ON THE DISTRIBUTION OF THE LAST OCCURRENCE TIME IN AN INTERVAL FOR A REGENERATIVE PHENOMENON.

by

C. C. HEYDE

University of North Carolina
Institute of Statistics Mimeo Series No. 597
October 1968

This research was supported by the Department of Navy, Office of Naval Research, Grant No. - 855 (09).

DEPARTMENT OF STATISTICS
University of North Carolina
Chapel Hill, N. C. 27514
ON THE DISTRIBUTION OF THE LAST OCCURRENCE TIME
IN AN INTERVAL FOR A REGENERATIVE PHENOMENON.1

C. C. HEYDE

1. Introduction and Summary

Let \((\Omega, \mathcal{G}, \text{Pr})\) be a probability space on which a regenerative phenomenon \(\mathcal{E}\) is defined. That is, \(\mathcal{E}\) is a family \(\{E(t), t > 0\}\) of subsets of \(\Omega\), each belonging to \(\mathcal{G}\), and having the property that whenever

\[0 < t_1 < t_2 < \ldots < t_k,
\]

then

\[
\text{Pr}\{E(t_1), E(t_2), \ldots, E(t_k)\} = \text{Pr}\{E(t_1)\} \cdot \text{Pr}\{E(t_2 - t_1), \ldots, E(t_k - t_1)\}.
\]

Let \(\mathcal{E}\) be such that

\[
p(t) = \text{Pr}\{E(t)\} \to 1
\]
as \(t \to \infty\). That is, in the terminology of KINGMAN [14], \(\mathcal{E}\) is standard. We write

\(Z(t, \omega)\) for the indicator process of \(\mathcal{E}\) defined by

\[
Z(t, \omega) = \begin{cases} 1 & \text{if } \omega \in E(t) \\ 0 & \text{if } \omega \notin E(t), \end{cases}
\]

and we shall suppose, as we may do without essential loss of generality, that
this process is separable ([14], Section 13). Take \(Z(0, \omega) = 1\) for convenience. Then, associated with \(\mathcal{E}\) there is a stochastic process \(T_t\) defined by

\[T_t = \sup\{u : 0 \leq u \leq t; Z(u, \omega) = 1\}.
\]

That is, \(T_t\) is the time of last occurrence of \(\mathcal{E}\) in the interval \([0, t]\).

This paper is concerned with a study of the process \(T_t\). We shall obtain various representation results for \(T_t\) and examine aspects of its limit behaviour as \(t \to \infty\).

This research was supported by the Department of Navy, Office of Naval Research, Grant No. nonr - 855 (09).
2. Representation Results

Theorem 1. For \(\theta > 0 \), define
\[
r(\theta) = \int_0^\infty e^{-\theta t} p(t) dt.
\]
Then, for \(s > 0, z > 0 \),
\[
z \int_0^\infty \left(e^{-st} \right) e^{-zt} dt.
\]

\[
= \exp \left\{ -s \int_0^\infty t^2 E_t e^{-zt} \left[(1 + tz) - (1 + (z+s) \left(e^{-st} \right) \right] dt \right\}
\]
\[
= r(z + s) \left[r(z) \right]^{-1}.
\]

Proof. For integer valued \(n \geq 1 \), consider the family \(\{ E(2^{-m} n), n = 0, 1, 2, \ldots \} \) of subsets of \(\Omega \). This discrete skeleton forms a recurrent event in the sense of FELLER ([1], I Chapter 13). Now, define the sequences \(\{ u_n, n \geq 0 \} \) and \(\{ f_n, n \geq 1 \} \) by
\[
u_n = \Pr\{ E(2^{-m} n) \}, \quad n \geq 0,
\]
\[
f_n = \Pr\{ E(2^{-m}), E(2^{-(m-1)}), \ldots, E(2^{-m}(n-1)), E(2^{-m} n) \}, \quad n \geq 1,
\]
where \(E(2^{-m}n) \) denotes the complement of \(E(2^{-m} n) \). These sequences are related by the well-known power series identity
\[
U(t) = \left[1 - F(t) \right]^{-1}, \quad 0 \leq t < 1,
\]
where
\[
U(t) = \sum_{n=0}^{\infty} u_n t^n, \quad F(t) = \sum_{n=1}^{\infty} f_n t^n, \quad 0 \leq t < 1.
\]

