for all \(r = 1, 2, 3 \ldots \).

Corollary: If \(\{u_n\} \) is a sequence such that \(P\{M_n \leq u_n\} \to e^{-\tau} \) then (2.9) holds. (For then by Theorem 2.5, (2.3) holds.)

We may develop this line a little further - to obtain the asymptotic distribution of \(M_n^{(r)} \) from that of \(M_n \). Specifically if

\[
P\{a_n(M_n - b_n) \leq x\} \to G(x) \quad \text{where} \quad G \text{ is non-degenerate (and hence of Type I, II, or III)} \quad \text{then, if} \quad 0 < G(x) < 1 , \quad \text{by applying the above corollary with}
\]

\[u_n = x/a_n + b_n , \quad \tau = -\log G(x) \]

we see that

\[
P\{a_n(M_n^{(r)} - b_n) \leq x\} \to G(x) \sum_{s=0}^{r-1} \frac{(-\log G(x))^s}{s!} .
\]

It is also easily seen (using continuity of the extreme value distribution \(G \)) that the limit is zero if \(G(x) = 0 \) and 1 if \(G(x) = 1 \). Thus the following result holds.
THEOREM 2.8. Suppose that \(P(a_n (M_n - b_n) \leq x) \to G(x) \) is \(n \to \infty \) where \(G \) is a non-degenerate d.f. Then the asymptotic distribution of \(\gamma_n^{(r)} \) the \(r \)th largest of \(\xi_1, \xi_2, \ldots, \xi_n \) is given by (2.10). (If \(G(x) = 0 \) or \(1 \) the right-hand side of (2.10) is to be taken as \(0 \) or \(1 \) respectively.)

3. DEPENDENCE RESTRICTIONS.

We turn now to consider dependent stochastic sequences \(\xi_1, \xi_2, \ldots \). Although it is not always necessary to do so (cf. [8]), we shall concern ourselves with strictly stationary sequences, i.e. such that the finite dimensional distributions \(F_{i_1 \ldots i_n}(x_1 \ldots x_n) \) of \(\xi_{i_1} \ldots \xi_{i_n} \) have the property that \(F_{i_1 \ldots i_1 \times \ldots \times i_n \times \times}(x_1 \ldots x_n) = F_{i_1 \ldots i_n}(x_1 \ldots x_n) \) for any choice of \(n, i_1 \ldots i_n, x_1 \ldots x_n \).

Certain of the properties of Section 2 were generalized by G. S. Watson ([25]) to apply to "m-dependent" stationary sequences, and by R. M. Loynes ([19]) to "strongly mixing" sequences. The strong-mixing assumption is the usual one, i.e. requiring that

\[
|P(A \cap B) - P(A)P(B)| < g(k)
\]

for any events \(A \in \sigma(\xi_1 \ldots \xi_m) \) \(B \in \sigma(\xi_{m+k+1}^\ldots \xi_{m+k+1}) \) \(\sigma(\xi_1 \ldots \xi_m) \) denoting the \(\sigma \)-field generated by \(\xi_1 \ldots \xi_m \) etc.) for any \(m \), where \(g(k) \) (the "mixing function") tends to zero as \(k \to \infty \). (m-dependence requires \(g(k) = 0 \) for \(k \geq m \).)

In particular Loynes obtained Gnedenko's Theorem under strong mixing, and showed that (2.4) holds under natural further conditions. In addition he
showed that under such conditions the asymptotic distribution of
\[M_n = \max(\xi_1, \ldots, \xi_n) \]
is the same as it would be if the \(\xi_i \) were i.i.d. with the
same marginal d.f. as when independent.

When the sequence is strongly mixing but does not necessarily satisfy
further conditions, it is possible to obtain an asymptotic distribution of \(M_n \)
which is different from that of the i.i.d. sequence with the same marginal d.f.
Examples of this and other related matters complementing the work of Loynes,
are given in papers by O'Brien ([20], [21]).

