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STABILITY AND EXPONENTIAL PENALTY FUNCTION TECHNIQUES
IN
NONLINEAR PROGRAMMING

by
Kk
J. P. Evans” and F. J. Gould

ABSTRACT

In this paper, we develop the concept of a general exponential penalty
function as a method of solving inequality constrained optimization problems.
Relationships to the concept of stability in nonlinear programming are presented
together with results on approximate solutions and bounds on the optimal value
of a program. Conditions are stated which guarantee that sequences of penalty

function maximizers will yield optimal solutions to the original programming

problem,

I. InTroDUCTION

Consider the general inequality constrained non-linear programming problem,

(P-D-)
max £(x), subject to

gj(x) < EJ, j=1, e, m
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where f, gj, j=1l,...,m; are real-valued functions defined on R". Gould'[lo]
explored the use of nonlinear multiplier functions in extended Lagrangians asso-

clated with problem (PE)' Define

m
(1.1 L(x,A) = £(x) - ] A.(g,(x)

je1 9
where A j=1,...,m, is a monotonically nondecreasing function of a single

j’

variable with values in the extended reals such that Aj(Ej) <o, j=1,...,m,
For such multiplier functions, the following result is wvalid:

Suppose A 1is glven and x* satisfies

1) x* maximizes L(x,%) over R©,
(1.2) ii) gj(x*) < Sj, j=1...,m
iii) Aj(gj(X*)) = Aj(bj), J=1...,m

then x* 1s an optimal solution to (P) .

The monotonicity property of the A,'s in (1.1) causes the second term in

A
(1.1) to be larger for larger values of gj(x). Roughly speaking, the extended

Lagrangian L(x,A) 1is a general penalty function which penalizes those x's
feasible in (PS) less than those which are infeasible. In [2] Fiacco and
McCormick cite a number of references to the use of an exponential type of pen~

alty function, e.g. where the X,(*) in (1.1) has the form

3

g2, £>0
Aj(s) =
o, £ <0,
These references include Motzkin [5], Goldstein and Kripke [3], and Zangwill [6].
In this paper, we define a class of general exponential penalty functions

and employ the properties of these functions in order to identify approximate

solutions to mathematical programs and to obtain certain convergence results in
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the same context. Relationships to stability in nonlinear programming [1] and

to the general exterior penalty function of Fiacco and McCormick [2] are ex~

plored.

In the remainder of the paper, we will employ the following definitions and

notation:

a)
b)
c)

d)

e)
£f)

(1.3)

g)

Sb = {xeR": gj(x) < bj’ j=1,...,m};

B = {beR™: S # ¢};

féup(b): B+ Ru {+v}, the perturbation function defined by
Sup[£(x): xesb];

A vector %eR" is an e-solution to (PE) if glven € > 0, X
satisfies

i) ieSS,
i1) fx) = fbup(s) - £3

S: B~ 2Rp, a pdint—to-set correspondence defined by S(b) = Sb;
Zz: B = R, the support function defined by
o -—
2(b) = jgl [A0,) - 2,B)] + £, B);

An m-vector of 1l's is represented by e.

IT. GENERAL ExpoNENTIAL PENALTY FUNCTIONS

The relationship between penalty function techniques and the concept of

stability will be developed in the following exposition. First we observe that

given 1 satisfying the monotonicity and finiteness conditions stated above, if

some point X maximizes L(x,1) over Rn, then a point of the f function

sup

has been obtained, namely féup(g(i)). This follows by replacing B by g(x)

in the optimality conditions (1.2) above. But then it can be shown [4] that



m
20) = 1 Uy - K@)+ £,,6M0) 2 £,6), ybes.