Let \(2^{-n} T_n^{(m)} \) denote the time of last occurrence of \(\epsilon \) in the set \(\{ 0, 2^{-m}, 2^{-(m-1)}, \ldots, 2^{-m} n \} \). Then, the representations
\[
u_n = \Pr\{ T_n^{(m)} = n \}, \quad q_n = \sum_{r=n+1}^{\infty} f_r = \Pr\{ T_n^{(m)} = o \}, \quad n \geq 0,
\]
are obvious, together with the extremal factorization property
\[
\Pr\{ T_n^{(m)} = k \} = \Pr\{ T_k^{(m)} = k \} \Pr\{ T_n^{(m)} = o \}
\]
\[
= u_k q_n k^n k^k,
\]
o \leq k \leq n. Then, upon taking generating functions we readily find that for \(s > 0, z > 0 \),
(2)
\[(1 - e^{-2^{-m}z}) \sum_{n=0}^{m} E(e^{-2^{-m}sT_n^{(m)}}) e^{-2^{-m}zn} = U(e^{-2^{-m}(z + s)} \left[U(e^{-2^{-m}z}) \right]^{-1}. \]

The next step is to take the limit as \(m \to \infty \) in (2) and in order to proceed with this we need the following lemma.

Lemma: Write
\[\phi_{m}^{(m)}(\lambda, t) = E(e^{-2^{-m}\lambda t \left[m \right]}), \quad \phi(\lambda, t) = E(e^{-\lambda t}), \]
where \(\left[2^{-m} \right] \) denotes the integer part of \(2^{-m}t \). Then,
\[\lim_{m \to \infty} \phi_{m}^{(m)}(\lambda, t) = \phi(\lambda, t) \]
uniformly in \(t \) in any finite interval.

Proof: Firstly, we note that \(2^{-m}\lambda t \left[m \right] \) is monotone non-decreasing in \(m \) and hence that \(\phi_{m}^{(m)}(\lambda, t) \) is monotone non-increasing in \(m \). Consequently, it will be sufficient to show that
\[\lim_{m \to \infty} \phi_{m}^{(m)}(\lambda, t) = \phi(\lambda, t) \]
for each fixed \(t \) and that \(\phi(\lambda, t) \) is a continuous function of \(t \).

Now, the indicator process of \(\mathcal{E} \) is separable so that for any \(x \geq 0 \) and any countably dense subset \(\{ t_1, t_2, \ldots \} \) of \([0, t] \),
\[\Pr(T_t \leq x) = \Pr(Z(u, w) = 0 \text{ for } x < u \leq t) = \Pr(T_t^* \leq x) \]
where \(T_t^* = \sup \{ t_j : Z(t_j, w) = 1 \} \). It follows then, using the Helly-Bray Theorem, that
\[\lim_{m \to \infty} \phi_{m}^{(m)}(\lambda, t) = \phi(\lambda, t) \]
for fixed \(t \). Also, if
\[\tau(t) = \tau(t, w) = \int_{0}^{t} Z(u, w)du, \]
then
\[\Pr(T_t + \Delta t > T_t) \leq \Pr(\tau(t + \Delta t) > \tau(t)) \to 0 \]
as \(\Delta t \to 0 \) so that \(T_t \) is continuous in probability. Finally, since \(T_t \) is monotone non-decreasing in \(t \),
\[\phi(\lambda, t + \Delta t) \leq \phi(\lambda, t), \]
while, letting \(\delta \) be arbitrarily small and positive and using integration by parts,
\[\phi(\lambda, t + \Delta t) = 1 - \int_0^\infty e^{-\lambda x} \Pr(T_t + \Delta t \geq x)dx \]
\[= 1 - \int_0^\infty e^{-\lambda x} \Pr(T_t + \Delta t - T_t + T_t \geq x)dx \]
\[\geq 1 - \int_0^\infty e^{-\lambda x} \left[\Pr(T_t + \Delta t - T_t \geq \delta) + \Pr(T_t \geq x - \delta) \right]dx \]
\[= 1 - \Pr(T_t + \Delta t - T_t \geq \delta) - \lambda e^{-\lambda \delta} \int_0^\infty e^{-\lambda y} \Pr(T_t \geq y)dy \]
\[= 1 - \Pr(T_t + \Delta t - T_t \geq \delta) - e^{-\lambda \delta} \left[1 - \phi(\lambda, t) \right] \]
\[- \lambda e^{-\lambda \delta} \int_0^\infty e^{-\lambda y} \Pr(T_t \geq y)dy, \]

so that, from (3) and (4) and since \(T_t \) is continuous in probability,
\[\lim_{\Delta t \to 0} \phi(\lambda, t + \Delta t) = \phi(\lambda, t). \]

This completes the proof of the lemma and we resume the proof of the theorem.