For stationary normal sequences, conditions on the covariance function
\[r_n = E\xi_i \xi_{i+n} \] (taking \(E\xi_i = 0 \) , \(E\xi_i^2 = 1 \)) are more natural than mixing condi-
tions. It has been shown by S. M. Berman ([1]) that the same asymptotic
limit holds for \(M_n \) in this case as for an i.i.d. normal sequence (i.e. a
Type I limit with normalizing constants given by (2.7)) if one of the following
conditions holds.

\[r_n \log n \rightarrow 0 \text{ as } n \rightarrow \infty \quad \text{or} \quad \sum_{n=1}^{\infty} r_n^2 < \infty. \]

(Mittal and Ylvisaker ([27]) have recently shown that if the conditions (3.2)
do not hold a variety of limiting distributions are possible.

It is possible to weaken the strong mixing condition and still obtain
Gnedenko's Theorem and the other results indicated above. It will further
turn out that this weakening provides results which apply to normal sequences
under the conditions (3.2). To see how the strong mixing condition should be
weakened, note first that not all events \(A, B \) in (3.1) are of interest. In
fact we are clearly primarily interested in events of the form
\{\xi_1 \leq u, \xi_2 \leq u, \ldots, \xi_n \leq u\} which suggests requiring a condition of the
type (2.1) to hold for all \(A = \{\xi_{i_1} \leq u \ldots \xi_{i_p} \leq u\}, B = \{\xi_{j_1} \leq u \ldots \xi_{j_q} \leq u\}\)
where \(i_1 < i_2 \ldots < i_p < j_1 < j_2 \ldots < j_q\) and \(j_1 - i_p \geq k\). Put in terms
of the finite dimensional distribution functions (and writing \(F_{i_1 \ldots i_n}(u)\)
for \(F_{i_1 \ldots i_n}(u, u \ldots u)\)) this would require

\[(D): \quad |F_{i_1 \ldots i_p j_1 \ldots j_q}(u) - F_{i_1 \ldots i_p}(u)F_{j_1 \ldots j_q}(u)| < g(k)\]

whenever \(i_1 < i_2 \ldots < i_p < j_1 \ldots < j_q, j_1 - i_p \geq k\), \(g(k) \rightarrow 0\) as \(k \rightarrow \infty\).

However even \((D)\) is not sufficiently weak to deal with normal sequences satisfying
the weak covariance conditions (3.2). We may obtain a suitable condition
by modifying \((D)\) so that it is essentially required to hold for a single
sequence of interest, rather than for every fixed value of \(u\). More precisely
if \((u_n)\) denotes a given fixed sequence we shall say that \(D(u_n)\) holds if

\[(3.3) (D(u_n)) : |F_{i_1 \ldots i_p j_1 \ldots j_q}(u_n) - F_{i_1 \ldots i_p}(u_n)F_{j_1 \ldots j_q}(u_n)| < \alpha_{n,k}\]

whenever \(i_1 < i_2 \ldots < i_p < j_1 \ldots < j_q, j_1 - i_p \geq k\), where \(\alpha_{n,k}\) is non-
increasing in \(k\) and where

\[(3.4) \quad \lim_{n \rightarrow \infty} \alpha_{n,k} = 0\]

for some sequence \(k_n \rightarrow \infty\) with \(k_n/n \rightarrow 0\).

It is apparent that \((D)\) implies \((D(u_n))\) for any sequence \(u_n\) (any
sequence \(k_n \rightarrow \infty, k_n/n \rightarrow 0\) may be chosen). However it will turn out that
\(D(u_n)\) is implied by either condition (3.2) in the normal case, for suitably
chosen \(u_n \).

We shall see that Gnedenko's Theorem holds under conditions of the type \(D(u_n) \). However (as for strong mixing) an additional condition is required to obtain results such as (2.4) and the limit law for normal sequences. The following condition \(D'(u_n) \) is a variant of one used by Watson [25] and Loynes [19] and will be appropriate here. Again let \([u_n] \) be a given real sequence. Then \(D'(u_n) \) holds if

\[
(3.5) \{D'(u_n)\} : \lim sup_{n \to \infty} \frac{1}{n} \sum_{j=2}^{n} P(\xi_1 > u_{nk}, \xi_j > u_{nk}) = o(1/k) \text{ as } k \to \infty.
\]

This condition involves the bivariate distribution of the \(\{\xi_j\} \) and is easily seen to hold for example if the \(\xi_j \) are i.i.d. and \(u_n \) satisfies (2.3). It also holds (Section 6) if the \(\xi_j \) form a stationary normal sequence satisfying either condition (3.2), again if \(\{u_n\} \) satisfies (2.3).

