MATCHING THEOREMS FOR COMBINATORIAL GEOMETRIES

by

MARTIN AIGNER and T. A. Dowling

Department of Statistics
University of North Carolina at Chapel Hill

Institute of Statistics Mimeo Series No. 600.12

AUGUST 1969

Research was partially supported by the U.S. Air Force under Grant No. AFOSR-68-1406 and the National Science Foundation under Grant No. GU-2059.
Matching Theorems for Combinatorial Geometries
by
Martin Aigner and T. A. Dowling
Department of Statistics
University of North Carolina at Chapel Hill

1. INTRODUCTION

Let \(G(S) \) and \(G(T) \) be combinatorial geometries [2] on sets \(S \) and \(T \), respectively, and let \(R \subseteq S \times T \) be a binary relation between the points of \(G(S) \) and \(G(T) \). A matching from \(G(S) \) into \(G(T) \) is a triple \((A, B, f) \), where \(A \) and \(B \) are independent sets in \(G(S) \) and \(G(T) \), respectively, and \(f \) is a one-one function from \(A \) onto \(B \) such that \((a, f(a)) \in R \) for all \(a \in A \).

The present paper presents a characterization of matchings of maximum cardinality, a max-min theorem, and a number of related results. In the case where both \(G(S) \) and \(G(T) \) are free geometries, Theorem 4 reduces to a characterization of maximum matchings associated with the "Hungarian method" as introduced by Egerváry and Kuhn (see [1]), Theorem 5 to the König-Egerváry Theorem, Theorem 6 to a theorem of Ore [5], and Corollary 6.1 to the classical Marriage Theorem. The latter corollary for the case when \(G(S) \) is free and \(G(T) \) arbitrary was first obtained by Rado [6] (see also Crapo-Rota [2]). Theorem 7 is known (see [2], [3], [4]), but the proof, based on earlier results in the paper, is new.

Research was partially supported by the U.S. Air Force under Grant No. AFOSR-68-1406 and the National Science Foundation under Grant No. GU-2059.
2. DEFINITIONS, NOTATION, AND TERMINOLOGY

For completeness, several definitions and results on combinatorial geometries from Crapo-Rota [2] are included in this section.

A closure relation on a set \(S \) is a function \(A \rightarrow \overline{A} \) defined for all subsets \(A \subseteq S \), satisfying

\[
(2.1) \quad A \subseteq \overline{A},
\]

\[
(2.2) \quad A \subseteq \overline{B} \implies \overline{A} \subseteq \overline{B},
\]

for all subsets \(A, B \) of \(S \). A set endowed with a closure relation is a closure space. A subset \(A \subseteq S \) is closed if and only if \(A = \overline{A} \).

A closure relation on a set \(S \) has finite basis if and only if

\[
(2.3) \quad \text{Any subset } A \subseteq S \text{ has a finite subset } A_0 \subseteq A \text{ such that } \overline{A_0} = \overline{A}.
\]

A closure relation satisfies the exchange property if and only if

For any elements \(a, b \in S \), and for any subset \(A \subseteq S \),

\[
(2.4) \quad a \in A \cup b, \quad a \notin \overline{A} \implies b \in \overline{A} \cup a.
\]

A pregeometry (matroid) \(G(S) \) is any closure space consisting of a set \(S \) and a closure relation with finite basis and the exchange property. A pregeometry \(G(S) \) is a combinatorial geometry if and only if

\[
(2.5) \quad \overline{\emptyset} = \emptyset, \quad \overline{a} = a \text{ for all } a \in S.
\]
Associated with every pregeometry $G(S)$ on a set S is a unique geometry $G(S_0)$ on the set S_0 of equivalence classes of S under the equivalence relation

$$a \sim b \quad \text{if and only if} \quad \bar{a} = \bar{b}.$$

We shall confine our attention to geometries with no loss of generality; the results may easily be extended to pregeometries.

