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Chemical Combinatorics, Cascade Theory, and Polymer Science.
by

Manfred Gordon
University of Essex, Colchester, England

1. PoLYMER DISTRIBUTIONS SIMULATED BY CASCADE PROCESSES (“STATIS-
TICAL FORESTS").

The representation of chemical molecules by graphs, in which the
vertices represent atoms and the edges represent chemical bonds is well
known (Harary 1967). Equilibrium distributions of chemical species may
be represented as sets or 'ensembles' of graphs. The case of polymer
distributions gives rise to important combinatorial problems, and the
number of distinct graphs is infinite in such cases.

For concreteness, consider Figs. 1 and 2 which represent the simplest
example viz., random f-functional polycondensation. In the extreme posi-
tion of the equilibrium shown in Fig. 1, the ensemble or molecular system
consists entirely of the monomer graph, which has one vertex of degree
f (here f =3) and f vertices of degree 1. The vertex of degree f
is called a monomer unit, or simply a node. The vertices of degree 1 are
unfortunately called functionalities by chemists. At position A in Fig.
1, we see the incipient process of chemical reaction, viz., a fusion of
a pair of edges to produce a dimer. In Fig. 2, this process is well
under way and has produced x-mer molecules of X = 2, 3, etc. For fixed

f and X, two distinct graphs are called isomers (Harary 1967). (We

Lecture notes from a series of lectures delivered at the Summer Study
Institute on Combinatorial Mathematics and Its Applications in the

Natural Sciences, held on June 2-27, 1969, in Chapel Hill, and sponsored
by the U. S. Air Force Office of Scientific Research under Air Force Grant
No. AFOSR-68-1406 and the U. S. Army Research Office (Durham) under Grant
No. DA-ARO-D-31-124-G910.



shall refer to the j-th x-mer as one of the possible isomer graphs in a
suitable enumeration j =1, 2, ..., J say.) Thus an x-mer has X
nodes.

Edges incident on two nodes are termed links; those incident on a
node and a functionality may be called free edges. Trees containing
only vertices of degree f and unity are called (1,f)-trees. The
fraction o of the functionalities in Fig. 1 which have disappeared by
fusion of free edges in Fig. 2 is called the degree of advancement of
the polycondensation reaction by chemists. (In Fig. 1, «=0; 1in general
0 <a<1). A chemical example of the process of random 3-functional

polycondensation has as its first step:

(1.1)
HOCH2 , ’CHQOH HOCHQ‘//\\ CH20H HOCHQ\ " CHQOCH2 . CH2OH
N ) YV~ N Yo (+H)0)
j Oy + ) > & o 2
CHQOH CH20H CHQOH CH20H

Graphs with cycles (in addition to trees) occur in real polycondensation
systems (see eq. 5.14) but are discounted in the simple model under
discussion.

The power of the theory of branching ('"cascade') processes (Harris,
1963) can be harnessed by constructing a statistical forest (s.f.) from
the molecular systems (m.s.) as in Fig. 2. Between the m.s. and s.f.
there subsists a 12X correspondence of x-mer trees (not a one-one
correspondence of trees), because the s.f. is constructed by choosing a
node* at random in the m.s. to serve as a root. Thus, each of the X

nodes of an x-mer tree has an equal chance of furnishing the root of a

See footnote, p.l1l8. Meanwhile equations happen to be simpler if roots
are restricted to nodes.
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Figure 1
Part of infinite molecular system consisting entirely of
3-functional monomer graphs. At A, molecular collision favourable to

production of dimer by fusion of two edges, see A, Fig. 2.
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TOP: Molecular system of 3-functional polycondensation formed from Fig.
1 by raising the degree o of advancement of the reaction. A is a dimer;
at top, two isometric tetramers occur. BOTTOM: Construction of the sta-

tistical forest of rooted trees is by random choice of nodes in the

molecular system to serve as roots.



tree in the s.f. A statistical forest is defined by the pgf's
FO(O), Fi(@)’ .+, for the number of offsprings of members of generations
gO’ 91’ etc. More generally, when nodes of distinct types may occur, an

s.f. is defined by the vectorial quantities

(1.2) n = (n*, n?, ..., n%)
(1.3) En(@) = (Fy(Q)s Foo(@)s -ovs Fi(@)) n=0,1,
(1.4) 9 = (91, Oy vres os)

The n' are the chances of a root belonging to type i (with 1 < i <),
m_ M M Mg

The coefficient of @~ = @1 @2 s eees Gs in ij(g) is the chance
that a node of type Kk on gj bears on gj+1 exactly m1 offsprings
(nodes) of type 1, m, of type 2, ..., mg of type S, (gj means :
generation J).

A master theorem (eq. 4.3-7) lays down necessary and sufficient
conditions for an s.f. so defined to represent a clone, i.e., a forest

generated by random choice of a root vertex within any fixed m.s. This

theorem shows that the vector N can be calculated from EO’ and all

the Ej (=1,2, ..., ) can be calculated (recursively) from EO’
This makes EO’ the so-called link probability generating function

(1pgf), the central combinatorial tool of the whole subject.