4. EXTREME VALUE THEORY FOR STATIONARY SEQUENCES

(i) Gnedenko's Theorem under \(D(u_n) \).

The following generalization of Gnedenko's Theorem holds.

Theorem 4.1. If \(\{\xi_n\} \) is a stationary sequence, \(M_n = \max(\xi_1, \ldots, \xi_n) \) having non-degenerate asymptotic distribution,

\[
P\{a_n(M_n - b_n) \leq x\} \to G(x) \quad (a_n > 0)
\]

and if \(D(u_n) \) holds for \(u_n = x/a_n + b_n \) (for each real \(x \)), then \(G(x) \) is a Type I, II, or III extreme value distribution function.
The proof may be found in detail in [15]. Its main pattern is that used by Loynes [19] for the mixing case with, however, some essential differences. It will be useful to indicate the general lines of proof here, without detail.

As for the i.i.d. case, it is only necessary to show that if (2.1) holds for \(k = 1 \), then it holds for all \(k = 1, 2, 3, \ldots \). The following basic lemma uses \(D(u_n) \) to "approximate by independence". In this \(M(E) \) will denote \(\max(\xi_j : j \in E) \) for any set \(E \) of integers, and a set \((i, i + 1, \ldots, j) \) will be called an interval.

Lemma 4.2. Let \(N, r, k \) be fixed and \(D(u_n) \) hold for a given sequence \((u_n) \). Let \(E_j \) be intervals, \(j = 1, \ldots, r \), separated by at least \(k \) from each other. Then

\[
|P\left(\bigcap_{j=1}^{r} M(E_j) \leq u_N \right) - \prod_{j=1}^{r} P(M(E_j) \leq u_N) | \leq (r - 1) \alpha_{N, k}.
\]

Lemma 4.2 is proved by a simple induction and is used in obtaining the following result:

Lemma 4.3. Let \(n, m, k \) be positive integers. If \(E(u_n) \) holds then writing

\(N = nk, I_1 = (1, 2, \ldots, (n - m)) \), \(I_1^* = (n - m + 1, \ldots, n) \),

\[
|P(M_N \leq u_N) - P^k(M_n \leq u_N) | \leq (k + K)P\{ M(I_1) \leq u_N \leq M(I_1^*) \}
\]

for some constant \(K \).

This is proved (along the lines used by Loynes) by dividing the first \(N = nk \) integers into intervals \(I_1, I_1^*, I_2, I_2^*, \ldots, I_k, I_k^* \) of "lengths" \(n - m, m, n - m, m, \ldots \). \(P(M_N \leq u_N) \) is then approximated by \(P\left(\bigcap_{j=1}^{r} M(I_j) \leq u_N \right) \).
which in turn is (by Lemma 4.2) approximated by \(\prod_{j=1}^{k} P(M(j) \leq u_N) \). Each term is finally approximated by \(P(M_n \leq u_N) \).

From this lemma it can be shown that \(P(M_n \leq u_N) = P^k(M_n \leq u_N) \rightarrow 0 \) for each \(k \). If \(D(u_n) \) holds with \(u_n = \frac{x}{a_n} + b_n \) and \(P(a_n(M_n - b_n) \leq x) \rightarrow G(x) \) (i.e. if (2.1) holds for \(k = 1 \)) then \(P(M_n \leq u_N) \rightarrow G(x) \) and hence \(P^k(M_n \leq u_N) \rightarrow G(x) \) or \(P(a_n(M_n - b_n) \leq x) \rightarrow G^{1/k}(x) \) for all \(k = 1, 2, \ldots \) (i.e. 2.1 holds for all \(k = 1, 2, \ldots \)) as required to finish the proof of Theorem 4.1.