Thus after each maximization of the penalty function, the support function

ylelds an ﬁpper bound on the value of féu at b, the right-hand side in the

1
original problem. Hence it is intuitively reasonable to employ the information
from a succession pf penalty function maximizations to choose new multiplier
functions, Aj, such that the next penalty function maximizer will in some
sense be closer to an optimal solution for (PE)‘ However, it should be clear
that the success of this strategy will be sensitive to the behavior of the fAup
function at arguments near L. Consider the situations shown in Figures 1 and

2 below.
y y
A A
&”,,/’ y = z(b)
y=2z(®)] ¥ y=f (b) S
sup . —
Y = £
> b > b
0 0
Figure 1 Figure 2

In Figure 1, the fAu function is lower semi-continuous at 0. Intui-

P
tively we would like to "approach b = 0 from below", because values of b > 0

yield poor estimates of féup(O). This suggests that we would like to choose

multiplier functions which increase rapidly for values of b near zero. In con-

trast, Figure 2 displays an fAu function that is upper semi-continuous at O,

P
Consequently, we wish to approach b = 0 from above since values of b < 0 will

yield poor estimates of fAup(o)‘
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The continuity properties of féup are closely related to properties of the

point-to-set correspondence S defined in the preceding section. These proper-
ties were explored in [1] and can be summarized for our purposes here as follows.
Assume SS is compact and nonempty and that each constraint function,

Bys voeo By® is continuous on Rp.

a. The mapping S5 1is upper semi-continuous at b 1if and only if there
isa b > 5 such that Sy is c.ompact'f1
b, If IE = {x: g(x) <b} # ¢, the mapping S is lower semi=-continuous

at b if and only if cl(Is) = SE (where cf denotes closure).
c. If the mapping S is upper semi-continuous at b and f(+) is upper

semi~continuous on Rﬁ, then fAu (<) is upper semi-continuous at

P

b.
d. Suppose IE # ¢. If £(°) 1s lower semi-continuous and S 1is lower

semi-continuous at b, then féu is lower semi-continuous at b,

P

From these statements, it is clear that if £(°) dis continuous, we can

characterize fAu at b from properties of the constraint map S.

P

With this background, we will now define a class of general exponential mul-
tiplier functions which are designed to permit sufficient flexibility to deal with

the situations in Figures 1 and 2.

Definition: A: R > R 1is a general exponential multiplier function for (PE)

if given parameters o 21, B8 >0, and 6 2 0,

A(E; o, B, 8) = B[h(&+6)]%

1 The precise definitions of upper and lower semi-continuity for the mapping
5 need not concern us here; however, these are stated explicitly in [1].



where h: R+ R is a continuous, strictly increasing function satisfying

i) £+ implies h(f) + =,
ii) h(0) = 1,
iii) h(gj(x)) > 0 V xe Rn, j=1,...,m

Example 1: h(g) = eb.

Example 2: Suppose kj = ing gj(x) > -, Jj=1,...,m,
xeRP

and K > | mink Then define h(f) = (K+E£)/K,

jjl'
and in the specification of )\, further restrict o to the odd

integers.

Part of the motivation for general exponential penalty functiins can be seen

from the property that for an x such that gj(x) > 55, as o + o,
A(gj(X)-F; a, By 8) + + e,

Thus an arbitrarily large penalty can be imposed on infeasible points. Corre-
spondingly with reference to Figure 1, by increasing o, the support function

can be given a large slope in the vicinity of B.

II1., FeasiBLE AND NEAR-FEASIBLE PeNALTY FuncTion MAXIMIZERS

In this section, we show that under rather general conditions, given a value
for the parameter B, the parameters a and & can be manipulated so as to
control the location of the penalty function maximizers. This leads to theorems
on e-solutions and convergence to optimal solutions. First, we make the following

assumptions for the remainder of the exposition.
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A-1. The multiplier function A(+) has the general exponential form de-
fined above.
A-2. In (Pe), b=0, : is nonempty and compact, and £, ByreeerBs
are continuous on R,
A-3. There is a scalar o such that for each j = 1,...,m, the ratio

f(x)
A(gj(X); a, 1, 0)

is bounded from above on Rn.

Thg last assumption is employed to guarantee that for an appropriate choice
of o the general exponential penalty function
m
(3.1) P(x; a, 1, 0) = f£(x) - } Mgy ()5 o, 1, 0)
j=1
has a finite supremum. In the absence of some such condition, it is easy to con~-
struct examples for which the penalty function is unbounded on R®. Now we pre-

sent a collection of results related to the case portrayed in Figure 1 in which

fbup is, at worst, only lower semi-continuous.