We can write,
\[z \int_0^\infty E(e^{-sT_t})e^{-zt}dt = \lim_{m \to \infty} (1 - e^{-2^{-m}z}) \sum_{n=0}^\infty \phi(s, 2^{-m}n)e^{-2^{-m}nz}, \]
and we shall show that it is possible to replace \(\phi(s, 2^{-m}n) \) by \(\phi_m(s, 2^{-m}n) \) on the right hand side of (5). To show this, let \(\epsilon > 0 \) be arbitrarily small and let \(N \) be a positive integer so large that for fixed \(z \), \(e^{-2^Nz} < (\frac{1}{4})\epsilon \). Then, from the lemma, we have for sufficiently large \(m \),
\[|\phi_m(s, 2^{-m}k) - \phi(s, 2^{-m}n)| \leq (1/2)\epsilon, \quad k = 0, 1, 2, \ldots, 2^m + N. \]

Therefore, for sufficiently large \(m \),
\[|(1 - e^{-2^{-m}z})\sum_{n=0}^\infty \phi_m(s, 2^{-m}n) - \phi(s, 2^{-m}n)|e^{-2^{-m}nz}| \]
\[\leq (1 - e^{-2^{-m}z})\sum_{n=0}^\infty |\phi_m(s, 2^{-m}n) - \phi(s, 2^{-m}n)|e^{-2^{-m}nz} \]
\[+ 2(1 - e^{-2^{-m}z})\sum_{n=2^m+N}^\infty e^{-2^{-m}nz} \]
\[\leq \frac{\epsilon}{2} + 2 \cdot \frac{\epsilon}{4} = \epsilon, \]
and from (5) and (6) we obtain

$$
\int_0^\infty E(e^{-st})e^{-zt}dt = \lim_{m \to \infty} (1 - e^{-2^m z}) \sum_{n=0}^\infty \Pr(T_n = n)e^{-2^m n z},
$$

which deals with the left hand side of (2).

For the right hand side of (2), we firstly make use of a result of DWASS (see PORT [7]) which allows us to express $U(t)$ in the form

$$
U(t) = \exp\left\{ \sum_{k=1}^\infty t^k \Delta_{km} k^{-1} \right\}, \quad 0 \leq t < 1,
$$

where

$$
\Delta_{km} = 2^{-m} E\left[T_k^{(m)} - T_{k-1}^{(m)} \right], \quad k \geq 1.
$$

Then,

$$
U(e^{-2^m z + s}) \left[U(e^{-2^m z}) \right]^{-1} = \exp\left\{ -\sum_{k=1}^\infty k^{-1} e^{-2^m k z} (1 - e^{-2^m k s}) \Delta_{km} \right\}.
$$

(7)

Now, using summation by parts,

$$
\sum_{k=1}^\infty k^{-1} e^{-2^m k z} (1 - e^{-2^m k s}) \Delta_{km}
$$

(8)

$$
= \sum_{k=1}^\infty 2^{-m} E_k^{(m)} \left\{ \frac{1}{k} e^{-2^m k s} - \frac{1}{(k+1)} e^{-2^m (k+1) z} (1 - e^{-2^m (k+1) s}) \right\},
$$

while, again making use of the lemma, we obtain without difficulty that

$$
\lim_{m \to \infty} \sum_{k=1}^\infty 2^{-m} E_k^{(m)} \left\{ \frac{1}{k} e^{-2^m k z} (1 - e^{-2^m k s}) - \frac{1}{(k+1)} e^{-2^m (k+1) z} (1 - e^{-2^m (k+1) s}) \right\}
$$

$$
= \int_0^\infty t \left\{ \int_0^t \left[(1 + tz) - (1 + t(z + s) e^{-st}) \right] dt \right\} dt.
$$

(9)

The second part of (1) follows immediately from (7), (8) and (9).

Finally, for $\theta > 0$,

$$
2^{-m} U(e^{-2^m \theta}) = 2^{-m} \sum_{n=0}^\infty \Pr(T_n^{(m)} = n) e^{-2^m \theta}
$$
\[r(\theta) = \int_0^\infty e^{-\theta t} p(t) dt \]

as \(m \to \infty \) and, consequently, the right hand side of (2) also converges to \(r(z+1)[r(z)]^{-1} \) as \(m \to \infty \). This provides the third part of (1) and thus completes the proof of the theorem.

