* This research was partially supported by the C.S.I.R.

AN ASYMPTOTIC DISTRIBUTION FOR THE j-th esf
OF THE GENERALISED HOTELLING'S BETA MATRIX

D. J. de Waal*

Department of Statistics
University of North Carolina at Chapel Hill
and
University of the Orange Free State

Institute of Statistics Mimeo Series No. 266
November, 1974

BIOMATHMATICS TRAINING PROGRAM
An Asymptotic Distribution for the j-th esf of the Generalised Hotelling's Beta Matrix

D. J. de Waal*

University of North Carolina
University of the Orange Free State

1. **INTRODUCTION.** Let $X^{(i)}_{\alpha} (p \times 1), \, \alpha = 1, \ldots, N_i$, be i.i.d. $N(\mu^{(i)}, \Sigma)$, $i = 1, \ldots, r$. Let

$$\bar{X}^{(i)} = \frac{\sum_{\alpha=1}^{N_i} X^{(i)}_{\alpha}}{N_i}$$

$$A_i = \sum_{\alpha=1}^{N_i} (X^{(i)}_{\alpha} - \bar{X}^{(i)})(X^{(i)}_{\alpha} - \bar{X}^{(i)})$$

$$A = \sum_{i=1}^{r} A_i, \quad \bar{x} = \sum_{i=1}^{r} \frac{N_i \bar{X}^{(i)}}{N}, \quad \bar{\mu} = \sum_{i=1}^{r} \frac{N_i \mu^{(i)}}{N},$$

$$\bar{X}^* = (\sqrt{N_1} (\bar{X}^{(1)} - \bar{x}), \ldots, \sqrt{N_q} (\bar{X}^{(r)} - \bar{x})),$$

$$B = \bar{X}^* \bar{X}^{*\prime},$$

$$M^* = (\sqrt{N_1} (\mu^{(1)} - \bar{\mu}), \ldots, \sqrt{N_q} (\mu^{(r)} - \bar{\mu})).$$

Let $W(p \times q)$ be a transform of M^* and let $\Omega = \Sigma^{-1}MM^\prime$, $q = r - 1$, then it follows that for $p \leq r \leq N$, A is distributed $W(\Sigma, n)$, $n = N - q$ independent of B which is distributed $W(\Sigma, q, \Omega)$. Let

$$r^2 = \frac{1}{B'[A^{-1}B]^{-\frac{1}{2}}},$$

* This research was partially supported by the C.S.I.R.
\[\frac{1}{\mathbf{B}^2} \] being the symmetric square root of \(\mathbf{B} \), then \(\mathrm{ntrV} \) is the well known Hotelling's generalised \(T^2_0 \) statistic for testing the hypothesis

\[H: \mu^{(i)} = \mu^{(j)} \text{ for all } i, j \]

against \(\mu^{(i)} \neq \mu^{(j)} \) for some \(i, j \), \(i \neq j \). Fujikoshi (1970) has derived the asymptotic distribution for \(T^2_0 \) in the noncentral case to order terms \(n^{-2} \), which also holds if \(q < p \leq N \). The equivalent of \(V \) in the case \(q < p \leq N \) is defined as

\[F = Z'A^{-1}Z \]

where \(Z(p \times q) \sim N(M, \sum \Theta I_q) \). For this case \(\Omega \) is defined as \(\Omega = M'\Sigma^{-1}M \).

We shall consider here the asymptotic distribution of the \(j \)-th esf of \(\text{tr}_j F \). The result reduces to the result given by Fujikoshi if \(j = 1 \). We shall refer to \(V \) and \(F \) as Hotelling's generalised beta matrices, since they are distributed as multivariate beta distributions and Hotelling's generalised \(T^2_0 \) are related to them.