LEMMA 3.1: Let 8 > 0 be given and suppose 6 > 0 1is such that S_6e =

{x: gj(x) € -8, j=1,...,m} 1is nonempty. Then there exists a scalar a
(wvhich depends on 8 and &) such that o > ¢ implies P(x; a, 8, 6)
has a global maximum and each such maximizer belongs to 50.1

PROOF: By assumption A~3, there is an M such that for some oy and for

J=1l...,m

1 Here, as in the entire developemtn, o 18 always subject to any restrictions
assumed in the definition of %j as, for instance, in Example 2 of Section II.



£(x) = £(x) < M each X € Rn
3 . .

Mgf®)s ogs 1, 0)  [hlgy ()] 2

Suppose xeRn—SO; then for some j, gj(x) > 0. Then we can choose a, such

that o > a, and xeRP—SO imply

£(x) < £(x) < M < 8/2 .

{h(gj<x>+s>12°‘ () 1°h(g;GM® ()]

Let xeS_ and let c = f(x); then we can choose o, such that o > Gy

Se? 3

yields

| c=Bm] < ]c-BmIa < 8/,
[h (g (x)+8) 1* [h(8)]

Hence, for o > max {ai, Gys a3} we have ¥ xeRp-So

£(x) _ c ~ Bm

£(x) + — lcBm]
[h(gjcxm)]z“ [h(gjcxm)]z“

[h(g, (x)+5) 1% [h(g, ()+6) 120

<

< R.

This implies there is an a 5 o > o yields

¢ ~ Bm

£(x) — < B+ =,
[h(gj(X)+5)] [h(gj(X)+5)]

which can be rewritten as
0.

£(x) < B([h(gj(x)+6)]“-m) +¢c, xeR' -8

Since we can always choose o large enough to insure that the coefficient of B8

above is positive, for all o > o we have



£f(x) - ¢
Ih(gj(x)+6)]“ -m

n
< B, VYxeR - SO'

By the propertles assumed for h(-), h(gj(x)) >0, j=1,...,my each xeRn,

hence we have,

f(x) - ¢ n
- < B, XxXe R - SO'

I I[h(g;x)+5))% - m
i=1
Thus we have shown that there is an a, which depends on B and &, such that
o >a implies
v - n
(3.2) £(x) - ) Mgy(x); o, B, 8) < £(X) -uwB, xeR -5,
j=1
Now since S0 is compact, P(x3a,B,8) has a maximum on S0 and since

-§e S Sg» Wwe have

m
(3.3) £X) -m8 s £(x) -~ ) x(gj(i); oy By, 8) < max P(x; a, B, S).
: i=1 xeSo

This follows because gj(i) <-§ and § > 0 dimplies

il t~18

B = mB.

m m
y Mey@; o, 8, 8) = ] s[h(gj(§>+a>1° <
=1 1

k| j=1 3

Combining (3.2) and (3.3) we conclude that o > o implies

max P(x; a, B, 8) = max P(x; a, B, §)
xeso xeR™

and furthermore, it is seen that (for o > 0) no maximizer of P(x3;0,8,8) lies

outside SO' Q.E.D.

Now we apply Lemma 3.1 to obtain a theorem on e-solutions to (Po) for the

case in which the mapping S defined in Section I is lower semi-continuous at 0.
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Let {Bn} be any sequence of positive numbers such that Bn »> 0, and assume
there is a .d > 0 » S—ae is nonempty (such é d will exist 1f S 1is lower semi-
continuous). Let & be a fixed positive scalar such that 0 < § < d. Then there
is an En for each n (which depends on Bn and &) such that the conclusion
of Lemma 3.1 is wvalid; hence P(x;an,Bn,ﬁ) will have a maximum at some point

x*n(G)eso. Let x%* denote any solution to (PO), let x*_6 denote any solution

to (P—Se)’ and let {an} be a sequence of scalars such that @ > En, each n.