The cardinality of a set S will be denoted $\nu(S)$. In a geometry $G(S)$, all minimal subsets A_0 of any subset $A \subseteq S$ satisfying $\overline{A_0} = \overline{A}$ have the same cardinality, which is defined as the rank $r(A)$ of the set A. A set A is independent if and only if $r(A) = \nu(A)$, i.e., if and only if no proper subset of A has closure \overline{A}. The rank function r of $G(S)$ satisfies the semi-modular inequality

$$r(A \cup B) + r(A \cap B) \leq r(A) + r(B). \quad (2.6)$$

A combinatorial geometry $G(S)$ is free if $\overline{A} = A$ for all subsets $A \subseteq S$. In this case, every subset of S is both independent and closed. The concept of independence is thus non-trivial only with regard to "multisets" on "lists", in which an element may occur more than once. A multiset in a free geometry is independent if and only if all its elements are distinct, i.e., if and only if it is a set.

The following definitions and notation are introduced in the present paper. For a further theory of combinatorial geometries, the reader is referred to [2].

Let $G(S), G(T)$ be combinatorial geometries on sets S, T, respectively, and let $R \subseteq S \times T$ be a binary relation between the points of S and T. The system consisting of $G(S), G(T), \text{and } R$ will be denoted $(G(S), G(T), R)$. We shall denote the rank functions of both $G(S), G(T)$
by r and the closure relations by $A \to \overline{A}$, $B \to \overline{B}$, where $A \subseteq S$, $B \subseteq T$. For $A \subseteq S$, $R(A)$ denotes the set of points $b \in T$ such that $(a, b) \in R$ for some $a \in A$.

A matching in $(G(S), G(T), R)$ is a triple (A, B, f), where f is a one-one function from A onto B such that $(a, f(a)) \in R$ for all $a \in A$, and A, B are independent sets in $G(S), G(T)$, respectively. A matching (A, B, f) is characterized by its edge set

$$M = \{(a, f(a)) : a \in A\},$$

and we formally identify these two concepts by writing $M = (A, B, f)$. The common cardinality of A, B, M is called the size $\nu(M)$ of the matching M. We shall be interested in matchings of maximum size in $(G(S), G(T), R)$.

A support of $(G(S), G(T), R)$ is a pair (C, D) of closed sets in $G(S), G(T)$, respectively, such that $(c, d) \in R$ implies at least one of $c \in C$, $d \in D$ holds. The order of a support (C, D) is the number $\lambda(C, D) = r(C) + r(D)$.

Note that if both $G(S)$ and $G(T)$ are free geometries, then the system $(G(S), G(T), R)$ is, apart from the orientation of the edges from S to T, a bipartite graph, and the above definitions of a matching and a support reduce to the usual ones for this case. The following definition uses the exchange property to generalize a notion associated with the "Hungarian method" for finding a maximum matching in a bipartite graph.

Let $M = (A, B, f)$ be a matching in $(G(S), G(T), R)$. A sequence

$$(a_0', b_1'), (b_1', a_1), (a_1', b_2'), \ldots, (b_n', a_n), (a_n', b_{n+1}')$$

(2.7)
of $2n + 1$ distinct pairs $(n \geq 0)$ is an augmenting chain with respect to M if and only if

$$ (a_i, b_i) \in M, \quad (a'_i, b'_{i+1}) \in R-M, $$

$$ a'_0 \in S-A, \quad b'_{n+1} \in T-B, $$

$$ a'_i \in \overline{A}, \quad a'_i \notin (A - \bigcup_{j=1}^{i-1} a_j) \cup \bigcup_{j=1}^{i} a'_j, $$

$$ b'_i \in \overline{B}, \quad b'_i \notin (B - \bigcup_{j=1}^{i} b_j) \cup \bigcup_{j=1}^{i-1} b'_j, $$

for $1 \leq i \leq n$.

Note that if both $G(S)$, $G(T)$ are free geometries, (2.10) implies $a'_i = a_i$, $b'_i = b_i$ for $1 \leq i \leq n$, so that the sequence represents an ordinary augmenting chain in the bipartite graph.

3. MATCHING THEOREMS

Theorem 1. If there exists an augmenting chain with respect to a matching $M = (A, B, f)$ in $(G(S), G(T), R)$, then M is not of maximum size.

