This research was partially supported by the Office of the Air Force under grant AFSOR 68-1415 and the Office of Naval Research under grant N00014-67A-0321-0002 at the University of North Carolina at Chapel Hill.

Reproduction in whole or in part is permitted for any purpose of the United States Government

EQUIVALENT GAUSSIAN MEASURES Whose R-N Derivative is the Exponential of A Diagonal Form

Balram S. Rajput
University of North Carolina at Chapel Hill
University of Tennessee at Knoxville

Department of Statistics
University of North Carolina at Chapel Hill

Institute of Statistics Mimeo Series No. 865
March, 1973
EQUIVALENT GAUSSIAN MEASURES WHOSE R-N DERIVATIVE IS THE EXPONENTIAL OF A DIAGONAL FORM

Balram S. Rajput

ABSTRACT

A simple necessary and sufficient condition, on a trace-class kernel K, is given in order for the existence of a measurable (relative to the completed product σ-algebra) Gaussian process with covariance K. The integral of the exponential of a certain function of a Gaussian process with respect to the corresponding probability measure is calculated, explicitly. Using these results, sufficient conditions are given on the means and the covariances (relative to two equivalent (ν) Gaussian measures P and P_{λ}) of a process X so that the Radon-Nikodým (R-N) derivative dP_{λ}/dP is the exponential of the diagonal form in X. Analogues of the last two results in the set up of Hilbert space are also proved. Using one of these results, a simple proof of the integrability of the exponential of a certain multiple of the square of any continuous seminorm relative to Gaussian measure on separable nuclear space is given.

AMS 1970 subject classification. 60G15, 60G30.

Key words and phrases: Gaussian process, measurable process, Radon-Nikodým derivative.

This research was partially supported by the Office of the Air Force under grant AFOSR 68-1415 and the Office of Naval Research under grant N00014-67A-0321-0002.
1. INTRODUCTION

Let \((T, T_0, \nu)\) be an arbitrary \(\sigma\)-finite measure space and \(K\) a trace-class kernel on \(T \times T\). We give a simple necessary and sufficient condition on \(K\) for the existence of a measurable (relative to the completed product \(\sigma\)-algebra) Gaussian process with covariance \(K\) (Theorem 1).

Assume that \(K\) satisfies the condition of the above theorem, so that there exists a measurable Gaussian process \(X\) on a probability space \((\Omega, F, P)\) with covariance \(K\). Assume, further, that the mean \(\theta\) of \(X\) belongs to \(L_2(\nu)\); then we, explicitly, evaluate

\[\int_{\Omega} \int_{T} \exp \{1/2 \lambda |f(t)|X^2(t, \omega)\nu(dt)\}P(d\omega), \]

where \(\lambda\) is a certain number (Theorem 2, Corollary 2). Assume the hypotheses and notation of the previous result and let, for each \(\lambda\), a function \(\theta_\lambda\) on \(T\) and a covariance function \(K_\lambda\) on \(T \times T\) be given; then we give sufficient conditions on \(\theta_\lambda\) and \(K_\lambda\) in order that (i) \(\theta_\lambda\) and \(K_\lambda\) determine a probability measure \(P_\lambda\) on \((\Omega, F)\) with respect to which \(X\) is Gaussian, (ii) \(P_\lambda \sim P\), and (iii) the R-N derivative \(dP_\lambda/dP\) is of the diagonal form in \(X\); i.e., is expressible as

\[\int_T \exp \{1/2 \lambda |f(t)|X^2(t, \omega)\nu(dt) \} \] (Theorem 3, Corollary 2).

The results of the previous paragraph are motivated by some of the work of D. E. Varberg [10] and L. A. Shepp [9], and they are generalizations of two results of the former author and are related to similar results of the latter. We may point out that these results are central and are best possible in the sense that they are proved under minimal hypotheses on the functions \(\theta\) and \(K\) (see Remark 2).
Analogues of Theorems 2 and 3, in the set up of separable Hilbert spaces, are also proved (Theorems 4(i) and 4(ii)). Using one of these Theorems, we obtain a result (Corollary 3), which provides a new simple proof of the integrability of \(\int_E \exp(a p^2(x)) \mu(dx) \), where \(E \) is a separable nuclear space, \(p \) and \(\mu \) are, respectively, a continuous seminorm and a Gaussian measure on \(E \), and \(a \) a suitably chosen positive real number. This result is not new; it follows (using properties of measurable transformations) from an important result of H. J. Landau and L. A. Shepp [4] and also from a result of X. Fernique [2].