1.1 CoNNECTION BETWEEN RELEVANT ALGEBRA AND GRAPH-THEORY.

By repeated use of the cascade substitution (for the case s=1),
one obtains the weight fraction pgf, i.e., pgf of the chance of an x-mer

tree in the s.f.:

(1.5) W(0) = zw 6" = oF (6F (oF (oF (....)))



Moreover, the master theorem shows that for S$=1 types of nodes,
F. = F., = ... . For random f-functional polycondensation, it is readily

apparent that

(1.6) Fo= (1 - ot a@)f
(1.7) Fo=(-ara)™  g=1,2
The typographical trick of writing a product of n factors a1 a2 - |
so as to emphasize a1:
a2
(1.8) a, a, ... 3, = 3, {3,
an

allows us to display the connection of the combinatorial formula (1.5)
with graph theory. Substituting (1.6) and (1.7) in (1.5), for example,

for the simple case f =3, we obtain Fig. 3.

(1 - a+ 00 {

(1w <,:
(1 - a+ a0 {

(1 - o+ a0 { ‘\\\\\\\\\\—§-“‘--<:
i

«Q
(7=N

9O 1 2

Figure 3

The relation between W(0) and a lattice.



The O-symbols now clearly stand in one-one correspondence to the nodes in
the infinite lattice upon which the rooted trees of the s.f. can be
arranged (Fig. 3).

Any single term in o® (x =1, 2, ...) in the expansion of W(0)
can only correspond to a singly-connected tree in Fig. 3 and, moreover,
this tree must be rooted, in that one of the X 0O~factors of such a term
must be the one lying on go. Moreover, every distinct ordered rooted
x-mer tree on the lattice of Fig. 3 contributes an equal term

OLX‘-I (]_a)fx-2x+2

to the probability wX of an x-mer tree in the s.f.

-1

This term corresponds to the probability ax of finding the Xx-1 1links

(1- )fx-2X+2 of finding the fx-2x+2

times the independent probability
free edges which occur in any x-mer tree. The number of such equal terms,
moreover, is the number of distinct node-rooted ordered (1,f)-trees, i.e.,

the number Tm (f) of distinct node-rooted trees of X nodes which can

X
be drawn on a lattice such as Fig. 3. It is shown by Lagrange expansion

(Good 1963, Gordon and Scantlebury 1964, Butler, Gordon and Malcolm 1966)

of (1.5), that

_ (fx-x)!f x-1,1_ yFx-2x+2
(1.9 "x T TX-T)T(Fx-2x¥2)1 o (1-a)

3

a classical result (Flory 1955) obtained by various ad hoc methods. It

follows that
(1.10) T (f) = (fx-x)!f/(x=1)!(fx-2x+2)!

a result which can be established directly (cf., Good 1960). Examining
the tree-distribution in finer detail than merely in terms of the number

X of nodes in a tree, one shows that



(f) (]_a)fx-2x+2 OLx-]

(1.11) Wi = Tixg ,
where ij is the chance of a j-th x-mer (1-f)-tree in the s.f., and
mej(f) the number of distinct ordered rooted trees generated by the

j-th x-mer (1,f)-tree.

Eq. (1.10) and (1.11) can be written down (see Chapter 3) directly
from statistical mechanics. This is because it has been established
that any acyclic chemical structure of M\)n of v atoms and n links
produces in its molecular partition function the combinatorial invariant
TM’ i.e., the number of distinct ordered rooted trees generated by Mvn’
which invariant corresponds to the whole of its so-called combinatorial
entropy. The discovery of this factor in the special context of distri-

butions of polymers (Gordon and Scantlebury 1964) is merely a historical

accident. We return to the general chemical situation in Chapter 3

9, CRITICALITY. GELATION. SoL FRACTION. ELASTICITY,

Chemists refer to E(X) as the weight-average degree of
polymerization DPW; it is found from 1.5 as W'(1) in the following

steps:

(2.1) W(e) = @Fo(u(e))

say, so that formally

(2.2) u(e) = eFi(eFl( e ))

Again, u{(e) can be found explicitly by Lagrange expansion, but it is

more elegent to eliminate U by the formal assumption



(2.3) u(e) = eFl(u(@))

Differentiating (2.1) and (2.2) with respect to © and eliminating U

and U , yields

o' (1)
(2.4) pp =wW'(1) = 1+ ; = E(x)
W T-F (N
0
Clearly, u(0) is the pgf of the distribution of size X among all the
proper subtrees within the trees of the s.f. 1If W(o) itself exists,
we may be confident that u(e) exists and that (2.3) is justified. The
function W(0) has, in general, at least one classical singularity,
known as the critical condition for survival of a family name in genetics
(Galton 1889), or for a neutron cascade in a nuclear device, or for the
so-called gel-point in polymer science. At this point, DPW diverges

because
(2.5) FI(1) = 1.