Proof. Let the augmenting chain be given by (2.7) and define

$$ P = \{(a_i, b_i): 1 \leq i \leq n\}, $$

$$ P' = \{(a'_i, b'_{i+1}): 0 \leq i \leq n\}. $$

A straightforward inductive argument using (2.10) and the exchange property shows that
\[(A - \bigcup_{j=1}^{i} a_j) \cup \bigcup_{j=1}^{i} a'_j \]

and

\[(B - \bigcup_{j=1}^{i} b_j) \cup \bigcup_{j=1}^{i} b'_j \]

are independent sets with closures \(\bar{A}, \bar{B} \), respectively, for all \(i \), \(1 \leq i \leq n \). Thus by (2.9),

\[(3.1) \quad (A - \bigcup_{j=1}^{n} a_j) \cup \bigcup_{j=0}^{n} a'_j \]

and

\[(3.2) \quad (B - \bigcup_{j=1}^{n} b_j) \cup \bigcup_{j=1}^{n+1} b'_j \]

are independent sets of cardinality \(\nu(M) + 1 \). The edges of

\[(3.3) \quad M' = (M - P) \cup P' \]

define a one-one function \(f' \) of (3.1) onto (3.2), so \(M' \) is a matching in \((G(S), G(T), R) \), and \(\nu(M') = \nu(M) + 1 \). Thus \(M \) is not of maximum size.

Theorem 2. If \(M = (A, B, f) \) is a matching and \((C, D)\) is a support in \((G(S), G(T), R) \), then

\[\nu(M) \leq \lambda(C, D). \]

Proof. By definition, \(R(S-C) \leq D \). Therefore

\[\nu(M) = \nu(A) \]

\[= \nu(A \cap C) + \nu(A \cap (S-C)) \]

\[= \nu(A \cap C) + \nu(f(A \cap (S-C))) \]
\[= r(A \cap C) + r(f(A \cap (S-C))) \]
\[\leq r(A \cap C) + r(R(A \cap (S-C))) \]
\[\leq r(C) + r(R(S-C)) \]
\[\leq r(C) + r(D) \]
\[= \lambda(C, D). \]

Theorem 3. If \(M = A, B, f \) is a matching in \((G(S), G(T), R)\) and there does not exist an augmenting chain with respect to \(M \), then there exists a support \((\overline{A - A_m}, f(A_m))\), where \(A_m \subseteq A \).

The proof of Theorem 3 is constructive. We require several lemmas before proceeding with the main proof.

Lemma 1. If \(B_1, B_2 \) are independent sets in \(G(T) \), and \(B_1 \cup B_2 \) is independent, then

\[\overline{B_1} \cap \overline{B_2} = \overline{B_1 \cap B_2}. \]

Proof. Clearly \(B_1 \cap B_2 \subseteq \overline{B_1 \cap B_2} \), and since the latter is a closed set, \(\overline{B_1 \cap B_2} \subseteq B_1 \cap B_2 \). By the semimodular inequality (2.6) for the rank function \(r \) of \(G(T) \),

\[r(\overline{B_1 \cap B_2}) \leq r(\overline{B_1}) + r(\overline{B_2}) - r(\overline{B_1 \cup B_2}) \]
\[= r(\overline{B_1}) + r(\overline{B_2}) - r(B_1 \cup B_2) \]
\[= \nu(B_1) + \nu(B_2) - \nu(B_1 \cup B_2) \]
\[= \nu(B_1 \cap B_2) \]
\[= r(B_1 \cap B_2), \]

and the lemma follows.
LEMMA 2. Let \(B \) be an independent set in \(G(T) \) and suppose \(D \subseteq B \). Then the set

\[
B_1 = \{ b \in B : D \nsubseteq B - b \}
\]

is the unique minimal subset of \(B \) whose closure contains \(D \).

Proof. Let \(B_2 \) be any subset of \(B \) such that \(D \subseteq B_2 \). If \(B_1 \nsubseteq B_2 \), then there exists \(b \in B_1 \) such that \(B_2 \subseteq B - b \). But then \(D \subseteq B - b \), a contradiction.