THEOREM 3,2: Assume the mapping S is lower semi-continuous at 0 and let
€ > 0 be given. Then there is a scalar dE >0 such that 0 < &8 < de
implies the sequence {x*n(é)} has a convergent sebsequence, and if Vs is

a subsequential limit

i) Vs E.SO’ and
ii) féup(o) - g S f(VS) < fAup(o)'
PROOF: Since f 1is continuous and S is lower semi-continuous at 0, f is

AUp

lower semi-continuous at 0. Thus given e > 0, there is a scalar d > 0 such
that 0 < § < d implies fbupﬁo) ~ g £ fAup('Ge) < féup(o)’ and thus
f(x%) - ¢ € f(x*_s) S f(x*). Of course as noted above, d can be chosen suf-

ficiently small that S_ is nonempty. Thus for & ¢ (0,d) we have

Se

m .
(3.4) f£(x*) ~e=-mB s f£(x* ;) -mB < f(i*_s) - jZl A(gj(X*_a); a s Bos 8)

because g (x*_é) +48=<0, §=1,...,my which implies h(gj(x*_6)+6) <1,

3
which in turn implies

m m un m
321 Mey(x*_o)s op, By 8) = jzl Balh(ey(¥_g+8)] = < E fo T ™
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Since x*n(G) maximizes P(x; o Bn, 8), we have

m
(3.5) £(x%) - ] Mg

L j(Xfa);an,Bn,é‘) s £(x*(8)) -
j=

m
321 Mg, (A (8)sa 58, )

< f(x:(ﬁ)) s f(x*)

in which the last inequality follows from the fact that x*n(S)eSO, each n.
Now since the sequence {x*n (5)}630, and SO is compact, there is a con~-
vergent subsequence {x*n (8)} converging to vseso. From (3.4) and (3.5), it
k

follows that for any such convergent subsequence
f(x*) - € - mB € f{x*_ (6)) < f£f(x*), each k.
Tk Ty

Hence we conclude

f(x*) - ¢ < f(vG) < f(x*)
Q.E.D.

The thrust of the above theorem is that holding the parameter § constant,
we can employ a sequence of exponents @  So as to insure convergence of the se-
quence of penalty function maximizers to an e-solution for (PO). It is to be
noted that with & > 0, we cannot guarantee convergence to a true solution to
(PO), whereas unless & > 0 we cannot insure feasibility of the penalty function
maximizers. At the expense of a somewhat more complicated algorithm, we can ob-

tain both of these properties; this is indicated in the following result.

THEOREM 3.3: Suppose the assumptions of Theorem 3.2 hold and let {Gn} be a
sequence of positive scalars such that Gn <d, each n and Gn + 0, Then

a sequence of exponents {an} can be chosen such that

i) P(x; @ s Bn’ 6n) has a maximum at x*n € SO;
ii) Lim £(x* ) = f(x*);
n
n+®
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iii) {x*n} has a convergent subsequence and each subsequential limit

is a solution to (PO).

PROOF: The set S_s is nonempty and compact by the assumptions of lower semi-

n

continuity of S, continuity of g, and compactness of SO' Let Qn be an op~-

timal solution to (P—S e); Qn exists by the continuity of f. The assumptions
n

also guarantee that Lemma 3.1 is valid, hence there is an o such that con-

clusion i) of the theorem holds. Then we have

(3.6) edy-ms s £G) - ) ag@)sa, 8, 6)
) Y n - %7 421 84 %73 %nr Ppr O
m
< f(xx) - ) K(gj(x*n); @ > B, 6)
i=1
< f(x*n) s f(x*) = fbup(O).
. A
Since fbup is lower semi-continuous at 0, we have %ﬁg_ £(x ) = fbup(o)'

Combining this with (3.6) yields

Lém f(x*n) = fAup(o) ’

n - ©
which proves 1i).