The generalization (Gordon 1962) of this condition for the singularity
to the case of S different types of monomer units (trees with S dif-

ferently labelled nodes) consists of the vanishing of the determinant
Jj_ gl -

(2.86) ‘61 Fli' 0,

where the general notation

j =
2.7) Fni = <3/39j)Fn1

is employed.
The meaning of 2.4 is immediately apparent through the formal

expansion
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E(x) = 1+ F(1) + FADF() + PR +

¥ ¥ ¥ ¥

= E(g)) + E(g,) + E(g,) + E(g,) toa

3

where E(gi) denotes the expected number of nodes on generation gi
among the trees of the s.f.
If we substitute the pgf's of the simple 'random' case, eq. (1.6)

and (1.7), in (2.4), we obtain immediately the classical formula (Flory

1953):

(2.9) P, = (1 + a)/(1 - a(f-1)) = E(x)

and the critical value e of o at the gel point:

(2.10) a, = 1/(f-1)

For a > Ces the s.f. splits formally into a set of trees of which a
finite ('sol') fraction S is finite, while the remainder ("gel’
fraction) is infinite, in the sense that there is no bound to the number
n of generations gn to which the nodes belong (Fig. 4). Experimentally
(see, e.g., Charlesby 1955), the sol is found soluble in suitable solvent,
while the single gel-molecule in the m.s. corresponding to the s.f. is
found insoluble in all solvents - it is a molecule of microscopic
dimensions.

A tree or subtree is finite if all its branches are finite. This
leads to the recurrence relation for the 'extinction' probability VvV of

a link (edge) which leads from a node on g, = 1, 2, ... to Ip4pe Vize:

(2.11) v = F,(v)
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When solved explicitly for V, this equation provides the key to all
interesting parameters in molecular systems consisting of sol and gel.

In particular, the lpgf of the finite trees in the s.f. can be written
(2.12) F (o) = F {ve)/F (v).

This provides the 1lpgf for the sol fraction on its own, from which all
interesting statistical parameters of that fraction can be calculated.
The fraction of finite trees in the s.f. (i.e., the 'weight' fraction of

sol in the m.s.) is given by
(2.13) S = Fo(v).

The following note-worthy result follows from (2.12) for the case
of random f-functional polycondensation (eq. (1.6) and (1.7)): the dis-
tribution ﬁx(a) for the sol fraction alone passes, as the degree o
of advancement of the chemical reaction increases, through the same
family of functions (though in reverse order) as the whole system before
the gel-point. The situation is graphically summed up by Fig. 5. The
successive states of the system are characterised by the progress of
single peak of a wave which spreads to an ever broader and lower form.
At the gel point however, the wave 'splashes' over, progressively losing
its substance to a delta—-function (the gel fraction) rising up at X =,
while the remainder returns as the reflected sol-fraction wave. This
reflected wave sharpens as it dies out (as a~1), finally behaving as a
delta function of vanishing magnitude at the origin: the last few tree-
like molecules to join up with the infinite gel-tree are likely to be

monomer trees.
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Figure 5

Schematic view of the return of the wave. The molecular size dis-
tribution Wy (ordinate) as a function of size X for increasing values
of the parameter a. Case 1: a=0; cases 1, 2, 3: a < o¢c (pre-gela-
tion); «cases 4, 5, 6: o > ac (post-gelation); case 6: a=1. The gel
fraction (cases 4, 5, 6) is a delta-function placed at infinity. The sol
fraction distribution curves in 4 and 5 are scaled-down versions of Wy
in 3 and 2 respectively.

Figure 6

Units providing the root and the nodes of the trees are here the
primary chains, and no? their constituent repeat units.

o~ N wE »
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Z.1, STATISTICS OF THE GEL AND RUBBER ELASTICITY.

Statistical parameters of the gel fraction (i.e., the infinite mol-
ecule) play important roles in theories of elasticity and swelling, etc.
As o increases, formation of cycles in the gel molecule becomes im-
portant, but current theories neglect their effect and replace the ring-
closing links by hypothetical links between pairs of tree-like gel mol-
ecules. Thus the gel 'network' is always pictured to consist of a tree-
like graph with an infinite number of nodes. The elastic moduli are,
according to statistical-mechanical theories (Dobson and Gordon 1965;
Imai and Gordon 1969), proportional to the number Ne of distinct active
network chains per monomer repeat unit. These monomer repeats may be
small units like those discussed so far, or preexisting polymer chains
which are being linked together in a vulcanization reaction (Fig. 6).

In either case, the gel molecule can be represented as a rooted tree. In
such a rooted tree, with an infinity of nodes, a set of infinite lines
may be drawn each of which extends to infinity in both directions from
some node of minimal generation number characteristic for a given line
(Fig. 5). An active network chain (Dobson and Gordon 1965) is defined as
a line segment which is an intersection of two such infinite lines, which
must be minimal in the sense that no proper part of it is an intersection
of two infinite lines. The number Ne of distinct active network chains
per monomer repeat unit in the gel is readily calculated for most cases

of interest in terms of the extinction probability V defined above.

For instance, for random f-functional polycondensation,
(2.14) Ny = fa(1-v)?(1-8)/2Y

where
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(2.15) 8 = (f-1)av/(1 - o + av).

Experimental measurement of Young's modulus Y as a function of o
generally reproduce quite well the results predicted from statistical
theories of active network chains, especially qualitative features such
as
(2.16) Lim dY/da = 0

a > oo
which follows from (2.14), (2.15) and (2.11). For a recent review of

v
rubber network theory, see Dusek and Prins (1969).