2. PRELIMINARY RESULTS.

Lemma 2.1 (de Waal (1974))

2.1

\[\frac{\partial \text{tr}_j \Sigma}{\partial \sigma^*_{rs}} = \text{tr}_j A^* \Sigma \]

where \(E^*_{rs} = \frac{\partial \Sigma}{\partial \sigma^*_{rs}} \)

\[A_j = \frac{\partial \text{tr}_j \Sigma}{\partial \Sigma} = (-1)^{j-1} \sum_{i=1}^{j} (-1)^{j-i} \Sigma^{i-1} \text{tr}_{j-1} \Sigma \]
and

\[
\left(\frac{\partial}{\partial \sigma^*_{rs}} \right) = \left(\frac{1}{2} (1 + \delta_{rs}) \frac{\partial}{\partial \sigma_{rs}} \right) = \phi ; \quad r, s = 1, \ldots, q .
\]

Lemma 2.2 Let

\[
\Gamma_j = \Lambda_j \bigg|_{\Sigma = \nu R^{-1}}
\]

then

\[
2.2 \quad \text{etr}(B \Lambda \exp (\nu^{1-j} \Lambda \nu) \Sigma) \bigg|_{\Sigma = \nu R^{-1}} = \text{etr}(\Lambda \Gamma_j \exp (\nu^2 \Lambda \nu R^{-1}) (1 + O(\nu^{-1})) .
\]

Proof

\[
\text{tr}(B \Lambda \exp (\nu^{1-j} \Lambda \nu) \Sigma) \bigg|_{\Sigma = \nu R^{-1}} = \sum_{r, s} b_{rs} \phi_{sr} \exp (\nu^{1-j} \Lambda \nu) \Sigma \bigg|_{\Sigma = \nu R^{-1}}
\]

\[
= \nu^{1-j} \lambda \exp (\nu^2 \nu R^{-1}) \sum_{r, s} b_{rs} \text{tr} \Lambda \nu \Sigma \bigg|_{\Sigma = \nu R^{-1}}
\]

\[
= \lambda \exp (\nu \nu R^{-1}) \text{tr}(B \Lambda) .
\]

Also

\[
\text{tr}^2(B \Lambda \exp (\nu^{1-j} \Lambda \nu) \Sigma) \bigg|_{\Sigma = \nu R^{-1}} = \sum_{m, n} \sum_{r, s} b_{mn} b_{rs} \phi_{nm} \phi_{sr} \exp (\nu^{1-j} \Lambda \nu) \Sigma \bigg|_{\Sigma = \nu R^{-1}}
\]

\[
= \sum_{m, n} \sum_{r, s} b_{mn} b_{rs} \phi_{nm} \phi_{sr} \left\{ \nu^{1-j} \exp (\nu^{1-j} \Lambda \nu) \Sigma \right\}
\]

\[
\text{tr} \Lambda \nu \Sigma \bigg|_{\Sigma = \nu R^{-1}}
\]

(cont. on next page)
\[-4-\]

\[
= \sum_{m,n} \sum_{r,s} b_{m,n} b_{r,s} v^{2(1-j)} \lambda^2 \exp(v^{1-j} \lambda r_{j}) \text{tr} \Lambda_{j}^{E^*} \text{tr} \Lambda_{j}^{E^*} \left| \Sigma_{v} = v R^{-1} + O(v^{-1}) \right.
\]

\[
= \lambda^2 \text{tr}^2(\Sigma_{v} R_{j}) \exp(v \lambda r_{j} \Sigma_{v} R_{j}) + O(v^{-1}).
\]

Continuing in this way, it is clear that the lemma holds.