Since 5, is compact and o was chosen to insure x* ¢S, {x*n} has a

convergent subsequence, x*ﬂk > xbeS The argument at the conclusion of Theorem

0.
3.2 permits us to conclude that f(xo) = fAup(O) which proves iii).
QlE‘sDu

Now we turn to a collection of results paralleling those above which permit

us to deal with the case pictured in Figure 2 in which fbu is upper semi-con-

Y
tinuous at 0. We continue to assume that conditions A-1, A-2, and A-3 hold.
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LEMMA 3.4: Let B > 0, and suppose § > 0 is such that Sae is compact. Then
there exists a scalar & dependent on B and § such that a > & implies

P(x;a,8,0) has a global maximum and each such maximizer belongs to sGe’
PROOF: Let §£SO; then for o > 1 by the compactness of Sge We have

m
(3.7) max  P(x; a, B, 0) 2 £(x) - ) x(gj(i); a, B, 0) = £(X) - mB.
X € SSe i=1

Now suppose xeRn—Sse; then for some jo, 1z< jo < m, gjo(x) > §. By assump-

tion A~3 there is an o, and a constant M such that for o > o,

f(x)/[h(gj (x))]m < M, which implies
0

f(x) M M

< < < B,

[h(g, x)) 1% (g, 1% (@)1
0 4]

By property 1iii) of the function h, h(gj(x)) >0 for each j=1,,..,m; hence

we can choose a2 such that for o > 02

£f(x) n
n < B, each x e R S5e .

RLICRC S
i=1
With an argument similar to that employed in the proof of Lemma 3.1, we can con~

clude that there is an Gy such that o > ag implies )

(3.8) - f@® - £(x) < B, each x ¢ R" - Sses
b oIne,NI1% -
=1

since the denominator on the left side of (3.8) can be assumed to be positive,

we have for o > a = max (ai,azgus),

m m
(3.9)  £(x) - ] Mg, (®; 0, 8,0 = £(x) - J 8hig, NI® < £(x) - mp
=1 3 =1 3
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for each xeR"-§ The conclusion of the lemma follows from (3.8) and (3.9).

Se"’

Q.E.D.

In é proposition similar to Theorem 3.2, we can now state a result conéerning
what might be termed near-feasible, near-optimal solutions for Pye Let {Bn}
be as in Theorem 3.2 and assume the mapping S is upper semi-continuous at O3
from the discussion in Section II above there mvst be a § > 0 such that sKe
is compact. Then for each n there is an En which depends on Bn and §
(0 < 8 <8 such that for @ > &n the conclusion of Lemma 3.4 is valid; hence
P(x;an,sn,O) will have a maximum at some point x*n(ﬁ)esse. Let X*é be opti-

mal in (Pse)'

THEOREM 3.5: Let ¢ > 0, 0<¢& <38 be given, where S is assumed to be

Se
compact. Then there is a scalar d <8 such that 0 < § < d implies the
sequence {x*n(é)} has a convergent subsequence and if L is a subse-
quential limit,

i) vy € SSe;

ii) féup(O) < f(vs) < féup(O) + €.

PROOF: Since £ 1is continuous and § is compact, £ ~is upper semi-con-

Se sAup
tinuous at 0. Thus, given e > 0 there is a scalar d > 0, which can be as-

sumed to be less than &, such that 0 < § < d implies
Eup(@® S £,,00 S £,0) + e,
and hence
% *
(3.10) f(x*) < f(x 5) < fbup(o) + €.

Now since S is compact for & < d, and since the conclusion of Lemma 3.4 is

Se
valid, we can choose o such that the maximizer of P(x;an,Bn,O) belongs to
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S for each n. The compactness of § guarantees that there is a convergent

de de
subseQuence x*nk(a) > VGESSe'
Now x*eso, hence gj(x*) <0, j=1,...,m. Thus for each k = 1,2,...,
we have
m
(3.11) EG¥) - 6, m s £6e) - jgl Mg, (x%)3 “n* fa 2 O

and since x*n (8) is a penalty function maximizer,
k

m
(3012) f(x*) - )\(g (x*); ’B 90)
jzl 3 oty

A

m
f(xgk(é)) - jzl Mgy (xgk(G));ank,Bnk,O)

A

f(xgk(G)).