Using Lemma 1 and the definition of \(B_1 \), we have

\[
D \subseteq b' \in B - B_1 \cap \overline{B - b'}
\]

\[
= \cap_{b' \in B - B_1} (B - b')
\]

\[
= \overline{B_1}.
\]

LEMMA 3. Suppose \(B \) is an independent set in \(G(T) \) and

\[
B_0 \subseteq B_1 \subseteq B_2 \subseteq \ldots \subseteq B_n
\]

is an increasing sequence of subsets of \(B \). Let \(b_i, b'_i, 1 \leq i \leq n \), be points satisfying

(i) \(b_i \in B_i - B_{i-1} \),

(ii) \(b'_i \in \overline{B_i - B - b_i} \).

Then

\[
b'_i \notin (B - \bigcup_{j=1}^{i-1} B_j) \cup \bigcup_{j=1}^{i} \bigcup_{j=1}^{i-1} B_j
\]

for \(1 \leq i \leq n \).
Proof. We first show that

\[
B'_i = (B_i - U b'_j) \cup U b'_j \quad j=1 \to i
\]

is an independent set with closure \(\overline{B'_i} \). Now by (ii) \(b'_1 \in B_i - b'_1 \), so \(b'_1 \in \overline{B'_i} \) implies \(\overline{B'_i} = B'_i \) by the exchange property. Assuming the result true for \(i-1 \), let

\[
C_i = (B_i - U b'_j) \cup U b'_j \quad j=1 \to i-1
\]

\[
= (B_i - B_{i-1}) \cup B'_{i-1}.
\]

Then

\[
\overline{C_i} = (\overline{B_i - B_{i-1}}) \cup \overline{B'_{i-1}}
\]

\[
= (B_i - B_{i-1}) \cup B'_{i-1}
\]

\[
= (B_i - B_{i-1}) \cup B_{i-1}
\]

\[
= \overline{B_i},
\]

and by a similar argument

\[
\overline{C_i} - b_i = (\overline{B_i - B_{i-1}} - b_i) \cup \overline{B'_{i-1}}
\]

\[
= B_i - b_i.
\]
It follows now from (ii) and the exchange property that

\[\overline{B_i} = \overline{C_i} \]

\[= (C_i - b_i) \cup b_i' \]

\[= \overline{B_i'}, \]

so by induction \(B_i' \) has closure \(\overline{B_i} \) for \(1 \leq i \leq n \). Therefore

\[\overline{B_i} = \overline{B_i' - B_{i-1} - b_i} \]

and the lemma follows by (ii).

Lemma 4. Suppose \(A \) is an independent set in \(G(S) \) and

\[A_0 \subset A_1 \subset A_2 \subset \ldots \subset A_n \]

is an increasing sequence of subsets of \(A \). Let \(a_i, a_i', 1 \leq i \leq n \), be points satisfying

(i) \[a_i \in A_i - A_{i-1}, \]

(ii) \[a_i' \in A - A_{i-1} - A - a_i. \]

Then

\[a_i' \notin (A - \bigcup_{j=1}^{i} a_j) \cup \bigcup_{j=1}^{i-1} a_j' \]

for \(1 \leq i \leq n \).
PROOF. By (ii), $a'_1 \notin A-a_1$, so assume inductively that the lemma holds for $i-1$. Then

$$A^*_{i-1} = (A - \bigcup_{j=1}^{i-1} a_j) \cup \bigcup_{j=1}^{i-1} a'_j$$

is an independent set, and thus so also is $A^*_{i-1} - a_1$. Since

$$(A^*_{i-1} - a_1) \cup (A - A_{i-1}) = A^*_{i-1},$$

it follows from Lemma 1 that

$$A^*_{i-1} - a_1 \cap \overline{A - A_{i-1}} = \overline{A - A_{i-1} - a_1}.$$

Hence if $a'_1 \in A^*_{i-1} - a_1$, then by (ii),

$$a'_1 \in A - A_{i-1} - a_1 \subseteq A - a_1,$$

a contradiction.