Lemma 2.3 *(Crowther (1974))*

Let \(Z(p \times q) \sim N(M, I_p \otimes I_q) \), \(q < p \), then for \(A(p \times p) \) fixed, the density of \(S = Z'A^{-1}Z \) is given by

\[
2.3 \quad \frac{1}{2^{p+q} \Gamma_{p}(\frac{1}{2})} \left| A \right|^{\frac{1}{2}q} \text{etr}(\frac{1}{2} \Omega) \left| S \right|^{\frac{1}{2}(p-q)}
\]

\[
= \sum_{k=0}^{\infty} \Gamma_{K} \frac{1}{(\frac{1}{2})^K} K! E_{Y, K} \left(-\frac{1}{2} \Omega \right) \left(Y - \frac{i}{\sqrt{2}} M \right) \Lambda \left(Y - \frac{i}{\sqrt{2}} M \right), \quad S > 0
\]

where the expectation is taken w.r.t. the density

\[
2.4 \quad \pi^{-\frac{1}{2}pq} \text{etr}(-YY'), \quad Y(p \times q).
\]

Crowther (1974) proved this lemma for the case \(\Sigma = I_p \).

Lemma 2.4 *(Fujikoshi (1970))*

\[
2.5 \quad \frac{\text{etr}(\frac{1}{2}n'\eta) \Gamma_{p}(\frac{1}{2}(n+q))}{\pi^{\frac{1}{2}pq}} \left| I_q + \frac{1}{i\pi}(Y - \frac{i\eta}{\sqrt{2}}) (Y - \frac{i\eta}{\sqrt{2}}) \right|^{\frac{1}{2}(n+q)}
\]

\[
= \left(1 - 2it \right)^{-\frac{1}{2}pq} \text{etr}(\frac{1}{1 - 2it}n'\eta) \left[1 + \frac{1}{4n}(pq(q - p - 1)
\]

\[
- \frac{2q}{1 - 2it}(pq - trn'\eta) + \frac{1}{(1 - 2it)^2}(pq(p + q + 1) - 2(p + 2q + 1)trn'\eta)
\]

\[
+ tr(\eta'\eta)^2 - \frac{2}{(1 - 2it)^3}((p + q + 1)trn'\eta - tr(\eta'\eta))^2)
\]

(cont. on next page)
\[\begin{align*}
&= \frac{\text{tr}(n^*n)^2}{(1-2it)^2} + \frac{1}{96n^2} \left\{ \sum_{\alpha=0}^{8} (1 - 2it)^{-\alpha} B_\alpha \left(\frac{1}{2} n^*n \right) \right\} + o(n^{-3}) \\
&= g(t|n^*n), \text{ say}
\end{align*} \]

where the expectation is taken w.r.t. the density 2.4, \(n(p \times q) \) any fixed matrix and \(p_\alpha \left(\frac{1}{2} n^*n \right), \alpha = 0,1, \ldots, 8 \), given in Fujikoshi (1970) p. 104.

Proof Fujikoshi (1970) showed that the characteristic function of Hotelling's generalised \(T_0^2 = ntrF \) is given by

\[C(t) = g(t|\Omega). \]

On the other hand for \(Z(p \times q) \sim N(M, I_p \otimes I_q) \) and \(A(p \times p) \sim W(I,n) \) independent of each other and using Lemma 2.3, the character function of \(ntrF \), \(R(q \times q) \) fixed nonsingular

\[2.7 \quad E \etr(\text{int}RF) = \frac{\frac{1}{2} p(n+q)}{\Gamma_{\frac{1}{2}(p)} \Gamma_{\frac{1}{2}(n)}} \etr(-\frac{1}{2} M) \int_{A>0} \int_{S>0} \etr(\text{int}RS) |S|^\frac{1}{2}(n-p-1) \]

\[\etr(-\frac{1}{2} A |A|^2)^{\frac{1}{2}(n+q-p-1)} \sum_{k=0}^{\infty} \frac{1}{(\frac{1}{2} p)^k k!} E_Y C_K \left\{ \frac{1}{2} c(Y - \frac{i}{\sqrt{2}}) \right\}, \]

\[A(Y - \frac{i}{\sqrt{2}})dSdA \]

\[= \frac{\etr(-\frac{1}{2} \alpha) \Gamma_{\frac{1}{2}(p)} \Gamma_{\frac{1}{2}(q)}}{\frac{1}{2} pq \Gamma_{\frac{1}{2}(n)}} \int_{\text{int}} \frac{1}{\int_{\text{int}} \left(Y - \frac{i}{\sqrt{2}} \right)^2, \left(Y - \frac{i}{\sqrt{2}} \right)^2 \frac{1}{2} \frac{1}{2} (n+q)} \]