3, GRAPH THEORY AND COMBINATORIAL INVARIANTS OF MOLECULAR PARTITION
FUNCTIONS

A molecular graph or M-graph M\)n is singly connected, free of
loops*, and has v vertices labelled with ('atomic') labels and n
edges. Such an M-graph can be constructed in n! 'synthetic routes'
(not necessarily all distinct). Each route specifies a definite order
in which the n edges are added one by one to the initial set of con-
stituent atoms, i.e., the v trivial subgraphs of order 1. The k-th
step (1 <k < n) in the synthesis may leave the connectivity unchanged,

i.e., it may add an edge incident on two vertices belonging to a singly

%
No edge is incident on the same vertex at both of its ends.
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connected molecular sub-graph Yk to produce another, Xk’ with an
additional edge (an 'intramolecular' step). Or it may link two unconnected
molecular sub-graphs Yk and Zk into a singly connected Xk (an 'inter-
molecular' step).

Let the edge added in step k be incident in vertices V1 and V2

in Xk. Before the k-th edge is added, vy lies in Yk and v, lies

in Yk (k-th step intramolecular) or in Zk (k-th step intermolecular).

Let S(Vi; Yk) denote the order of the equivalence class of vertex V_i

under the automorphism group of Yk’ etc. Let p(vi, Vj; Yk) denote

the order of the equivalence class of the ordered pair (vi, Vi) or

17 ]

vertices under the automorphism group of Yk’ etc.

The chemist's 'statistical equilibrium factor' of the k-th step is

defined by
(3.1) g = p(vl, v, Yk)/p(vl, v, Xk) (intramolecular)
(3.2) £ = s(vl; Yk)s(v2; Zk)/p(vl, Vo Xk) (intermolecular).

By multiplication over Kk and elementary group theory, the graph-
theoretical result
n

(3.3) |GM|-1 = T]Tf-k
follows readily for all synthetic routes of all finite M-graphs. This
theorem expresses the order of the automorphism group of a graph as a
function of orders of equivalence classes occurring in all its sub-graphs.
Remember that there are n! different versions of eq. (3.3), in each of
which the set of Kk's may be different.

The statistical mechanics of real molecules have combinatorial con-

tributions from metrical geometry in addition to the graphtheoretical
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result (3.3). G is the apex of the following hierarchy of four groups

M
associated with any given molecule: EM < RM < SM < GM, where < means
"is isomorphic with a proper or improper subgroup of'". SM is the sym-
metry group (point group) of the real state of the three-dimensional
molecule, RM its rotation group (comprising the operations of SM
devoid of mirror reflection), and EM is the 'external rotation group'
of the molecule as a whole (comprising the operations of RM devoid of
internal bond rotations). GM, the group of automorphisms of the homol-
ogy group of the molecular graph, can be explained to chemists as the
point group of the molecule in its 'graph-like' (perfectly flexible)
state.

Of these four groups, only the reciprocal lRMl-1 of the order of
the rotation group features as a proportionality constant in gas or
liquid partition functions ZM’ where it is usually introduced in ad hoc

fashion as a product of 'symmetry numbers' for avoidance of overcounting

configurations. It is more enlightening to factor it thus:
-1 -1
(3.4) |RMI = ngGMI o« ZM ’

where gm is the index in GM of a subgroup which is isomorphic with
RM. The factor ]GMIW1 in (3.4) is then immediately traceable to eq.
(3.3), and the factor gm is explained below.

For a molecule in an ideal crystal, each atom (vertex) is distinctly
lavelled by its location, which insures that 9y = IGMI. This simple
remark has significance for the third law of thermodynamics.

We recall that chemical kinetics is linked through thermodynamics

to statistical mechanics by the equations:

n.
(3.5) k/k, = K = exp-aF/kT = T[Z; " .
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Where the ki are kinetic rate constants, K 1is an equilibrium con-
stant, AFO the standard free energy change, and the ni are stoi-
chiometric coefficients (taken negatively for reactants). The Zi are
partition functions, with the ground states of the atome taken as energy
zero. We now apply (3.5) (n+1) times to an (n+1)-step synthesis of a
real-state molecule from its atoms, so as to collect the combinatorial
factor in its partition function Z as the product of Ky ~terms

(1 < k < ntl) which occur as factors in the n+l equilibrium constants.
The first N steps are those described before, viz., the creation of
the n edges in the molecular graph Mvn' All these n steps concern
molecules only in their (possibly hypothetical) graph-like states. The
final (n+1)-th step consists in converting M\)n from its graph-like
into its real 3D state by determining bond lengths, angles (and free
rotations, if any). This step has Kl = gm, the number of mappings
of the M-graph M\)n into the real-state molecule. Thus using (3.3) and
(3.4), the combinatorial derivation of the factor ]RMI_l in Z 1is com-
pleted. The factorization of IRMl-1 in (3.4) is important. E.g., Z
differs by a factor of 36 for two octanes: n-octane and
2,2,3,3-tetramethyl butane, rendering the former more stable and more
abundant in equilibrium oil cracking mixtures. It may be shown that the
factor 3% resides entirely in IGMI_l, while Iy = 28, the same for
both octanes. Thus the difference in stability arises entirely from
topology (connectivity) and not from 3D geometry, a feature obscured if
we do not factor lRMl_l.