PROOF OF THEOREM 3. Let $C_0 = S - \overline{A}$. Then $R(C_0) \subseteq \overline{B}$ since there is no augmenting chain with respect to $M = (A, B, f)$. Let B_1 be the minimal subset of B, defined according to Lemma 2, such that $R(C_0) \subseteq B_1$. Then let $A_1 = f^{-1}(B_1)$, $C_1 = S - A - A_1$. In general, having constructing C_{i-1}, we define B_{i-1} as the minimal subset of B such that $R(C_{i-1}) \cap \overline{B} \subseteq B_{i-1}$, and set $A_{i-1} = f^{-1}(A_{i-1})$, $C_{i-1} = S - A_{i-1}$. Since $A_{i-1} \subseteq C_{i-1}$, $f(A_{i-1}) \subseteq R(C_{i-1}) \cap \overline{B}$, but $f(A_{i-1}) \nsubseteq \overline{B} - b$ for any $b \in B_{i-1}$. Thus by Lemma 2, $B_{i-1} \subseteq B_i$ and so $A_{i-1} \subseteq A_i$, $C_{i-1} \subseteq C_i$. It is, moreover, clear that each of the sequences A_i, B_i, C_i is strictly increasing up to and including some index m after which the process terminates. Thus $R(C_m) \cap \overline{B} \subseteq B_m$, but $R(C_i) \cap \overline{B} \nsubseteq B_i$ for $0 \leq i \leq m$, where $B_0 = \emptyset$.
We shall show that $R(C_i) \subseteq \overline{B}$ for all i, $0 \leq i \leq m$. Assuming otherwise, let n be the smallest index, $0 \leq n \leq m$, such that $R(C_n) \ni \overline{B}$. We obtain a contradiction by showing that this assumption implies the existence of an augmenting chain with respect to M.

Since $R(C_n) \ni \overline{B}$, but $R(C_i) \subseteq \overline{B}$ for $0 \leq i < n$, there exists an edge (a'_n, b'_{n+1}) such that

$$b'_{n+1} \in T-\overline{B},$$

$$a'_n \in C_n - C_{n-1} = \overline{A-A_{n-1}} - \overline{A-A_n}.$$

If $a'_n \in \overline{A-a_n}$ for all $a_n \in A_n$, then $a'_n \in \overline{A-A_n}$ by Lemma 1, so there exists $a_n \in A_n$ such that $a'_n \notin \overline{A-a_n}$. Since $a'_n \in \overline{A-A_{n-1}}$, $a'_n \in \overline{A-a_{n-1}}$ for all $a_{n-1} \in A_{n-1}$, and hence $a_n \in A_n - A_{n-1}$. Let $b_n = f(a_n)$, then $b_n \in B-\overline{B}$, and hence $a_n \in A_n - A_{n-1}$. Let $b_n = f(a_n)$, then $b_n \in B-\overline{B}$, and hence $a_n \in A_n - A_{n-1}$.

By definition of B_n and Lemma 2, there exists an edge (a'_{n-1}, b'_n) such that $a'_{n-1} \in C_{n-1}$, $b'_n \in \overline{B-\overline{B}}$. Thus $b'_n \notin \overline{B_{n-1}}$, and so $b'_n \in \overline{B_{n-1}}$. Since $R(C_{n-2}) \subseteq \overline{B_{n-1}}$ by hypothesis, it follows that $a'_{n-1} \in C_{n-1} - C_{n-2}$ and $(a'_{n-1}, b'_n) \notin M$.

We may then continue this argument starting with $a'_{n-1} \in C_{n-1} - C_{n-2}$, and arrive finally at a sequence

$$\text{(3.4)} \quad (b'_{n+1}, a'_n), (a'_n, b'_n), (b'_n, a'_{n-1}), \ldots, (a'_1, b'_1), (b'_1, a'_0),$$

where

$$\text{(3.5)} \quad (a'_1, b'_1) \in M, \quad (a'_1, b'_{i+1}) \in R-M,$$

$$\text{(3.6)} \quad a'_0 \in S-\overline{A}, \quad b'_{n+1} \in T-\overline{B},$$

$$\text{(3.7)} \quad a'_1 \in A_{1} - A_{1-1}, \quad a'_i \in \overline{A-A_{i-1}} - \overline{A-A_i},$$

$$b'_i \in B_{i} - B_{i-1}, \quad b'_i \in \overline{B_{i} - B_{i-1}}.$$

for $1 \leq i \leq n$. Now (3.5) and (3.6) are simply (2.8) and (2.9), and by Lemmas 3 and 4, (3.7) implies (2.10). It follows that the sequence (3.4) in reverse order represents an augmenting chain, which contradicts the hypothesis of Theorem 3.