All results are stated and discussed in Section 2 and their proofs are given in Section 3.

2. STATEMENT AND DISCUSSION OF RESULTS

We begin by stating a few definitions, notation, and conventions that will be used throughout the paper.

(A.1) \((T,\mathcal{F},\nu)\) denote an arbitrary \(\sigma\)-finite measure space; whenever we write \(T \), it is implicitly assumed that \(T \) and \(\nu \) are associated with it. If \((\Gamma, A, \gamma)\) is a measure space, then \(A \) and \(L_2(\gamma) \) denote, respectively, the completion of \(A \) relative to \(\gamma \) and the Hilbert space of real \(\gamma \)-square integrable functions.

(A.2) A real, nonnegative definite, symmetric and measurable function \(K \) on \(T \times T \) is called a **kernel**; if, in addition, \(\int_T K(t, t) \nu(dt) < \infty \), \(K \) is called a **trace-class kernel**. Let \(K \) be a trace-class kernel, and \(\{\lambda_n\} \) and \(\{\phi_n\} \) be, respectively, the positive eigenvalues (including multiplicities) and the corresponding
(normalized) eigenfunctions of the integral equation

\[\lambda \phi(s) = \int_T K(s, t) \phi(t) \nu(dt); \]

then \(K \) is called a \textbf{Mercer kernel} \((M\text{-kernel})\) for short, if \(K \) admits the representation

\[K(s, t) = K_1(s, t) + K_2(s, t), \quad s, t \in T, \]

where \(K_1 \) and \(K_2 \) are trace-class kernels such that \(K_2(t, t) = 0 \) a.e. \([\nu]\), and

\[K_1(s, t) = \sum_{n=1}^{\infty} \lambda_n \phi_n(s) \phi_n(t), \quad s, t \in T, \]

where the series converges absolutely, for all \(s, t \in T \).

(A.3) If \(K \) denotes an \(M \text{-kernel} \) on \(T \times T \), then we denote, consistently, by \(\{\lambda_n\} \) and \(\{\phi_n\} \), respectively, the positive eigenvalues (including multiplicities) and the corresponding (normalized) eigenfunctions of the equation (2.1), and by \(K_1 \) and \(K_2 \) the kernels related to \(K \) as in (2.2). We will assume that the set \(\{\lambda_n\} \) (and hence \(\{\phi_n\}\)) is not finite, since it is the only case of interest here.

(A.4) We consider here only real linear spaces and real stochastic processes.

Now, we are ready to state the first result of the paper.
THEOREM 1. Let \(K \) be a trace-class kernel on \(T \times T \); then we have the following:

(a) If \(K \) is an \(M \)-kernel, then there exists a \(T \times F \)-measurable Gaussian process \(X \) on some probability space \((\Omega, F, P) \) such that \(K \) is the covariance of \(X \); further, if \(K_1, K_2, \{\phi_n\} \) and \(\{\lambda_n\} \) are related to \(K \) as described in (A.3), then \(X \) can be so chosen that

\[
X_t = Y_t + Z_t, \quad t \in T,
\]

where \(Y \) and \(Z \) are independent Gaussian processes with covariances \(K_1 \) and \(K_2 \), respectively, and

\[
(2.4) \quad Y_t = \sum_{n=1}^{\infty} \sqrt{\lambda_n} \phi_n(t) Y_n,
\]

where \(Y_n \)'s are independent \(N(0, 1) \) r.v.'s and the series converges in \(L_2(P) \) and also a.s. \([P]\), for each fixed \(t \in T \). Finally,

\[
(2.5) \quad Y(\cdot, \omega) = \sum_{n=1}^{\infty} \sqrt{\lambda_n} \phi_n(\cdot) Y_n(\omega),
\]

where the series converges in \(L_2(\nu) \) and also a.e. \([\nu]\), for every \(\omega \) outside a \(P \)-null set.