(ii) Convergence of \(P(M_n \leq u_n) \) under (2.3), \(D(u_n) \), \(D'(u_n) \).

It is shown in [19] that under strong mixing if \(P(M_n \leq u_n(\tau)) \rightarrow \psi(\tau) \) when \(u_n(\tau) \) satisfies (2.3) for each \(\tau \) then \(\psi(\tau) = e^{-\alpha \tau} \) for some \(\alpha \) with \(0 \leq \alpha \leq 1 \). It may similarly be shown that this applies if, instead of strong mixing, the conditions \(D(u_n(\tau)) \) hold for each \(\tau \). (This is seen simply by using the fact that \([1 - F(u_{2n}(\tau))] \sim (\tau/2)/n \) so that \(P(M_n \leq u_{2n}(\tau)) \rightarrow \psi(\tau/2) \) and thus, by Lemma 2.5 of [15], \(\psi(\tau) = \psi^2(\tau/2) \) from which the exponential limit may be deduced as in [19]).

O'Brien ([20]) gives examples in which \(\alpha < 1 \). We are here particularly interested in the "usual" case \(\alpha = 1 \) which may be guaranteed by the condition \(D'(u_n) \) of the last section. Specifically we obtain the following result, again generalizing one given in [19] under strong mixing. It should be noted that the limit is shown to exist under the stronger conditions (rather than assumed to exist and then shown to have a given form as above, when just \(D(u_n) \) holds).
THEOREM 4.4. Let \(\{\xi_n\} \) be a stationary sequence and let \(D(u_n), D'(u_n) \) hold, where \(\{u_n\} \) satisfies (2.3) for some fixed \(\tau > 0 \). Then
\[
P\{M_n \leq u_n\} \rightarrow e^{-\tau} \quad \text{as} \quad n \rightarrow \infty.
\]

The proof of this result is given in [15] and will not be repeated here. It is based on the standard inequalities
\[
\sum_{i} P(\xi_i > u) - \sum_{i<j} P(\xi_i > u, \xi_j > u) \leq P(U(\xi_i > u)) = P(M_n > u) \\
\leq \sum_{i} P(\xi_i > u).
\]

(iii) Relations with the i.i.d. case.

We write \(\hat{M}_n \) to denote the maximum of \(n \) i.i.d. r.v.'s with the same distribution function \(F \) as the terms of the stationary sequence \(\{\xi_i\} \).

THEOREM 4.5. Suppose that \(P(\hat{M}_n \leq u_n) \rightarrow \theta \) for some sequence \(u_n \) and some \(\theta, (0 < \theta < 1) \), and that \(D(u_n), D'(u_n) \) hold for the stationary sequence \(\{\xi_j\} \). Then \(P(M_n \leq u_n) \rightarrow \theta \).

PROOF: By Theorem (2.5) \(1 - F(u_n) \sim \tau/n \) with \(\tau = -\log \theta \), i.e. (2.3) holds with this \(\{u_n\} \). Hence by Theorem 4.4
\[
P(M_n \leq u_n) \rightarrow e^{-\tau} = \theta.
\]

Thus the same limit holds for the maximum in the dependent sequence as would apply if the random variables were i.i.d. with the same marginal distribution function. As a corollary we may consider the asymptotic distribution
of \(M_n \) under the standard normalization.

Theorem 4.6. If \(P\{a_n (M_n - b_n) \leq x\} \rightarrow G(x) \) (non-degenerate) then

\[P\{a_n (M_n - b_n) \leq x\} \rightarrow G(x) \]

if \(D(u_n), D'(u_n) \) hold for \(u_n = x/a_n + b_n \).

This follows at once from Theorem 4.5 for \(0 < G(x) < 1 \) and by continuity of \(G \), at points where \(G(x) = 0 \) or \(1 \).

(iv) Stationary normal sequences.