It can be shown that for any finite M-tree M

vn
_1 V V
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to M . The f, (i =1, 2, ..., v) are the degrees of the vertices and
fl = f If ! ... f!. In conjunction with (3.4) and (3.5), this suffices
to develop in a few lines eq. (1.9) from perfectly general principles of
statistical mechanics. It is possible to extend eq. (3.6) to all finite
M-graphs (containing cycles) by a natural definition of ordered rooted
M-graphs in general. Note that according to (3.4) and (3.6), there is an
additivity of contributions of each equivalence class of atoms in an
M-graph to the molecular partition function, since each equivalence class
furnishes a set of distinct orderings which contributes to TM when one

of its member atoms is chosen as root of the M-tree.

L4, CoMBINATORICS OF A PAIR OF VERTICES IN A TREE. PATH-WEIGHTING
FUNCTIONS. RADIATION SCATTERING.

Much important combinatorial theory arises from comparing the num-
bers TM1 and TM2 of distinct ordered rooted trees produced by a given
*
M—-tree when two distinct vertices (here labelled 1 and 2) are chosen as

the roots. It is shown that for any finite M-graph
(4.1) TMl/TMQ = flsi/f252 R

where fi and Si are the degree and the order of the equivalence class

of vertex i respectively. A simple summation yields for any equivalence

Henceforth, in addition to nodes, vertices of degree unity are allowed
as roots.
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class E

vV
(4.2) TME = TMfEsE/ % fj

Although a simple group-theoretical proof can be given of (4.1) and
(4.2), a probabilistic proof, given in Appendix A, is specially instruc-
tive. This is based on the master theorem concerning statistical forests
(s.f., defined in eq. (1.2)-(1.4), also proved in the appendix). This
master theorem lays down the necessary and sufficient condition for an
s.f. to be a e¢lone. A clone is defined as an s.f. in which the chance
of an M-tree being found rooted on a vertex of an equivalence class E
is proportional to SE. (Nothing is stipulated about the relative
chances of occurrence of different M-trees, however.) Thus, in a clone,
each vertex of an M-tree has an equal chance of furnishing the root.

The necessary and sufficient conditions are

(4.3) o= e DR () G2 s)

(4.4) Flj(g) = NjFy5(e)

4.5) Foyle) = HFos(@)F (D)

(4.6) Fos(@) = NFL (@)L (B, (E, (B g (DT’

Here Nl, N2, ces Nn represent the normalizing factors, so that, e.g.,
4.7 Hy = (DR (E(Ey - (B (1INTT

The following notation is used: F?j(g) denotes BFij(Q)/BOk, and
%j(g) denotes ZkF§j(g)' The summation convention applies so that any

pair of indices, which comprises one subscript and one equal superscript,

F
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must be summed over. A repeated index which is not to be summed over is
put in brackets. The vector | has unit components:
1=(0,1, ...).

The simple statistical forest of eq. (1.6) and (1.7) (random f-func-
tional polycondensation), for which the number S of types of nodes is
unity, satisfies eqs. (4.4)-(4.7) (and trivially (4.3)). 1In general,
the clone concept covers chemical or genetic forests of trees in which
the correlation between fertility patterns of vertices is obsent or con-
fined to the shortest range (chemical 'first-shell' substitution effect -
see Chapter 5).

Pursuing the theme of chemically useful combinatorics arising from
the consideration of two vertices of one M-tree at a time, we turn to

'trail-weighting functions'.

4,1 TRAIL-WEIGHTING FUNCTIONS.

A trail of size K is a connected linear (unbranched) progression
of k edges, containing kt+1 vertices. Clearly in a tree, the two ter-
minal vertices alone fully determine the treil that links them. Much of
the physical properties of molecular substances, but specially of poly-
mers, can be tackled theoretically by expansions in successive terms
which reflect properties of 1, 2, ... vertices (atoms) in the structure
at a time. Scattering of radiation, for instance, depends on phase dif-
ferences between rays striking two atoms.

For polymer distributions in which every trail in an M-graph corre-
sponds to a sub-chain obeying Gaussian end-to-end statistics in the real-
state molecule, the mean square radius (variously weighted as a number,

weight, etc., average) can be found easily by cascade combinatorics
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(Dobson and Gordon, 1964; Butler, Gordon and Malcolm, 1966). Essentially
the problem translates into finding the expected value E(ij/x) for
the distribution ij where ij is the sum of the numbers of edges in
all distinct trails contained in the j-th x-mer. For the simple case of
f-functional polycondensation, with the s.f. defined by eq. (1.6) and
(1.7) and ij given by eq. (1.11), the z-average mean square radius

(obtainable from light-scattering) is found on this assumption of

Gaussian statistics to be given by the formula (Dobson and Gordon, 1964):

(4.8) <R2>

, = 407 E(N/x)/E(x)

b2Fo/2(1 + a)(1 - (F-1)a)

where b2 is the mean square distance between adjacent vertices (in 3D
space). This is remarkably simple, considering <E§;Z is an average
over two complicated distributions: (a) the mean square distances of all
atoms from the centre of gravity of a given molecule under the Gaussian
random-flight type internal Brownian motions of each of its sub-chains,
and (b) the distribution of molecules, i.e., of different isomers of
different numbers X of vertices.