(b) Conversely, if \(K \) is the covariance function of a \(T \times F \)-measurable Gaussian process \(X \) on a probability space \((\Omega, F, P) \), then \(K \) is an \(M \)-kernel.
REMARK 1. It should be noted that, for a given M-kernel, Theorem 4.1(a) guarantees the existence of a Gaussian process which has the given kernel as its covariance and is measurable relative to the completed product σ-algebra. The question, whether for every M-kernel K there exists a Gaussian process which has covariance K and is measurable relative to the uncompleted product σ-algebra, has a negative answer. This can be seen by constructing an example.

For the statements and the proofs of some of the following results, we need a few more notation and conventions which we record in the following:

(A.5) If K denotes an M-kernel on $T \times T$ (so that, in view of (A.3), $\{\lambda_n\}$ and $\{\phi_n\}$ are, respectively, the eigenvalues and corresponding eigenfunctions of (2.1)) and θ a ν-square integrable function on T, then we denote, consistently, by θ^\perp, the orthogonal projection of θ onto the space orthogonal to the $L_2(\nu)$-closure of the linear space of $\{\phi_n\}$, by λ, a real number such that $1 - \lambda \lambda_n > 0$, for all n, and by θ_λ, and K_λ, the functions defined as follows

\begin{equation}
\theta_\lambda(t) = \theta(t) + \sum_{n=1}^{\infty} \lambda_n (1 - \lambda \lambda_n)^{-1} \langle \phi_n, \theta \rangle \phi_n(t), \quad t \in T,
\end{equation}

\begin{equation}
K_\lambda(s,t) = \sum_{n=1}^{\infty} \lambda_n (1 - \lambda \lambda_n)^{-1} \phi_n(s) \phi_n(t) + K_2(s,t), \quad s, t \in T,
\end{equation}

where \langle , \rangle is the innerproduct in $L_2(\nu)$ and K_2 is related to K as in (2.2). Further, we consistently use the notation $D(\lambda)$ and $W(\lambda)$, respectively, for
(2.8) \(\prod_{n=1}^{\infty} (1 - \lambda n) \)

and

(2.9) \(D(\lambda)^{1/2} \exp[-1/2 \lambda (||\dot{\theta}||^2 + \sum_{n=1}^{\infty} (1 - \lambda n)^{-1} <\phi_n, \theta>^2)] \),

where \(||\cdot|| \) is the norm in \(L_2(\nu) \). The series in (2.6) and (2.7) converge absolutely, respectively, for \(t \in T \) and \(s, t \in T \). This follows from the boundedness of the sequence \(\{(1 - \lambda n)^{-1}\} \) (recall that \(\sum_{n=1}^{\infty} \lambda n < \infty \)), Cauchy inequality for sequences and (2.3). Since \(1 - \lambda n > 0 \), \(\lambda n > 0 \) for all \(n \), and \(\sum_{n=1}^{\infty} \lambda n < \infty \), we have that \(0 < D(\lambda) < 1 \). From this and the boundedness of the sequence \(\{(1 - \lambda n)^{-1}\} \), it follows that \(W(\lambda) \) is a well defined positive real number.

In Theorem 2 and 3 and Corollaries 1 and 2, it will be assumed that the space \(L_2(\nu) \) is separable.

We are now ready to state the following two results.

THEOREM 2. Let \(K \) be an \(M \)-kernel on \(T \times T \) and \(\theta \in L_2(\nu) \); then there exists a \(T \times F \)-measurable Gaussian process \(\xi \) on a probability space \((\Omega, F, P) \) such that \(\theta \) and \(K \) are, respectively, the mean and the covariance of \(\xi \); further, if \(\lambda \) and \(W(\lambda) \) are related to \(\theta \) and \(K \) as in (A.5), then