Corollary 1. For \(z > 0 \),

\[(10) \quad zr(z) = \exp\left\{-\int_0^\infty t^{-1} e^{tz} d_t(t - ET_t)\right\}. \]

Proof. Using Theorem 1, we have with the aid of easy calculations that

\[\frac{zr(z)}{(z+1)r(z+1)} = \exp\left\{\int_0^\infty t^{-1} e^{-zt} [1+tz] - (1 + t(z+1)e^{-zt}] dt - \log(1 + z^{-1}s)\right\} \]

\[= \exp\left\{\int_0^\infty t^{-1} e^{-zt} (1 + tz) - (1 + t(z+1)e^{-zt}] dt\right\} \]

\[= \exp\left\{\int_0^\infty t^{-1} e^{-zt} d_t(t - ET_t)\right\} \]

\[= \exp\left\{\int_0^\infty t^{-1} e^{-zt} (1 - e^{-st}) d_t(t - ET_t)\right\}. \]

(11)

Furthermore, in Theorem 3 of [4] it is shown that there exists a unique positive measure \(\mu \) on \((0, \infty)\) with

\[\int_{(0, \infty)} (1 - e^{-x}) \mu(dx) < \infty, \]

such that for \(\theta > 0 \),

\[r(\theta) = \left[\theta + \int_{(0, \infty)} (1 - e^{-\theta x}) \mu(dx) \right]^{-1}, \]

and from this representation it follows immediately that \(\Theta r(\theta) \to 1 \) as \(\theta \to \infty \). The result (10) is then obtained by letting \(s \to \infty \) in (11).

Theorem 2. Let \(\mu \) be the canonical measure of the regenerative phenomenon \(\xi \).

That is, \(\mu \) is a positive measure on \((0, \infty)\) for which

\[\int_{(0, \infty)} (1 - e^{-x}) \mu(dx) < \infty, \]

(12)
and such that for $\theta > 0$,

$$r(\theta) = \int_0^\infty e^{-\theta t} p(t)dt = \left[\theta + \int_{(0, \infty)} (1 - e^{-\theta x}) \mu(dx) \right]^{-1}.$$

Then, the distribution of T_t is given by

$$\Pr(T_t < u) = \int_0^u \mu(t - v, \infty) p(v)dv, \quad 0 \leq u < t,$$

$$\Pr(T_t = t) = p(t).$$

Proof. In view of (12), $\mu(x, \infty)$ is bounded in (a, ∞) and integrable over $(0, a)$ for each $a > 0$. Furthermore, its Laplace transform $\int_0^\infty e^{-\theta x} \mu(x, \infty) dx$ exists for $\theta > 0$ and

$$\int_0^\infty e^{-\theta x} \mu(x, \infty) dx = \theta^{-1} \int_{(0, \infty)} (1 - e^{-\theta x}) \mu(dx).$$

Consequently, from (13),

$$\left[\theta r(\theta) \right]^{-1} = 1 + \int_0^\infty e^{-\theta x} \mu(x, \infty) dx.$$

It then follows from Theorem 1 that

$$\int_0^\infty E(e^{-ST_t})e^{-zt}dt = r(z + s) \left[1 + \int_0^\infty e^{-z x} \mu(x, \infty) dx \right]$$

$$= \int_0^\infty e^{-z t} p(t)dt + \int_0^\infty e^{-z t} \int_0^t e^{-s v} p(v) \mu(t - v, \infty) dv dt,$$

so that

$$E(e^{-ST_t}) = e^{-st} p(t) + \int_0^t e^{-s v} p(v) \mu(t - v, \infty) dv,$$

and a further inversion yields (14). We note that

$$\Pr(T_t \leq t) = 1 = p(t) + \int_0^t p(t - v) \mu(v, \infty) dv,$$

which is the Volterra integral equation obtained in Proposition 7 of [4].

Theorem 2 shows us clearly that the function $p(t)$ uniquely determines the distribution of T_t for all $t > 0$ and vice-versa. We note also the following result which is obtained by differentiating in (14),

$$\mu(t - u, \infty) = \frac{d}{du} \Pr(T_t < u), \quad 0 < u < t.$$
3. Limit Behavior

In [4], it is shown that there are three possibilities for the ergodic behavior of a standard regenerative phenomenon \mathcal{E}:

(I) $\mu(\infty) > 0$ (transient),

(II) $\mu(\infty) = 0$, $\int_{(0, \infty)} x \mu(dx) = \infty$ (null),

(III) $\mu(\infty) = 0$, $\int_{(0, \infty)} x \mu(dx) < \infty$ (positive).

Theorem 3. If \mathcal{E} is transient, then

(15) $\lim_{t \to \infty} \Pr(T_t < u) = \left[\mu(\infty)\right]^{-1} \int_0^u p(x) dx$.