The method of Dobson and Gordon (1964) and Butler, Gordon and
Malcolm (1966) may be generalized as follows (Burchard, Gordon and
Kajiwara, to be published). Instead of each trail producing a weighting
equal to its length (i.e., the number of its edges), it then contributes
a weighting which is an arbitrary function of its length. Random f-func-
tional polycondensation (eq. (1.6) and (1.7)) again provides the simplest
example, though much more complicated cases occurring in practice can

be dealt with analogously.



23

We construct a generating function by generalization of (1.5),
turning the process of eq. (2.1) and (2.2) into an iteration procedure.
Moreover, we raise the O-symbols to various powers ¢€ according to the
generation number 91 on which their corresponding nodes occur in the

corresponding tree (see Fig. 3).

Thus 1let
_ % f
(4.9) u, = e (1 -a+ canl)
(4.10) u. = @q)n(] - o+ au )f'] n=1, 2
' n 1 > &

For ¢.=1, (i =0, 1, ...), u. reverts to W(®) of eq. (2.1), and

then u6(1) = DPW (which means E(X)). But generally

(4.11) ul(1) = o, * fa g o (alF=1)"

which can often be summed or approximated by a Laplace transform, or -
if all else fails - we find ué(]) by computer iteration from and 4.9-10.

The usefulness of ué(]) resides in the following equation:

(4.12) U(I)(]) = ¢O + )E(‘ g.: ij E Nka ¢k/X ’

where kaj is 2 x number of distinct trails of length k 1in the j-th
x-mer tree. The proof of 4.12 rests on a consideration of Figure 3,
bearing in mind that the statistical forest is a clone, which implies
that each end-vertex of every trail in the molecular system has an equal
chance of furnishing a root in the s.f. (Fig. 2); eq. (4.1) is also
relevant to the proof.

The structure factor or scattering function PZ(I) (see Zimm,

1948) provides an example. Here
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(4.13) o, = exp - w°n/6 n=0,1,
with
(4.14) . = b2(4n)A7? sin’(1/2)

and hence from the definition

eq. (2.9) and (4.11) give

f-1)a 2
1 B les 1 - exp - 6]
P (1) = 1 f-1)a

z i ol 2
1 - Ty [1 - exp - x°/6]

(4.15)

The approximate formula derived by Zimm for the very simple case f=2
of linear (unbranched) molecules:

(4.16) PN = 14 18112 8% sin’(1/2)

(cf., eq. (4.8)) gives slight inaccuracies at higher scattering angles
for X-ray scattering (X~1AO). Eq. (2.4) cen also be obtained from
(4.11) using ¢k = 1, and, using this result, (4.8) may be obtained from

(4.11) and (4.12) with o = k.

5, SURSTITUTION EFFECTS AND FERTILITY CORRELATIONS.

Harris (1964) remarked that, in cases where the fertility pattern of

a person depends on how many brothers he has, the Markovian nature of the

cascade model might be restored by introducing different types of indi-
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viduals corresponding to different fertilities. This device will be
used here to solve such problems, which have very realistic counterparts
in chemistry.

Deviations from randomness of statistical forests, due to local

(not too long-range) correlations within each tree, can be computed with

*

X for

ease and profit. In chemistry, for instance, the distribution W
random f-functional polycondensation (henceforth given a star) is often
modified in practice by correlations of the following type. First, the
probability of occurrence of the Jj-th x-mer is modified by a factor ij;

secondly each of the isomeric x-mers gets a weighting Cé where CO is

adjusted for normalization:

= X . =
(5.1) Wy Co Wi Pyys waj 1.

Our problem then resides in how to modify the pef's FO’ Fi’ oo 5 etc.,
of the various generations so as to induce these weightings, while pre-
serving the simulation of the real molecular system by the powerful
cascade~type statistical forest (Fig. 2).

A trail of size K is defined as a connected linear (unbranched)
progression of K links, containing the Kkl mnodes (here all of degree

f). 1In the simple case where the deviation from randomness of f-func-

tional polycondensation arises from the so-called linear n-th shell sub-

stitution effect (n =0, 1, ...), ij takes the form of a trail
weighting function; more specifically, ij = Nﬁr where r = r(x,j) is

the number of distinct trails of length nt+l in the j-th x-mer. The
general non-linear n-th shell substitution effect (of which the linear is
a special case) introduces more parameters, and translates local envi-

ronments into statistical weights in a more discriminating manner. Thus
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the n-th shell general substitution effects are defined by

_ A - x-1
(5.2) n=20: Poxj ¢ .
f Us s
(5.2a) n=1 P _. = T o(i) "X,
1XJ .
1=i
and
u .
(5.3) n=2 Py =TT (k) ke>x3
k<=1

Here ¢ dis a constant, the ¢(i) and ¢(k,£) are arbitrary functions,
ui,xj is the number of nodes with i 1links in the j-th x-mer and
ukK,xj the number of links in the j-th x-mer whose nodes bear k+1 and
£+]1 links respectively. (For definitions of link and node, see p. 1
and 2.)