Equating 2.6 and 2.7 for \(R = I_q \) proves the lemma.
The following theorem generalizes the result given by Fujikoshi (1970):

Theorem 2.1 For $R(q \times q)$ fixed p.d.s. and $F(q \times q)$ Hotelling's generalised beta matrix

$$P(ntrRF < x) = \text{etr}(\frac{1}{2} \Omega (I - R^{-1})) \left[\sum p(\chi^2_f(\delta^2) < x) + \frac{1}{4n} pq(p - q - 1)
ight. $$

$$- 2q(pq - tr\Omega^{-1}p(\chi^2_{f+2}(\delta^2) < x) + (pq(q + q + 1)) $$

$$- 2(p + 2q + 1)tr\Omega^{-1} + tr(\Omega^{-1})^2 p\chi^2_{f+4}(\delta^2) < x) $$

$$+ 2((p + q + 1)tr\Omega^{-1} - tr(\Omega^{-1})^2 p\chi^2_{f+6}(\delta^2) < x) $$

$$+ tr(\Omega^{-1})^2 p\chi^2_{f+8}(\delta^2) < x) \right) + \frac{1}{96n^2} \sum_{\alpha=0}^{8} \binom{1}{\alpha} \Omega^{-1}(\alpha) $$

$$p(\chi^2_{f+2\alpha}(\delta^2) < x) \right\} + o(n^{-3}) \right] \text{ where } \delta^2 = \text{tr}(\frac{1}{2} \Omega^{-1}) $$

where $f = \frac{1}{2}pq$ and $\chi^2_f(\delta^2)$ denotes the noncentral chi-square variable with f degrees of freedom and noncentrality parameter δ^2.

Proof From 2.7 and Lemma 2.4 the c.f. of $ntrR^{-1}F$ is given by

$$E \text{etr}(intR^{-1}F) = \frac{\text{etr}(\frac{1}{2} \Omega) \Gamma_p\left(\frac{1}{2}(n+q)\right)}{1pq} \text{etr}(\frac{1}{2} \Omega^{-1}) \left[\text{et}_{Y,\frac{1}{2}}(Y - \frac{1}{2} \Omega^{-1}) \right] $$

$$= \frac{\text{etr}(\frac{1}{2} \Omega) \text{etr}(\frac{1}{2} \Omega^{-1})}{1pq} g(\Omega^{-1}).$$

Inverting 2.9 gives the theorem. This result holds for $q > p$ using the argument given by Fujikoshi (1970).
3. THE ASYMPTOTIC DISTRIBUTION OF $\text{tr}_j F$. We shall now consider the asymptotic distribution of

$$\gamma = n \text{tr}_j (F/\tau)$$

where τ is some fixed constant.

Theorem 3.1 Let R be any fixed p.d.s. matrix and

$$\xi = n(\text{tr}_j (F/\tau) + \text{tr} R^{-1} \Gamma_j - \text{tr}_j R^{-1})$$

then

$$P(\xi < x) = P\left(\chi^2_\nu (\delta^2) < x\right) + o(n^{-1})$$

where

$$\delta^2 = \tau \text{tr} \left(\frac{1}{2} \Lambda \Gamma_j \right), \ \tau = \text{tr} \Lambda / \text{tr} \Lambda \Gamma_j^{-1}$$

and

$$\Gamma_j = (-1)^{j-1} \sum_{i=1}^{j} (-1)^{j-i} \Lambda^{i-1} \text{tr}_j^{-1} R^{-1}.$$