Thus $R(C_{i-1}) \subseteq \overline{B_i}$ for $1 \leq i \leq m$, and $R(C_m) \subseteq \overline{B_m}$. Since $C_m = S - \overline{A-A_m}$, the pair $(\overline{A-A_m}, \overline{B_m})$ is a support, and the proof of Theorem 3 is complete.

Theorem 4. A matching $M = (A,B,f)$ in $(G(S), G(T), R)$ is of maximum size if and only if there does not exist an augmenting chain with respect to M.

Proof. The necessity of the condition follows by Theorem 1. If there does not exist an augmenting chain, then the support given by Theorem 3 has order equal to the size of M, which together with Theorem 2 implies that M is of maximum size.

Corollary 4.1. If $M = (A,B,f)$ is a matching not of maximum size, there exists a matching $M' = (A'\cup a, B'\cup b, f')$ such that $\overline{A'} = \overline{A}$, $\overline{B'} = \overline{B}$.

Proof. By Theorem 4, there exists an augmenting chain with respect to M, and the required matching M' is constructed as in the proof of Theorem 1.

Theorem 5. The maximum size of a matching in $(G(S), G(T), R)$ is equal to the minimum order of a support.
PROOF. If $M = (A, B, f)$ is a matching of maximum size, then by Theorem 4 there does not exist an augmenting chain with respect to M. A support of order $\nu(M)$ therefore exists by Theorem 3, and this support is necessarily of minimum order by Theorem 2.

Following Ore [5] for the case of a bipartite graph, we define the deficiency $\delta_S(A)$ of a subset $A \subseteq S$ by

$$\delta_S(A) = r(S) - r(S-A) - r(R(A)),$$

and let

$$\delta_S = \max_{A \subseteq S} \delta_S(A).$$

Note that $\delta_S \geq 0$ since $\delta_S(\emptyset) = 0$.

THEOREM 6. In the system $(G(S), G(T), R)$,

$$\max_{M \text{ matching}} \nu(M) = \min_{(C, D) \text{ support}} \lambda(C, D) = r(S) - \delta_S.$$

PROOF. Note that every support of minimum order is necessarily of the form (C, D), where $D = R(S-C)$. Now

$$r(S) - \delta_S = r(S) - \max_{A \subseteq S} [r(S) - r(S-A) - r(R(A))]$$

$$= \min_{A \subseteq S} [r(S-A) + r(R(A))]$$

$$= \min_{A \subseteq S} [r(A) + r(R(S-A))],$$

and the latter minimum is clearly attained when A is a closed set.
COROLLARY 6.1. There exists a matching of size \(r(S) \) in \((G(S), G(T), R) \) if and only if

\[
r(S) - r(S - A) \leq r(R(A))
\]

for every subset \(A \subseteq S \).

THEOREM 7. (See also [2], [3], [4].) If the geometry \(G(S) \) is free in the system \((G(S), G(T), R) \), then the subsets \(S' \) of \(S \) for which there exists a matching \((S', T', f) \) for some \(T' \) and \(f \), are the independent sets of a pregeometry, the **transversal pregeometry** on \(S \).

PROOF. Let \(I \) be the family of subsets \(S' \) of \(S \) for which there exists a matching \((S', T', f) \) for some \(T' \) and \(f \). Given any subset \(S' \subseteq S \), let \(G(S') \) be the free subgeometry on \(S' \). Applying Theorem 6 to the system \((G(S'), G(T), R \cap (S' \times T)) \), we have \(S' \in I \) if and only if \(\delta_{S'} = 0 \). Equivalently, \(S' \in I \) if and only if \(\nu(S') \leq \nu(S') - \delta_{S'} \).

The theorem will therefore follow from Proposition 7.3 of [2] if the function

\[
r^*(S') = \nu(S') - \delta_{S'}
\]

is increasing and semimodular. We proceed to establish these properties for \(r^* \).