The basic tricks for modifying the pgf's are as follows. Consider

the weight fraction pgf (cf., eq. 1.5)

- X .
(5.4) W(e) = ) Z Wei® = eFO(eFl(eFQ( ..... )))
X J
Then
a) Simultaneous multiplication of all Fi (i=0,1, ...) by CO
. R X
causes jo to be multiplied by CO'

b) The simultaneous transformations

(5.5) Fi(e) > F.(cT)
(5.6) Fipp(@) > CF.pq(0)
have, for arbitrary C and i, no effect on W_.. This allows one to

XJ
renormalize Fi+]’ and then successively (with appropriate different
constants () Fi’ Fi-]’ ... down to FO’ after their coefficients have

been given any desired weightings.
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c) An individual who is one of a litter of 1 brothers is indexed 7,
so that the corresponding auxiliary variable of this type is written Oj
in the vectorial pgf's En(g).

In this way, we can modify the lpgf. (eq. (1.5-7)) for the statis-
tical forest corresponding to the random (uncorrelated) molecular system,

so as to produce exactly the general superposed first and second shell

substitution effects. Thus:
f
(5.7) F.(o) = C 1

(5.8)

(5.9) F1,j+1(9) = FQj(g) = F3j(g) = qu(g) = (1<j<f-1),
and

(5.9a) Wig) = efF, (e Ee E(...)))

Here +y* 1is a parameter used to generate different degrees u(EFé(])/f)

of conversion. For the 'random' case (without substitution effects),
Ci = ¢(i) = ¢(i,j) =1 for all i and Jj, and y* = o*. The constant

CO and the f constants Cj are found by normalization:

(5.10) Fo(l) = Fa(1) =1 (0 <j<f)

The following special case of pure second shell substitution effect with

f=3 and:
(5.11) (i) = 1 (0 <is<f),
(5.12) 6(j,k) =1 (0<j<2; 0<kz<1l)



28

except that
(5.13) 6(2,2) =0

is instructive as a model for steric hindrance effects in chemical gels,
and in its own right as an extension of a class of lattice-statistical
problems from a linear lattice (Gordon and Hillier, 1963; McKenzie,

1962) to a branched one. Computer results will be shown on the statis-—
tics of the forest as a function of «. They indicate that the maximum
attainable value of o (in the final gel molecule free from sol fraction)

is = 0.795 £ 0.002 for this model.

APPENDIX A
ProoF oF THE MaSTER THEOREM (Eq. (4.3) - (4.7)) AND PROBABILISTIC PROOF
oF Ea. (4.1).

A replanting is a change of rooting of an M-tree from an old root
to a new root (Fig. 7). On replanting, the vertex which formed the old
root on gO’ appears on the same generation (gn, say) on which the new
root appeared in the old rooting. We shall merely say the path linking
the roots is Zmverted by replanting; when the two roots belong to 9
and gn, we call the replanting a (go,gn)—replanting.
Eq. (4.3) and (4.4) are proved by considering the statistical implica-
tions respectively of all (go,gl)—replantings, eq. (4.5) of all (go,gg)-
replantings, and eq. (4.6) of all (gb,gn)—replantings involving at least
one j-type. Thus eq. (4.3) merely expresses the fact that a j-type vertex

on g, has the same average number Féj(1) of offsprings (irrespective
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of type) on g1 as there are, on average, j-type offsprings on g1 for
vertices (irrespective of type) occurring as roots on 9

Equation (4.6), which -suitably interpreted - contains (4.4) and
(4.5) as special cases follows quite similarly. Thus we obtain the re-
lation between EO and En as the statistical result of all possible
(go,gn)—replantings involving at least one Jj-type vertex. What happens
to the set of offsprings of a j-type vertex when it is translated by
path inversion from gO to gn? It carries with it, with one exception
(Fig. 7) all its offsprings which move from 9, to Gpq- The only
deletion is the one original offspring on 9, (say an i-type) which lay
on the path being inverted, which is carried from 91 to gn_] where
it becomes the father of the translated j-type on gn.

Eq. (4.6) can now be understood by inspection. It expresses the
fact that pgf Fnj is essentially the same as FOj’ but the deletion
of the i-type offspring must be effected by differentiating with respect
to 61 (which lowers the exponent of @1 by unity, as required). More-
over, the same differentiation multiplies the probability of any given
set of offsprings by the number of i-types in the set, which is required
because each i-type offspring on 91 provides a separate gate for an
equal average number of paths from a j-type on go to vertices of any
type on gn, which paths may thus translate the Jj-type up to gn by
path inversion. The average number N of paths which link an i-type on

g1 to any type of vertex on gn is, by the usual methods of cascade

theory, given by

(A1) N = [F)(E(E, -one (F

which is the remaining factor in eq. (4.6). As a last step in the
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Figure 7

Re-rooting of an M-tree. The inverted path is shown as the thick
For clarity, only the relevant atomic labels are shown.
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derivation of (4.6), we note that we must sum with respect to 1 over
all types, since the particular type 1 singled out for discussion was
merely representative of any vertex on gl, all of which can feature on

paths which are inverted on (go,gn)—replantings.

Al. ProoF oF EQ. (4.1): GENERALIZATION OF THE NOTION OF STATISTICAL
FOREST.