If \mathcal{E} is positive, then

$\lim_{t \to \infty} \Pr(t - T_t < u) = \frac{1 + \int_0^u \mu(x, \infty) dx}{1 + \int_0^\infty \mu(x, \infty) dx}$.

Proof. Suppose firstly that \mathcal{E} is transient. Then, from Proposition 8 of [4],

$\left[\mu(\infty)\right]^{-1} = \int_0^\infty p(t) dt < \infty$.

The result (15) follows immediately upon proceeding to the limit in (14).

Next, suppose that \mathcal{E} is positive. From Theorem 6 of [4],

$p(t) \to \frac{1}{1 + \int_0^\infty \mu(x, \infty) dx}$

as $t \to \infty$. Then, from Theorem 2,

$\Pr(t - T_t < u) = 1 - \int_0^{t-u} \mu(t - v, \infty)p(v) dv$

$= p(t) + \int_t^{t-u} \mu(t - v, \infty)p(v) dv$

$= p(t) + \int_0^u \mu(x, \infty)p(t - x) dx$

$\to \frac{1 + \int_0^u \mu(x, \infty) dx}{1 + \int_0^\infty \mu(x, \infty) dx}$

as $t \to \infty$. This completes the proof of the theorem.
Definition. A regenerative phenomenon \(\mathcal{E} \) will be called \(\beta \)-regular if
\[
\lim_{t \to \infty} t^{-1} \mathbb{E}^\mathcal{E}_t = \beta \text{ (obviously } 0 \leq \beta \leq 1)\).
\]
The concept of \(\beta \)-regularity is important by virtue of the following theorem which is the regenerative phenomenon analogue of Theorem 3.2 of LAMPERTI [6] for the recurrent event context.

Theorem 4. The limiting distribution
\[
(17) \quad \lim_{t \to \infty} \Pr(t^{-1} \mathbb{E}^\mathcal{E}_t < x) = F(x)
\]
exists if and only if \(\mathcal{E} \) is \(\beta \)-regular and then \(F(x) \) is related to \(\beta \) by
\[
F(x) = F_{\beta}(x) = \frac{\sin \pi \beta}{\pi} \int_0^x (1 - \beta)(1 - v)^{-\beta} dv, \quad 0 < \beta < 1, \quad 0 \leq x \leq 1,
\]
\[
(18) \quad F_0(x) = 0 \text{ if } x < 0, \quad 1 \text{ if } x \geq 0,
\]
\[
F_1(x) = 0 \text{ if } x < 1, \quad 1 \text{ if } x \geq 1.
\]

Proof. We shall first establish that the condition of \(\beta \)-regularity is sufficient for the existence of the limiting distribution (17). In order to do this, we show firstly that under the condition of \(\beta \)-regularity and when \(0 < \lambda < 1 \),
\[
(19) \quad \lim_{z \to 0} \int_0^\infty t^{-1} \mathbb{E}^\mathcal{E}_t e^{-zt} \left[(1 + tz) - (1 + tz(1+\lambda)) e^{-\lambda zt} \right] dt = \beta \log(1 + \lambda).
\]
Write
\[
C(z, t) = t^{-1} e^{-zt} \left[(1 + tz) - (1 + tz(1+\lambda)) e^{-\lambda zt} \right]
\]
and note that \(C(z, t) \geq 0 \) and \(\lim_{z \to 0} C(z, t) = 0 \). Thus, for \(z > 0 \),
\[
\int_0^\infty t^{-1} \mathbb{E}^\mathcal{E}_t C(z, t) dt = \int_0^\infty \left[t^{-1} \mathbb{E}^\mathcal{E}_t - \beta \right] C(z, t) dt + \beta \int_0^\infty C(z, t) dt
\]
\[
= \int_0^\infty \left[t^{-1} \mathbb{E}^\mathcal{E}_t - \beta \right] C(z, t) dt + \beta \log(1 + \lambda),
\]
upon performing a simple integration. Now, in view of the \(\beta \)-regularity condition we can, given \(\epsilon > 0 \) arbitrarily small, choose \(T \) so large that
\[
|t^{-1} \mathbb{E}^\mathcal{E}_t - \beta| < \epsilon \text{ for } t \geq T \text{ and then}
\]
\[\left| \int_0^\infty \left[t^{-1}\mathcal{E}_t - \beta \right] C(z, t) \, dt \right| \leq \int_0^T \left| t^{-1}\mathcal{E}_t - \beta \right| C(z, t) \, dt + \epsilon \log(1 + \lambda) \rightarrow \epsilon \log(1 + \lambda) \]

as \(z \to 0 \) since \(\lim_{z \to 0} C(z, t) = 0 \). The result (19) follows immediately. Then, putting \(s = \lambda z \) where \(0 < \lambda < 1 \) in the result of Theorem 1 and making use of (19), we obtain

\[\lim_{z \to 0} \int_0^\infty e^{-zt}E(e^{-\lambda zT_t}) \, dt = (1 + \lambda)^{-\beta}. \]