If \(\{\xi_j\} \) is a (zero mean, unit variance) stationary normal sequence whose covariances \(\{r_n\} \) satisfy either condition (3.2), then it is known (Berman, [1]) that

\[P\{a_n (M_n - b_n) \leq x\} \rightarrow \exp(-e^{-x}) \]

where \(a_n \) and \(b_n \) are given by (2.7). This result also follows as a consequence of Theorem 4.6. For this limit applies to i.i.d. random variables (as shown in Section 2) and it follows by Lemma 4.3 of [15] that either condition (3.2) implies both \(D(u_n), D'(u_n) \) when \(u_n = x/a_n + b_n \), in this particular case.

The ultimate amount of work in this route to the asymptotic distribution in the normal case is not less then that of the original proof in [1]. However it does indicate the satisfactory nature of the \(D, D' \) conditions, since they are implied by the very weak conditions (3.2) when the sequence is normal.
5. **EXCEEDANCES OF HIGH LEVELS BY A STATIONARY SEQUENCE, AND THE DISTRIBUTION OF rTH LARGEST VALUES.**

(i) Exceedances of high levels.

As previously noted, any point \(j \) where \(\xi_j \) exceeds \(u \) will be called an "exceedance of the level \(u \)" by the sequence \(\{\xi_j\} \). The exceedances form a point process i.e. a series of events occurring in "time" according to some probabilistic law. Suppose now that \(\{u_n\} \) is a sequence of constants satisfying (2.3). As \(n \) increases, the probability of an exceedance becomes smaller and the exceedances consequently tend to become rarer. An obvious question is whether one may thus obtain a convenient "limiting point process". We have seen in the i.i.d. case that the number of exceedances in \((1,2\ldots n) \) has an asymptotic Poisson distribution and one may expect that this will be true for stationary sequences under appropriate assumptions. We shall indicate how this may be shown - and indeed that the sequence of point processes formed from the exceedances of \(u_n \) converges weakly - as random elements of a natural metric space - to a Poisson process.

First we make a time scale change to avoid degeneracy. Let \(n_n \) be a discrete-parameter process defined on the points \(\frac{j}{n}, j = 0,1,2\ldots \), by \(n_n(j/n) = \xi_j \). Consider the point process consisting of exceedances of \(u_n \) by \(n_n \) and let \(N_n(B) \) denote the number of such exceedances in the Borel set \(B \). (i.e. the number of exceedances of \(u_n \) by \(\xi_j \) for \(j \in nB \).) Thus while we "lose exceedances" by increasing \(u_n \) we gain then in a compensating way by this change of time scale.
N_n is a point process for each n - i.e. a random element in the space N of non-negative integer-valued Borel measures on the real line \mathbb{R}. N becomes a metric space with the "vague topology" (cf. [13]) and we may therefore consider convergence in distributions of these random elements. (That is a sequence $\{\xi_n\}$ of point processes converges in distribution to a point process ξ, $\xi_n \xrightarrow{D} \xi$ if $Ef(\xi_n) \to Ef(\xi)$ for every bounded, vaguely continuous real f on N. The following is a useful criterion (due to Kallenberg [13] and modified according to a remark of Kurtz [14]) for such convergence.

Theorem 5.1. (Kallenberg)

Let ξ_n, $n = 1, 2, \ldots$ be point processes on the positive real line and let ξ be a point process without multiple points and such that $\xi(\{a\}) = 0$ a.s. for every fixed real $a \geq 0$. If

(i) $P\{\xi_n(B) = 0\} \to P\{\xi(B) = 0\}$ for all sets B of the form

$U(a_1, b_1) \cup U(a_2, b_2) \cup \cdots \cup U(a_r, b_r)$

(ii) $\limsup_n E\xi_n(a, b) \leq E\xi(a, b)$ for all finite $a < b$ then $\xi_n \xrightarrow{D} \xi$.

In our case $\xi_n = N_n$, and ξ is a Poisson process with parameter τ, so that e.g.

$P\{\xi(B) = r\} = e^{-\tau m(B)} \frac{[\tau m(B)]^r}{r!}$

where B is any Borel set and m denotes Lebesgue measure.