Proof The characteristic function of

$$\gamma = n \text{tr}_j (F/\tau)$$

is given by

$$\phi(t) = E \exp \left(\text{int} \text{tr}_j (F/\tau) \right).$$

Expanding $\exp(\text{int} \text{tr}_j F/\tau)$ as a Taylor series at

$$\frac{\text{int} F}{\tau} = \text{int} R^{-1}$$

for some p.d.s. matrix R.

i.e. for \(\nu = \text{int} \)

\[
\exp(\nu \, \text{tr}_j(F/\tau)) = \exp(\nu^{1-j} \, \text{tr}_j(\nu^{\frac{p}{q}}/\tau)) = \exp(\nu \, \text{tr}(F/\tau - R^{-1}) \delta \exp(\nu^{1-j} \, \text{tr}_j(\delta)) \bigg|_{\Sigma = \nu R^{-1}}.
\]

Let \(B = \nu(F/\tau - R^{-1}) \) in Lemma 2.2, then \(\phi(t) \) can be written as

\[
\phi(t) = E \, \text{etr}(\nu(F/\tau - R^{-1}) \Gamma_j) \exp(\nu \, \text{tr}_j(R^{-1})) + o(n^{-1})
\]

\[
= \exp(\nu(\text{tr}_j(R^{-1} - \text{tr}R^{-1} \Gamma_j)) E \, \text{etr}(\nu \, \Gamma_j) + o(n^{-1})
\]

where \(\Gamma_j \) is given in Lemma 2.2.

Let

\[
R = \frac{1}{\text{tr}_j}
\]

in 2.9, then using 2.5 the characteristic function becomes

\[
\phi(t) = \exp(\nu(\text{tr}_j R^{-1} - \text{tr}R^{-1} \Gamma_j) \text{etr}(\frac{1}{2} \Omega)) \text{etr}(\frac{1}{2} \Omega_{pq}) \text{etr}(\frac{1}{2} \Omega_{pq} \Omega^{-1} \Gamma_j) (1 - 2it)^{-2} \text{etr}(\frac{it \Gamma_j}{1 - 2it \Gamma_j^{-1}}) + o(n^{-1}).
\]

Let

\[
\tau = \text{tr} \Omega / \text{tr} \Omega_{pq}
\]

then it follows from 3.3 that the characteristic function of

\[
\xi = n \{ \text{tr}_j(F/\tau) + \text{tr}R^{-1} \Gamma_j - \text{tr}_j R^{-1} \}
\]

can be written as
3.5 \[h(t) = (1 - 2it)^{-\frac{1}{2}} n_{pq} \text{etr}(\frac{it}{1-2it} \Omega R^{-1}_j) + o(n^{-1}) \]

which proves the theorem.

Since \(R \) is arbitrary, it may be useful to let \(R = I \). In this case \(\Gamma_j \) becomes \(\text{(see Gradshteyn and Ryzhik (1965))} \)

3.6 \[
\Gamma_j = \Lambda_j \sum_{\Sigma=1}^{q} \\
= (-1)^{j-1} \sum_{i=1}^{j} (-1)^{j-i} \binom{q}{j-i} I_q \\
= (-1)^{j-1} \sum_{x=0}^{j-1} (-1)^x \binom{q}{x} I_q \\
= \binom{q-1}{j-1} I_q.
\]

Then \(\tau = \binom{q-1}{j-1} \)

and \(\xi \) becomes

3.7 \[\xi = n \left\{ \text{tr} \left\{ \frac{F/\binom{q-1}{j-1}}{j-1} \right\} + (j - 1) \binom{q}{j} \right\}. \]

The noncentrality parameter will then be \(\delta^2 = \text{tr} \frac{1}{2} \Omega \).

In the special case \(j = 1 \) it follows that \(\xi = n \text{tr} F \),

and the result by Fujikoshi (1970) follows immediately.
REFERENCES