Now,

\[\int_0^\infty e^{-zt}E(e^{-\lambda zT_t}) \, dt = \int_0^\infty e^{-zt} \sum_{k=0}^{\infty} \frac{(-\lambda z)^k T_t^k}{k!} \, dt \]

\[= \sum_{k=0}^{\infty} \lambda^k A_k(z), \]

where

\[A_k(z) = \frac{(-z)^k + 1}{k!} \int_0^\infty e^{-zt} T_t^k \, dt, \]

so that from (20),

\[\lim_{z \to 0} \sum_{k=0}^{\infty} \lambda^k A_k(z) = (1 + \lambda)^{-\beta} = \sum_{k=0}^{\infty} \lambda^k \binom{-\beta}{k}, \]

and consequently,

\[\lim_{z \to 0} A_k(z) = \binom{-\beta}{k}, \quad k \geq 0. \]

But, \(T_t^k \) is monotone in \(t \) so, using Theorem 4, 423, Vol. II of [1], it follows from (21) that as \(t \to \infty \),

\[E(t^{-1}T_t)^k \to (-1)^k \binom{-\beta}{k}, \quad k \geq 0. \]

Furthermore, it is easy to verify that

\[(-1)^k \binom{-\beta}{k} = \int_0^1 x^k F_\beta(dx), \]

where \(F_\beta(x) \) is given by (18) and, since the moment problem in this case has a unique solution, the proof of the sufficiency part of the theorem is complete.

Finally, suppose that \(t^{-1}T_t \) has a proper limiting distribution. Then, necessarily, \(t^{-1}\mathcal{E}_t \to \beta \) for some \(0 \leq \beta \leq 1 \) so that \(\epsilon \) is \(\beta \)-regular. This completes the proof of the theorem.
In view of the importance of the β-regularity concept, we shall next give some equivalent forms which may provide more useful criteria under certain circumstances.

Theorem 5. A regenerative phenomenon \mathcal{E} is β-regular if and only if

\begin{equation}
(23) \quad r(z) \sim z^{-\beta} L(z^{-1})
\end{equation}

as $z \to 0$ or equivalently,

\begin{equation}
(24) \quad \int_0^t p(u) du \sim \frac{1}{\Gamma(1 + \beta)} t^\beta L(t)
\end{equation}

as $t \to \infty$, $L(x)$ being a slowly varying function as $x \to \infty$. In the particular case where $p(t)$ is ultimately monotone and $\beta > 0$, the conditions (23) and (24) are also equivalent to

\begin{equation}
(25) \quad p(t) \sim \frac{1}{\Gamma(\beta)} t^{-(1 - \beta)} L(t)
\end{equation}

as $t \to \infty$.

Proof. We shall deal firstly with the condition (23). Suppose that \mathcal{E} is β-regular. Then, making use of Theorem 1 and equation (20),

\begin{equation}
\lim_{z \to 0} \frac{r((1 + \lambda)z)}{r(z)} = (1 + \lambda)^{-\beta}
\end{equation}

for $0 < \lambda < 1$ and (23) follows by use of the Theorem, 270 Vol. II of [1].

Conversely, suppose that the condition (23) holds. Then, again making use of Theorem 1, we have for $0 < \lambda < 1$,

\begin{equation}
\lim_{z \to 0} \int_0^\infty e^{-zt} E(e^{-sT_t}) dt = \lim_{z \to 0} \frac{r((1 + \lambda)z)}{r(z)} = (1 + \lambda)^{-\beta},
\end{equation}

which is equation (20). Following the proof of Theorem 4, we then deduce from (22) the required β-regularity condition. This completes the proof that (23) is a necessary and sufficient condition for β-regularity. The remainder of the proof is then immediately completed by appeal to Theorem 2, 421 Vol. II of [1] for condition (24) and Theorem 4, 423, Vol. II of [1] for condition (25).