(2.10) \(\int_\Omega \exp \left\{ 1/2 \lambda \int_T \xi^2(t, \omega) \nu(dt) \right\} P(d\omega) = W(\lambda)^{-1} < \infty. \)
THEOREM 3. Let K, θ, ξ and (Ω, F, P) be as in Theorem 2, and let $\lambda, \theta_\lambda, K_\lambda$ and $W(\lambda)$ be related to θ and K as in (A.5). Then K_λ is a covariance function, and there exists a probability measure P_λ on (Ω, F) such that ξ is Gaussian on (Ω, F, P_λ) with mean θ_λ and covariance K_λ, $P \sim P_\lambda$, and the R-N derivative dP_λ/dP is given by

\begin{equation}
(2.11) \quad dP_\lambda/dP(\omega) = W(\lambda) \exp\{1/2 \lambda \int_T \xi^2(t, \omega) d\lambda(\nu(dt))\} \quad \text{a.s.} [P].
\end{equation}

REMARK 2. It is clear, from (2.10) and (2.11), that in order to obtain results similar to Theorems 2 and 3 the functions θ and K appearing in these results must guarantee the existence of the process ξ, which is measurable and whose almost all paths are ν-square integrable. Since, in view of Proposition 3.4 of [7] and Theorem 1, these conditions on ξ are equivalent to the facts that K is an M-kernel and that θ is ν-square integrable, it follows that Theorems 2 and 3 are best possible, i.e., they are proved under the weakest possible hypotheses on θ and K.

In order to point out the relation between the above two theorems and the corresponding results of Varberg (Theorems 1 and 2 of [10]) and Shepp [9, p. 352], we now state two corollaries. These corollaries are, essentially, the restatements of Theorems 1 and 2; nevertheless, their inclusion is necessary in order to compare our results with the corresponding results of Shepp and Varberg.
COROLLARY 1. Let \(r \) be a kernel on \(T \times T \) (see (A.2)), and \(\rho \) and \(f \) be measurable functions on \(T \) such that (i) \(K(s, t) = r(s, t) |f(s)|^{1/2} |f(t)|^{1/2} \), \(s, t \in T \), is an \(M \)-kernel, and (ii) \(\theta(t) = \rho(t) |f(t)|^{1/2} \), \(t \in T \), is \(\nu \)-square integrable (both of these conditions are satisfied, for instance, when \(r \) is an \(M \)-kernel, \(\rho \in L_2(\nu) \), and \(f \) is bounded, this follows from Theorem 1). Then there exists a \(\overline{T} \times \overline{F} \)-measurable Gaussian process \(\xi \) on a probability space \((\Omega, F, P) \) such that \(\rho \) and \(r \), are, respectively the mean and the covariance of \(\xi \). Further, if \(\lambda \) and \(W(\lambda) \) are related to \(\theta \) and \(K \) as in (A.5), then

\[
(2.12) \quad \int_{\Omega} \exp\left(\frac{1}{2\lambda} \int_T |f(t)|^2 \xi^2(t, \omega) \nu(dt)\right) P(d\omega) = W(\lambda)^{-1}.
\]

COROLLARY 2. Let \(r, \rho, f, K \) and \(\theta \) be as in Corollary 1 and assume, in addition, that \(f(t) \neq 0 \), \(t \in T \). Let \(\xi \) and \((\Omega, F, P) \) be as obtained in Corollary 1 and let \(\lambda, \theta, K, W(\lambda) \) be related to \(\theta \) and \(K \) as in (A.5). Then there exists a probability measure \(P_\lambda \) on \((\Omega, F) \) such that \(\xi \) is Gaussian on \((\Omega, F, P_\lambda) \) with mean
\[
|f(t)|^{-1/2} \theta(t), t \in T,
\]
and covariance
\[
|f(s)|^{-1/2} |f(t)|^{-1/2} K_\lambda(s, t), s, t \in T,
\]
and the R-N derivative \(dP_\lambda/dP \) is given by

\[
(2.13) \quad dP_\lambda/dP(\omega) = W(\lambda) \exp\left(\frac{1}{2\lambda} \int_T |f(t)|^2 \xi^2(t, \omega) \nu(dt)\right) \quad \text{a.s. \([P]\).}
\]