Let \(S' \subseteq S \) and \(A \subseteq S' \). Since \(G(S') \) is free, the deficiency

\[
\delta_{S'}(A) = \nu(A) - r(R(A))
\]

is independent of \(S' \), so we may omit the subscript. Then

\[
\delta_{S'} = \max_{A \subseteq S'} \delta(A).
\]
Given \(A_1, A_2 \subseteq S' \), it follows from the relations

\[
R(A_1 \cup A_2) = R(A_1) \cup R(A_2)
\]

\[
R(A_1 \cap A_2) \subseteq R(A_1) \cap R(A_2)
\]

and the semimodular inequality (2.6) for the rank function \(r \) of \(G(T) \) that

\[
\delta(A_1 \cup A_2) \cup \delta(A_1 \cap A_2) \geq \delta(A_1) + \delta(A_2).
\]

Let \(F(S') \) be the family of subsets \(A \) of \(S' \) for which \(\delta(A) = \delta_S' \).

Then by (3.8), \(F(S') \) is closed under the operation of intersection, and therefore contains a minimal set, which we denote by \(A_S' \).

Clearly if \(a \in S'-A_S' \), then \(A_{S'-a} = A_S' \) and \(\delta_{S'-a} = \delta_S' \).

Suppose that \(a \in A_S' \). Since \(A_S' \) is minimal, \(\delta_{S'-a} \leq \delta_S' - 1 \). But

\[
\delta(A_S', -a) = \vee(A_S', -a) - r(R(A_S', -a))
\]

\[
\geq \vee(A_{S'}') - r(R(A_{S'})) - 1
\]

\[
= \delta(A_{S'}') - 1,
\]

so \(\delta_{S'-a} = \delta_{S'} - 1 \). We have therefore that

\[
r^*(S'-a) = \begin{cases}
r^*(S') - 1, & a \in S'-A_S', \\
r^*(S'), & a \in A_S'. \end{cases}
\]

Thus the function \(r^* \) is not only increasing, but unit-increasing.

Note from the argument above that if \(a \in S' \), then \(A_{S'-a} \in F(S'-a) \) and \(A_{S'-a} \subseteq A_{S'-a} \). We conclude that if \(S_1 \subseteq S_2 \subseteq S \), then \(A_{S_1} \subseteq A_{S_2} \cap S_1 \) and \(\delta(A_{S_1}) = \delta(A_{S_2} \cap S_1) \).
Now let S_1, S_2 be any two subsets of S, and let

$$A_1 = A_{S_1 \cup S_2} \cap (S_1 - S_2),$$

$$A_2 = A_{S_1 \cup S_2} \cap (S_2 - S_1),$$

$$A_3 = A_{S_1 \cup S_2} \cap (S_1 \cap S_2).$$

Then by (3.8) and the above remark we have

$$\delta_{S_1 \cup S_2} + \delta_{S_1 \cap S_2} = \delta(A_{S_1 \cup S_2}) + \delta(A_{S_1 \cap S_2})$$

$$= \delta(A_1 \cup A_2 \cup A_3) + \delta(A_3)$$

$$\geq \delta(A_1 \cup A_3) + \delta(A_2 \cup A_3)$$

$$= \delta(A_{S_1}) + \delta(A_{S_2})$$

$$= \delta_{S_1} + \delta_{S_2}.$$

Thus

$$r^*(S_1 \cup S_2) + r^*(S_1 \cap S_2) \leq r^*(S_1) + r^*(S_2)$$

and the proof is complete.

It should be noted that Theorem 7 is false if the geometry $G(S)$ is arbitrary. The function

$$r^*(S') = r(S') - \delta_S,$$

is unit-increasing, but not semimodular in general, so that Proposition 5.7 of [2] cannot be applied. For the same reason, Theorem 6 cannot be
proved by extending Ore's inductive argument [5] for the case of a bi-
partite graph to the general case, although this approach works when
G(S) is free and G(T) arbitrary.

ACKNOWLEDGMENT

We would like to express our gratitude to Professor Rota who sug-
gested this work to us during a series of lectures given at the
University of North Carolina in the Spring 1969.

REFERENCES

[3] J. Edmonds and D.R. Fulkerson, Transversals and Matroid Partitions,

[4] L. Mirsky and H. Perfect, Applications of the Notion of Inde-
pendence to Problems of Combinatorial Analysis,
J. Combinatorial Theory 2 (1967), 327-357.

625-639.

(Oxford) 13 (1942), 83-89.