For $s > 0$, $t > 0$, write

\begin{equation}
P(s, t) = \Pr\left(\sup_{s \leq u \leq s + t} Z(u, w) = 1\right).
\end{equation}

That is, $P(s, t)$ is the probability that \mathcal{E} will occur in the time interval $[s, s + t]$.
Theorem 6. Suppose \mathcal{E} is β-regular. Then, for any $\alpha > 0$,

\[
\lim_{t \to \infty} P(t, \alpha t) = \begin{cases}
\frac{\sin \pi \beta}{\pi} \int_0^1 x^{-(1 - \beta)} (1 - x)^{-\beta} \, dx, & 0 < \beta < 1 \\
0, & \beta = 0, \\
1, & \beta = 1.
\end{cases}
\]

If \mathcal{E} is not β-regular for some β, $0 \leq \beta < 1$, then the limit of $P(t, \alpha t)$ as $t \to \infty$ does not exist. In the particular case $\beta = 1/2$, (26) yields

\[
\lim_{t \to \infty} P(t, \alpha t) = 1 - 2^n^{-1} \arcsin \left[(1 + \alpha)^{-\frac{1}{2}} \right],
\]

so that

\[
\lim_{t \to \infty} \left[P(t, \alpha t) + P(\alpha t, t) \right] = 1.
\]

Proof. We have

\[P(s, t) = \text{Pr}(T_s + t \geq s),\]

so that

\[
\lim_{t \to \infty} P(t, \alpha t) = \lim_{t \to \infty} \text{Pr}(T_t (1 + \alpha) \geq t) = \lim_{t \to \infty} \text{Pr}(t^{-1} T_t \geq (1 + \alpha)^{-1}),
\]

and the result (26) follows from Theorem 4. It also follows from Theorem 4 that the limit as $t \to \infty$ of $P(t, \alpha t)$ only exists in the case of β-regularity. In the case $\beta = 1/2$, we have

\[
\lim_{t \to \infty} P(t, \alpha t) = \pi^{-1} \int_0^1 x^{-\frac{1}{2}} (1 - x)^{-\frac{1}{2}} \, dx
\]

\[= 1 - \pi^{-1} \int_0^{(1+\alpha)^{-1}} x^{-\frac{1}{2}} (1 - x)^{-\frac{1}{2}} \, dx = 1 - 2^n^{-1} \arcsin \left[(1 + \alpha)^{-\frac{1}{2}} \right] \]

by a simple transformation. The result (27) follows as

\[
\arcsin \left[(1 + \alpha)^{-\frac{1}{2}} \right] + \arcsin \left[\frac{1}{2} (1 - \alpha)^{-\frac{1}{2}} \right] = \frac{1}{2} \pi.
\]

This completes the proof of the theorem.

Theorem 6 is the counterpart of Theorem 2 of HEYDE [2] for recurrent events. Unlike the recurrent event case, however, it cannot happen that

\[
P(s, t) + P(t, s) = 1
\]

for all $s > 0$, $t > 0$. In order to see this, we note that (28) is precisely
the condition that T_t and $t - T_t$ should have the same distribution for each $t > 0$. This is clearly impossible by Theorem 2.

4. Examples

Let $\xi(t), t \geq 0, \xi(0) = 0$ be a separable stochastic process with stationary independent increments whose sample functions are continuous on the left. Write $\bar{\xi}(t) = \sup_{0 \leq s \leq t} \xi(s)$ and $T_t = \min[u : \xi(u) = \bar{\xi}(t)]$.

We shall show that ξ, where $E(t)$ is the event $\{T_t = t\}$, is a proper regenerative phenomenon if and only if

$$\int_0^1 t^{-1} \Pr(\xi(t) < o) dt < \infty.$$

This is in contrast with the corresponding discrete case where ξ is always a recurrent event. A discussion of the condition

$$\int_0^1 t^{-1} \Pr(\xi(t) < o) dt < \infty$$

can be found in ROGOZIN [8]. It is satisfied, for example, if $\xi(t)$ is a process with negative jumps and positive drift.

Write $\eta(t) = -\xi(t)$ and $\bar{\eta}(t) = \sup_{0 \leq s \leq t} \eta(s)$. Then, it can readily be verified that

$$p(t) = \Pr\{E(t)\} = \Pr(\bar{\eta}(t) = o).$$

Furthermore, from equation (1) of ROGOZIN [8], we have for $\text{Re}\lambda \leq o$,

$$u \int_0^\infty e^{-ut} \int_0^\infty e^{\lambda x} \Pr(\bar{\eta}(t) < x) dx dt = \exp \left\{ -\int_0^\infty (e^{\lambda x} - 1) dx \int_0^t t^{-1} \Pr(\eta(t) > x) e^{-ut} dt \right\},$$