By the upper semi-continuity of S, f(vs) < f(x*)+e; thus combining the fact
that x*nk(a) > vy with (3.11), and (3.12), we conclude f£(x*) < £(vy) s £(xh)+e.
Q.E.D.

Observe that in Lemma 3.4 and Theorem 3.5 we do not guarantee the feasibility
of any penalty function maximizer. In addition, we.cannot assert that the limit

point v

5 is optimal or even feasible in (PO).

COROLLARY 3,6: Assume the conditions of Theorem 3.5 hold. Then a sequence {an}
can be chosen such that the sequence of penalty function maximizers has a

subsequential limit VESO and v 1is optimal in (PO).

PROOF! For each n we can choose o, to insure that P(x;an,sn,o) has its

maximum value at x*nesn where
s = {x: gj(x) £8/m, j=1,...,m};

the conclusion follows from Theorem 3.5.

Q.E.D.
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IV. Bounos For £,

‘ In the discqssion in Section II, it was observed that each maximization of
a penalty function (Lagrangian) as in (1.1) yields a point of the f&up function
and that via the support function (1.3), an upper bound can be computed for
féup(O). In this section, we present a result on these upper boundé for general
exponential penalty functions.

Levva 4,1 tet o> l, B>0, 6 20 be given and assume x maximizes
P(x;a,B8,8). Then

m
£up(® S £ + Blulh(8)1* - jgl

h(g, G+6)1}.
PROOF: Let x% be an optimal solution to (PO). Then gj(x*) €0, 3=1,...,m,
hence

m
£(x%) - m8[h(8)]* < f£(x*) - [h(g3<x*)+a)1°‘
j=1

m
S £ -8 1 [hig @G+ .
i=1
The first inequality above holds because of the monotonicity of h, and the
second inequality holds because X maximizes P(x;a,B8,8). The conclusion follows.

Q.E.D.

V. RELATIONSHIP TO OTHER PENALTY FuncTion METHODS

As mentioned earlier much attention has been devoted to penalty function
methods in general, and several references exist to various kinds of exponential
penalties. First we mention a relationship to what Fiacco-McCormick [2] called

a general exterior penalty function. This is a class of one-parameter functions
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which satisfy several conditions, among them being the following, restated in

the form for the maximization required in (By).

If xe8 Lim v(x;t) = f(x)

t > o

o’
where V(x;t) = £(x) - U(x:t).

In this formulation, V is the penalty function and U corresponds to the sum
of the multiplier functions. A relationship to the general exponential penalty
function of equation (3.1) can now be stated. Consider the special case

n

P(x; o, 1/a, 0) = £(x) - 1/a ) [h(gj(x))}a .
j=1
If xeSO, gj(x) £0, j=1,...,m; thus by property ii) of the function h,

h(gj(x)) £1l, J=1,...,m. Hence for feasible points
Lim P(x; o, 1/a, 0) = £(x) .
Q> »
Thus the Fiacco-McCormick condition above is satisfied and it can be shown that
the other conditions for a general exterior penalty function are also satisfied
by P(x; o, 1/a, 0).
If we retain the condition B = 1/a, but select & > 0, then for any point

. on the boundary of S0

Lm P(x3; a, 1/o, 8) = -

a > o
hence § > 0 does not yield a general exterior penalty function.

The following analogues of Lemmas 3.1 and 3.4 can be stated; they are given
here without proofs. Assume conditions A-1, A-2 hold and that A-3 holds with

8 = 1/a.



Levma 5.1: Suppose § > 0 is such that §_

18

se is nonempty. Then there exists a

scalar o such that o > o implies P(x;a,1/0,8) has a global maximizer

and each such maximizer belongs to SO’

Lemva 5.2: Suppose 8§ > 0 is such that SSe is compact. Then there is a

scalar o such that o > o implies that P(x30,1/0,0) has a global max-

imizer and each such maximizer belongs to Sﬁe'

These results differ from Lemma 3.1 and 3.4 in that here B 1s no longer

fixed.

[1]

(2]

[3]

[4]

[51

[6]
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