REMARK 3. If \(T = [a, b] \), \(T \) = the class of Borel subsets of \(T \), \(\nu = \) the Lebesgue measure, and if \(r \) is a continuous kernel on \(T \times T \),
then, by Mercer's theorem, r is an M-kernel on $T \times T$. Now if f is any bounded measurable function on T, then, as indicated in Corollary 1, $r(s, t)|f(s)|^{1/2}|f(t)|^{1/2}$, $s, t \in T$, is an M-kernel. From this it is now clear that Theorem 1 and Theorem 2 of Varberg [10] are special cases, respectively, of Corollary 1 and Corollary 2. These corollaries are also related to two results of Shepp that are given on pp. 350 and 352 of [9]. Finally, we mention that it seems possible to prove a 0-1 law for Gaussian process in our general setting similar to those obtained by Shepp [9] and Varberg [10]; however, since such a 0-1 law in the present setting follows from a slightly more general 0-1 law recently obtained in [7], it will not be attempted here.

We shall now state two more results (Theorems 4(i) and 4(ii)). Theorem 4(i) is important in that it is needed for the proofs of Theorem 2 and Corollary 3. Theorem 4(ii) is included here to show that the analogue of Theorem 3 can be formulated for Gaussian measures defined on abstract separable Hilbert spaces.

We assume that the reader is familiar with the elementary properties of Gaussian measures in separable Hilbert spaces.

In the following theorem, H and $B(H)$ denote, respectively, a separable Hilbert space and the σ-algebra generated by open sets of H; and $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$ denote, respectively, the inner product and the norm in H.

Theorem 4. Let μ be a Gaussian measure on $(H, B(H))$ with mean m and covariance operator S. Denote by $\{\delta_n\}$ and $\{\psi_n\}$, the positive eigenvalues (including multiplicities) and the corresponding
normalized eigenvectors of \(S \), by \(\delta \), a real number such that \(\delta_n < 1 \), for all \(n \), and, by \(m \), the orthogonal projection of \(m \) onto the space orthogonal to the closed linear space generated by \(\{\psi_n\} \). Define

\[
S_\delta(x) = \sum_{n=1}^{\infty} \delta_n (1 - \delta_n)^{-1} \langle \psi_n, x \rangle \psi_n, \quad x \in H,
\]

\[
m_\delta = m + \delta S_\delta(m),
\]

and

\[
U(\delta) = \prod_{n=1}^{\infty} (1 - \delta_n)^{-1/2} \exp\left(-\frac{1}{2} \delta \sum_{n=1}^{\infty} (1 - \delta_n)^{-1} \langle \psi_n, m \rangle^2\right).
\]

Then we have

(i) \[
\int_H \exp(1/2 \delta ||x||^2) \mu(dx)
\]

(ii) if \(\mu_\delta \) is the Gaussian measure on \((H, B(H))\) with mean \(m_\delta \) and covariance operator \(S_\delta \), then \(\mu_\delta \sim \mu \), and the R-N derivative \(d\mu_\delta / d\mu \) is given by

\[
d\mu_\delta / d\mu(x) = U(\delta) \exp\{1/2 \delta ||x||^2\}, \quad \text{a.s.} \ [\mu],
\]
where \(U(\delta) \) as in (i).

The final result is a corollary to Theorem 4(i), which we now state.

COROLLARY 3. Let \(E \) be a separable nuclear space \([8, \text{p. 100}]\), \(\mathcal{B}(E) \) the \(\sigma \)-algebra generated by the open sets of \(E \), and \(\mu \) a Gaussian measure on \((E, \mathcal{B}(E)) \). If \(p \) is a continuous seminorm on \(E \), then there exists an \(\alpha > 0 \) such that

\[
(2.16) \quad \int_E \exp(\alpha p^2(x)) \mu(dx) < \infty .
\]

3. PROOFS

Proof of Theorem 3(a). For clarity, we divide our proof into three parts. In parts (i) and (ii), two auxiliary processes \(Y^1 \) and \(Z^1 \) are defined; and in part (iii), these are used to construct the required process \(X \).