We now generalize the notion of different types of individuals in a
statistical family tree, or vertices in an ordered rooted M-tree, by

introducing auxiliary variables with three subscripts, thus:

(A2) 9 = [9111, ..... , O;

This enables us to classify individuals into types from three different
points of view:

1) A metrical classification denoted by subscript i,

viz., the rank-label of a given individual defining his position in the
litter (Fig. 8c). In this work, we thus generate for the first time
statistical forests of ordered trees, using the subscript 1 to specify
the ranking (from left to right) of an offspring within the litter to
which he belongs;

1I) A topological classification denoted by subscript J,

viz., the degree J of the vertex which the individual represents in
the tree;

III) A 'chemical' classification denoted by the subscript or atomic label
k, which, as hitherto, specifies by convention some chemical type of
atom in an M—tree.

The generalized statistical forest of ordered M-trees we contemplate is
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Figure 8

An ordering of an M-tree, such as (a), comprises the choice of a
root-vertex, plus a positioning of the branches as in (b). The same in-
formation as in (b) is contained in (c), where the arrow shows the root-
vertex, and the numerical rank-labels determine the positions from left
to right of the edges sprouting upward from any vertex in (b).
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thus specified by eq. (A3) and (A4):

(A3) = [nll, ceees njk, .

~

. jk
Here nJ is the chance that the root of an M-tree in the forest should
have degree j and atomic label k, while superscript 1 is not re-
quired, because an individual on 9 (forming the root of a tree) is

necessarily devoid of siblings; and

- m m m
(A4) En(@) = 1 Ppy o€ % Pon® > oo % Prs ™3 >
where
(A5) m = [m111’ cees mijk’ eeo]

The probability distributions Pnr are defined by (A4).

In the next section, we define a specific example of such a statis-
tical forest, which is as random as can be, in the sense that wherever
there arises a choice between various alternatives, each contingency
carries equal probability. A forest of ordered rooted trees is a thicket
if it embodies the following type of randomness. Every distinct ordering
of any one given M-tree (Fig. 8) occurs with equal probability. There
is no restriction, however, on the relative probabilities of orderings

of distinct M-trees.

A2, THE THICKET T.

Thus consider the following example of eq. (A3):

(A6) nfk = 1/FK (= const.) ,

where henceforth
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IN
=~
A
=~

(A7) 1 <f<F; 1

This signifies that an individual on 9, (a root) has equal chances of
being found a vertex of any degree between 1 and F (an arbitrary con-
stant positive integer) and bearing any atomic label between 1 and K
(an arbitrary constant positive integer) inclusively. Next, let EO
(cf., eq. (A4)) have F components, such that any individual of type
(fk) has the same fertility pattern depending only on f, but independ-
ent of Kk:

K

1 kz1 Yigk

e~

-f f
(48) Fog = (FK) J:E j

Thus an individual of type (fk) on gO has, as by definition he must,
always exactly f offsprings on gl, but there is no bias as regards
the degrees J or the atomic labels Kk of these offsprings, each value
in the ranges (A7) being of equal probability.

Finally, all individuals on generations 91’ 92, ... can produce
litters of at most F-1 members, and their pgf's are taken to be inde-

pendent of the generation to which they belong:

MBI
(49) Foo= (FK o
1f i=1 =1 k=1 K
(A10) = sz = F3f

The statistical forest defined by (A8) - (AlO) is a thicket, T say,
since every ordering of an M-tree occurs with equal chance: indeed, the
probability of finding any ordering of any M-tree of order v 1is (FK)_V.
Any finite M-tree of v >2 is included in T with finite probability

provided F>v, K>v.
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A3, THE CLone cC.

The thicket T is nmot a clone. Eq. (4.4), (4.5) and (4.6), it is
true, are Verified* by the set (A8), (A9) and (Al0), but eq. (4.3) is
not satisfied by (A6). We are thus led to calculate the set of FxK
components of N which, together with (A8) - (AlO), do form a clone,

which we denote by C. By substituting (A8) in (4.2), and using the
fk

normalization condition Zf Zk n = 1 we find for all k:
-1 F -1,-1 -1
(A11) nt o= fox(pT) («f7)
1

Accordingly, eq. (A8) - (AlQ0) can be combined with (A6) to form the

thicked T, or with (All) to form the closely related clone C.
Consider the relative frequencies of occurrence of one and the same

finite M-tree when rooted on a vertex of degree fl belonging to equiv-

alence class 1 of order Sl, and when rooted on a vertex of degree f2

belonging to equivalence class 2 of order 52 . In the thicket T, the
ratio of the two frequencies is merely the ratio, TMl/TMQ’ of distinct
orderings belonging to these two rootings, since in a thicket every
ordering occurs with equal frequency. In the clone C(, however, com-
parison of (A6) and (All) shows that the ratio of frequencies is modified

to TleQ/TMQfl' Moreover, because ( 75 a clone, the same ratio of

frequencies must be equal to 51/52 so that eq. (4.1) is proved.

Note that only relative values of rank labels are significant, so

that, e.g., 015699840379 = ©1569384%79 = ©2569384%79> etc-» since
1<2<3, 1<3<4, 2<3<4, etc.
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