We shall suppose that $D(u_n)$, $D^*(u_n)$ both hold and thus by Theorem 4.4 $P(M_n \leq u_n) \to e^{-\tau}$. But $\{M_n \leq u_n\}$ is the same as $\{N_n((0,1]) = 0\}$ so that
\[
P\{N_n((0,1]) = 0\} = e^{-t} = P\{\xi((0,1]) = 0\}
\]

i.e. Condition (i) holds when \(B = (0,1] \).

It may be shown from this that Condition (i) holds for intervals \((0,a]\) and then for intervals \([a,b]\) and finally for finite disjoint unions \(U(a_i, b_i]\). (The details of this development may be found in [17].)

Thus Condition (i) holds. Condition (ii) is easy to verify since (writing \([x] \) for the integer part of \(x \))

\[
EN_n(a,b] = ([nb] - [na])(1 - F(u_n))
\]

\[
\sim n(b - a)t/n = \tau(b - a)
\]

\[
= E\xi((a,b])
\]

Thus Theorem 5.1 applies and we obtain the following result.

Theorem 5.2. Let \(\{\xi_j\} \) be a stationary sequence such that \(D(u_n) \), \(D'(u_n) \) hold for \(\{u_n\} \) satisfying (3.2). Let the point process \(N_n \) consist of those points \(j/n \) for which \(\xi_j > u_n \) \((N_n(B) \) being the number of such points in the Borel set \(B) \). Then \(N_n \overset{d}{\to} \zeta \) where \(\zeta \) is a Poisson process with parameter \(\tau \).

Corollary. Under the conditions of the theorem, if \(B \) is any Borel set whose boundary has Lebesgue measure zero \((m(\partial B) = 0) \) then for any \(r = 0,1,2,\ldots \),

\[
P\{N_n(B) = r\} \overset{e^{-\tau m(B)}[\tau m(B)]^r/r!}
\]
(with similar convergence for the joint distribution of any \(N_n(B_1) \ldots N_n(B_k) \)).

This follows at once since the random variables \(N_n(B) \) converge in distribution to \(\zeta(B) \) when \(N_n \xrightarrow{D} \zeta \) (cf. [13]), and similarly for joint distributions.

(ii) Asymptotic distribution of \(M_n^{(r)} \)

Theorem 5.3. Let \(\{\xi_j\} \) be a stationary sequence such that \(D(u_n) \), \(D'(u_n) \) hold for \(\{u_n\} \) satisfying (2.3). Then

\[
P\{M_n^{(r)} \leq u_n\} = \sum_{s=0}^{r-1} \frac{e^{-\tau s}}{s!}
\]

(\(M_n^{(r)} \) being the \(r^{th} \) largest among \(\xi_1 \ldots \xi_n \)).

Proof: This result follows simply from Theorem 5.2 by noting that

\[
P\{M_n^{(r)} \leq u_n\} = P\{N_n((0,1]) < r\} \quad \text{(cf. Theorem 2.7)}.
\]

Finally we may generalize Theorem 4.6 to obtain (2.10) for our stationary sequences. \(\hat{M}_n \) will again denote the maximum of \(n \) i.i.d. random variables with the same distributions as \(\xi_1 \).

Theorem 5.4. Let \(\{\xi_i\} \) be a stationary sequence. Suppose that

\[
P\{a_n(\hat{M}_n - b_n) \leq x\} \to G(x) \quad \text{(non-degenerate)}
\]

and that \(D(u_n) \), \(D'(u_n) \) hold for \(u_n = x/a_n + b_n \). Then (2.10) holds, i.e.

\[
P\{a_n(M_n^{(r)} - b_n) \leq x\} \to G(x) \sum_{s=0}^{r-1} \frac{(-\log G(x))^s}{s!}.
\]

Proof: \(\{u_n\} = \{x/a_n + b_n\} \) satisfies (2.3) by Theorem 2.5. The result now follows by Theorem 5.3 with \(\tau = -\log G(x) \) (where \(0 < G(x) < 1 \)) and by
continuity arguments where \(G = 0 \) or \(1 \).

6. CONTINUOUS PARAMETER STATIONARY PROCESSES

In this section we consider a continuous parameter stationary process \(\{\xi(t): t \geq 0\} \) (assumed to have continuous sample functions), and write \(M(T) = \sup\{\xi(t): 0 \leq t \leq T\} \).