(i) There exists a \(\mathcal{F} \times F_1 \)-measurable Gaussian process \(Y^1 \) with covariance \(K_1 \) defined on a probability space \((\Omega_1, F_1, P_1) \). Further, \(Y^1 \) can be so chosen that, for every fixed \(t \in T \),

\[
Y^1_t = \sum_{n=1}^{\infty} \sqrt{\lambda_n} \phi_n(t) Y^1_n ,
\]

where the series converges in \(L_2(P_1) \) and also a.s. \([P_1]\), and \(Y^1_n \)'s are independent \(N(0, 1) \) r.v.'s on \((\Omega_1, F_1, P_1) \). Further

\[
Y^1(\cdot, \omega) = \sum_{n=1}^{\infty} \sqrt{\lambda_n} \phi(\cdot) Y^1_n(\omega) ,
\]
where the series converges in \(L_2(\nu) \) and a.e. \([\nu]\), for every \(\omega \) outside a \(P_1 \)-null set.

Proof of (i). Let \(\{\gamma_n^1\} \) be a sequence of independent \(N(0, 1) \) r.v.'s defined on a probability space \((\Omega_1, F_1, P_1)\). We now define two processes \(\xi \) and \(\zeta \) in terms of \(\lambda_n \)'s, \(\phi_n \)'s, and \(\gamma_n^1 \)'s, and then define the required process \(Y^1 \) in terms of \(\xi \) and \(\zeta \).

We first define the process \(\xi \). For each \(n \), let

\[
\psi_n(t, \omega) = \sqrt{\lambda_n} \phi_n(t) \gamma_n^1(\omega), \quad (t, \omega) \in T \times \Omega_1.
\]

Since

\[
\sum_{j=1}^{\infty} \lambda_j < \infty \quad \text{and} \quad \langle \psi_n, \psi_m \rangle_{L_2(\nu \times P_1)} = \sqrt{\lambda_n} \sqrt{\lambda_m} \delta_{n,m}
\]

(\(\delta_{n,m} \) is the Kronecker \(\delta \)), it follows that

\[
\left\| \sum_{j=n}^{m} \psi_j \right\|_{L_2(\nu \times P_1)}^2 = \sum_{j=n}^{m} \lambda_j \to 0
\]

as \(n, m \to \infty \). Thus, \(\{ \sum_{j=1}^{n} \psi_j \} \) converges in \(L_2(\nu \times P_1) \); and, so, there exists a subsequence \(\{ \sum_{j=1}^{n_k} \psi_j \} \) which converges pointwise off a \(\nu \times P_1 \)-null set \(A \). Define

\[
\xi(t, \omega) = \begin{cases}
\lim_{k} \sum_{j=1}^{n_k} \psi_j(t, \omega) & \text{off } A \\
0 & \text{on } A
\end{cases}
\]

then, clearly, \(\xi \) is \(T \times F_1 \)-measurable. Further, by Fubini's Theorem, there exists a \(\nu \)-null set \(T_1 \) such that, for every fixed \(t \notin T_1 \),
the set \(A_t = \{ \omega: (t, \omega) \in A \} \) has \(P_1 \)-measure zero, and, for every \(\omega \notin A_t \),

\[
\xi(t, \omega) = \lim_{n,k} \sum_{j=1}^{n_k} \psi_j(t, \omega).
\]

Now we define the process \(\zeta \). Since for every fixed \(t \in T \), \(\sum_{n=1}^{\infty} \lambda_n \phi_n(t) \phi_n(t) < \infty \) (see (2.3)) and \(Y_n^1 \)'s are independent mean 0 variance 1 r.v.'s, \(\sum_{n=1}^{\infty} \sqrt{\lambda_n} \phi_n(t) Y_n^1 \) converges in \(L_2(P_1) \) and also pointwise off a \(P_1 \)-null set \(B_t \), for each \(t \in T \) [6, p. 147]. For each \(t \in T \), define

\[
\xi_t(\omega) = \begin{cases}
\lim_{n} \sum_{j=1}^{n} \lambda_j \psi_j(t) Y_j^1(\omega), & \text{if } \omega \in B_t^c \\
0, & \text{if } \omega \in B_t
\end{cases}
\]

where \(B_t^c \) denotes the complement of \(B_t \).