and upon letting $\lambda \to -\infty$ we obtain

$$ur(u) = u \int_0^\infty e^{-ut} \Pr(\bar{\eta}(t) = o) dt = \exp \left\{ -\int_0^\infty t^{-1} \Pr(\eta(t) > o) e^{-ut} dt \right\}$$

when the integral

$$\int_0^1 t^{-1} \Pr(\xi(t) < o) dt = \int_0^1 t^{-1} \Pr(\eta(t) > o) dt$$

converges and

$$u \int_0^\infty e^{-ut} \Pr(\bar{\eta}(t) = o) dt = o.$$
when (30) diverges. The equation (31) of course implies that $p(t) = \circ$ for $t > o$ and the regenerative phenomenon definition breaks down. In the case where (30) converges we let $u \rightarrow \infty$ in (29) and obtain $\lim_{t \rightarrow o} p(t) = 1$. It is easily checked in this case that whenever

$$0 < t_1 < t_2 < \ldots < t_k,$$

then

$$\Pr\{E(t_1), E(t_2), \ldots, E(t_k)\} = \Pr\{E(t_1)\} \Pr\{E(t_2 - t_1), \ldots, E(t_k - t_1)\}.$$

Equation (29) can, of course, be indentified with equation (10) (Corollary 1) so we see that

$$ET_t = \int_0^t \Pr(\xi(u) \geq o)du,$$

and therefore E is β-regular if and only if

$$\lim_{t \rightarrow \infty} \frac{1}{t} \int_0^t \Pr(\xi(u) \geq o)du = \beta.$$

The use of Theorem 4 in this context provides a result which is a special case of that of HEYDE [3].

As a final example, we mention a regenerative phenomenon which occurs in connection with the queueing system $M|G|1$. Customers arrive at a single server in a Poisson process of rate λ and the service time distribution is of arbitrary type. Then, if the server is initially idle, the event of the server being idle forms a regenerative phenomenon E (KINGMAN [4], [5]). We have

$$p(t) = \Pr\{\text{queue empty at time } t\},$$

and the random variable $t - T_t$ represents the time for which the current busy period has been in progress. It is not very difficult to show, making use of the results of Section 3.5 of [5] and of Theorem 6 and Section 16 of [4], that E is 1-regular if and only if the mean service time is less than λ^{-1}, o-regular if and only if the mean service time is greater than λ^{-1}, and β-regular, $\frac{1}{2} \leq \beta < 1$, if and only if the mean service time is equal to λ^{-1} and its distribution belongs to the domain of attraction of a stable law of index β^{-1}. E cannot be β-regular for $o < \beta < \frac{1}{2}$.
References

ON THE DISTRIBUTION OF THE LAST OCCURRENCE TIME IN AN INTERVAL FOR A REGENERATIVE PHENOMENON

1. ORIGINATING ACTIVITY (Corporate author)
 Department of Statistics
 The University of North Carolina
 Chapel Hill, North Carolina 27514

2a. REPORT SECURITY CLASSIFICATION
 UNCLASSIFIED

3. REPORT TITLE
 ON THE DISTRIBUTION OF THE LAST OCCURRENCE TIME IN AN INTERVAL FOR A REGENERATIVE PHENOMENON

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
 TECHNICAL REPORT

5. AUTHOR(S) (First name, middle initial, last name)

6. REPORT DATE
 OCTOBER 1968

7a. TOTAL NO. OF PAGES
 14

7b. NO. OF REF'S
 08

8a. CONTRACT OR GRANT NO.
 NONR-855-(09)

b. PROJECT NO.
 RR-003-05-01

c.

d.

9a. ORIGINATOR'S REPORT NUMBER(S)
 INSTITUTE OF STATISTICS Mimeo SERIES
 NUMBER 597

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)

10. DISTRIBUTION STATEMENT
 THE DISTRIBUTION OF THIS REPORT IS UNLIMITED

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY
 Logistics and Mathematical Statistics
 Branch Office of Naval Research
 Washington, D. C. 20360

13. ABSTRACT
 Let \(\{E(t), t > 0\} \) be a family of regenerative events, as originally introduced by KINGMAN, and let \(Z(t, \omega) = 1 \) if \(\omega \in E(t) \) and be zero otherwise. Define

 \[
 T_t = \sup\{u : 0 \leq u \leq t; Z(u, \omega) = 1\}
 \]

 This paper obtains various theorems about \(T_t \) and studies its limiting behavior as \(t \to \infty \).
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
</tbody>
</table>

REGENERATIVE EVENTS

OCCURRENCE TIMES