(i) Strongly mixing processes.

The definition of strong mixing given is easily adapted to the continuous parameter case requiring, for any \(t \),

\[
|P(A \cap B) - P(A)P(B)| < g(\tau)
\]

for \(A \in \sigma(\xi_s: s \leq t) \), \(B \in \sigma(\xi_s: s \geq t + \tau) \) where \(g(\tau) \to 0 \) as \(\tau \to \infty \).

Gnedenko's Theorem may be extended as follows.

\textbf{THEOREM 6.1}. Suppose the stationary process \(\{\xi(t)\} \) is strongly mixing and \(P\left(a_T(M(T) - b_T) \leq x\right) \to G(x) \), non-degenerate, for some families \(a_T > 0 \), \(b_T \) of constants. Then \(G(x) \) has one of the three extreme value forms.

\textbf{PROOF}: Write \(Z_i = \sup\{\xi(t): i - 1 \leq t \leq i\} \). Then \(\{Z_i: i = 1, 2, \ldots\} \) may be seen to be a stationary and strongly mixing sequence. Further, putting \(T = n \), an integer, \(M(n) = \max\{Z_i: 1 \leq i \leq n\} \), and

\[
P\left(a_n(M(n) - b_n) \leq x\right) \to G(x)
\]

so that by Gnedenko's Theorem for strongly mixing sequences \(G(x) \) has one of the three extreme value forms.
Other partial results may be shown under strong mixing or D, D' type conditions. For example we may see under appropriate conditions, that

$$P\{M(n) \leq u_n\} \to e^{-T} \quad \text{if} \quad P\{Z_1 > u_n\} \sim \tau/n$$

$$Z_1 = \sup\{\xi(t): 0 \leq t \leq 1\}$$

and thence

$$(6.1) \quad P\{M(T) \leq u_T\} \to e^{-T}$$

if

$$(6.2) \quad P\{Z_1 > u_T\} \sim \tau/T.$$

This may be made rigorous under sufficiently strong conditions. However, natural, simple conditions need to be found to make the result satisfying and useful in the general context. For the normal case there are such conditions, as will be seen below.

(ii) Stationary normal processes.

Extreme values of stationary normal processes have been considered in detail by a number of authors, including S. M. Berman, J. Pickands, C. Qualls and H. Watanabe. Let \{\xi(t)\} then be such a process with (for convenience) zero mean, unit variance and covariance function $r(\tau) = E\xi(t)\xi(t + \tau)$. It is usually assumed that $r(\tau)$ has the following expansion as $\tau \to 0$.

$$(6.3) \quad r(\tau) = 1 - C|\tau|^{\alpha} + o(|\tau|^{\alpha})$$

for some α with $0 < \alpha \leq 2$, though the theory can be extended to apply to the case where a function $G(\tau)$ of slow "growth" is included as a multiplicative
factor together with $|\tau|^\alpha$ (cf. [24]).

$\alpha = 2$ gives the "regular" case where $\xi(t)$ has a quadratic mean derivative and where the mean number of "upcrossings" of any level per unit time, is finite. If $0 < \alpha < 2$, the sample functions are continuous, but the mean number of upcrossings of a level u in any interval is infinite, and there is no q.m. derivative. The case $\alpha = 1$ corresponds to the Ornstein-Uhlenbeck Process.

The development indicated under (i) above may be applied to stationary normal processes satisfying (6.3) and in so doing we may replace strong mixing by either of the conditions

$$r(t) \log t \to 0^+ \quad \int_0^\infty r^2(t) dt < \infty$$

(i.e. the continuous analogues of (3.2)). Indeed the following result holds.

Lemma 6.1. Suppose (6.3) and (6.4) are satisfied, for the stationary normal process $\xi(t)$ considered above. Then

$$P[M(T) \leq u_T] \to e^{-T} \quad \text{as} \quad T \to \infty$$

if u_T is chosen so that (6.2) holds, i.e.

$$P\{\sup\{\xi(t): 0 \leq t \leq 1\} > u_T\} \sim \frac{T}{T}.$$

This lemma may be obtained e.g. from the discussion in [22] or [3]. From these references we may also obtain the asymptotic form of

$$P\{\sup\{\xi(t): 0 \leq t \leq 1\} > u\} \quad \text{as follows.}$$
Lemma 6.2. Under the conditions of Lemma 6.1, as $u \to \infty$,

$$P(\sup(\xi(t): 0 \leq t \leq 1) > u) \sim C^{1/\alpha} T_{\alpha}^{2/\alpha} \phi(u)/u$$

where α is a certain constant and ϕ is the standard normal probability density function. Thus the conclusion $P(M(T) \leq u_T) \to e^{-\tau}$ of Lemma 6.1 holds if u_T is chosen to satisfy

$$C^{1/\alpha} T_{\alpha}^{2/\alpha} \phi(u_T)/u_T \sim \tau/T \quad \text{as} \quad T \to \infty.$$

By taking logarithms in (6.5) we may obtain, after some manipulation

$$u_T = (2 \log T)^{1/2} - (2 \log T)^{-1/2} \log \log \tau \left[\frac{1}{2} - \frac{1}{\alpha} \right] \log \log \tau$$

$$+ \log \left[(2\pi)^{1/2} C^{1/\alpha} \right] a_T^{2/\alpha} / 2a_T^{-1} + o(\log T)^{-1/2}$$

and Lemma 6.2 at once gives the following theorem.

Theorem 6.3. Let the stationary normal process $[\xi(t)]$ satisfy (6.2) and (6.3). Then

$$P(a_T(M(T) - b_T) \leq x) \to \exp(-e^{-x}) \quad \text{as} \quad T \to \infty$$

where

$$a_T = (2 \log T)^{1/2}$$

$$b_T = (2 \log T)^{1/2} - (2 \log T)^{-1/2} \log \log T \left[\frac{1}{2} - \frac{1}{\alpha} \right]$$

$$+ \log \left[(2\pi)^{1/2} C^{1/\alpha} \right] a_T^{2/\alpha} / 2a_T^{-1}$$
PROOF: Put $t = e^{-x}$ in (6.6) to give $u_x = x/a_T + b_T$ and apply Lemma 6.2.

The value of the constant H_α is known only for $\alpha = 1, 2$
($H_1 = 1$ $H_2 = \pi^{-1/2}$). Its form is given in [22], and depends on α, but not otherwise on the process $\xi(t)$.

The derivation of Lemmas 6.1 and 6.2 naturally involves considerable calculation, and different approaches may be used (cf. [22], [3]). In [22] use is made of the "ϵ-upcrossings" of a level. $\xi(t)$ is said to have an upcrossing of u at t_0 if $\xi(t) \leq u$ for $t_0 - \delta < t \leq t_0$ and $\xi(t) \geq u$ for $t_0 \leq t < t_0 + \delta$, for some $\delta > 0$, and this is an ϵ-upcrossing if there are no other upcrossings in $(t_0 - \epsilon, t_0)$. As noted before if $\alpha = 2$ in (6.3) the number of upcrossings in $0 \leq t \leq 1$ has a finite mean, whereas this is not so for $\alpha < 2$. However the number of ϵ-upcrossings (for any fixed $\epsilon > 0$) in any finite interval is a bounded random variable, which turns out to be useful in the case $\alpha < 2$.

The (ϵ-)upcrossings in the continuous case naturally replace the exceedances in the discrete case. It is also possible to show that their limiting distribution (for suitably chosen high levels) is Poisson (cf. [4], [2], [23]). In fact it has recently been shown by Lindgren et al. ([18]) that these (ϵ-) upcrossings converge weakly to a Poisson process. The proof is similar to that described here in the sequence case (Sec. 5) for exceedances. Further questions concerning the asymptotic distribution of r^{th} largest maxima and closely related matters are also discussed in [18].

Finally we note that it has also been recently shown by Mittal and Ylvisaker ([27]), that if the conditions (6.4) do not hold, a variety of other limit laws are possible for the maximum.
REFERENCES

(Including some related works not referred to in text)

REFERENCES (cont.)