Clearly, if \(t \in T_1^c \), then \(P_1(A_t^c \cap B_t^c) = 1 \); further, if \(\omega \in A_t^c \cap B_t^c \), then, since \(\{ \xi_{j,k} \} \) is a subsequence of \(\{ \sum_{j=1}^{n} \psi_j(t, \omega) \} \), \(\xi(t, \omega) = \zeta(t, \omega) \). Thus, for every \(t \in T_1^c \),

\[
(3.1) \quad \xi_t = \zeta_t \quad \text{a.s.} [P_1].
\]

Finally, define

\[
(3.2) \quad Y_1^1(t, \omega) = \begin{cases}
\xi(t, \omega), & \text{if } (t, \omega) \in T_1 \times \Omega_1 \\
\zeta(t, \omega), & \text{if } (t, \omega) \in T_1^c \times \Omega_1
\end{cases}
\]
We now show that Y^1 is a required process.

Since, from (3.2), the set $\{(t, \omega) : Y^1(t, \omega) \neq \xi(t, \omega)\}$ is contained in $\nu \times P_1$-null set $T_1 \times \Omega_1$, and since ξ is shown $T \times F_1$-measurable, it follows that Y^1 is $T \times F_1$-measurable. Since, as shown above, the series $\sum_{n=1}^{\infty} \sqrt{\lambda_n} \phi_n(t) Y_n^1$ converges to ξ_t in $L_2(P_1)$ and also a.s. $[P_1]$, for each fixed $t \in T$, and since, from (3.1) and (3.2), $Y_t^1 = \xi_t$ a.s. $[P_1]$, for each $t \in T$, we have that $\sum_{n=1}^{\infty} \sqrt{\lambda_n} \phi_n(t) Y_n^1$ converges to Y_t^1 in $L_2(P_1)$ and also a.s. $[P_1]$, for each $t \in T$. Also, from $L_2(P_1)$ convergence of the series to Y_t^1, $t \in T$, we have that Y^1 is Gaussian (recall that Y_n^1's are Gaussian) and that the covariance of Y^1 is $K_2(s,t) = \sum_{n=1}^{\infty} \lambda_n \phi_n(s) \phi_n(t)$, $s, t \in T$, where $\sum_{n=1}^{\infty} \lambda_n \phi_n(s) \phi_n(t)$ converges absolutely for $s, t \in T$.

To complete the proof of (i), it remains to prove that $\sum_{n=1}^{\infty} \sqrt{\lambda_n} \phi_n(\cdot) Y_n^1(\omega)$ converges to $Y^1(\cdot, \omega)$ in $L_2(\nu)$ and a.e. $[\nu]$, for almost all ω. Since, for $t \in T$, $\sum_{n=1}^{\infty} \sqrt{\lambda_n} \phi_n(t) Y_n^1$ is shown to converge to Y_t^1 a.s. $[P_1]$, we have, by an application of Fubini's theorem, that $\sum_{n=1}^{\infty} \sqrt{\lambda_n} \phi_n(\cdot) Y_n^1(\omega)$ converges to $Y^1(\cdot, \omega)$ a.e. $[\nu]$, for almost all ω. Now we show the $L_2(\nu)$ convergence of $\sum_{n=1}^{\infty} \sqrt{\lambda_n} \phi_n(\cdot) Y_n^1(\omega)$ to $Y^1(\cdot, \omega)$ a.e. $[\nu]$. Since

$$\int_{\Omega} \left(\sum_{n=1}^{\infty} \lambda_n Y_n^1(\omega)^2 \right) P_1(d\omega) = \sum_{n=1}^{\infty} \lambda_n < \infty,$$

we have that $\sum_{n=1}^{\infty} \lambda_n (Y_n^1(\omega))^2 < \infty$ a.e. $[P_1]$. Therefore,

$$\int_T \left(\sum_{j=1}^{m} \sqrt{\lambda_j} \phi_j(t) Y_n^1(\omega) \right)^2 v(dt) = \sum_{j=1}^{m} \lambda_j (Y_j^1(\omega))^2 = 0.$$
a.s. \([P_1]\) as \(n, m \to \infty\); consequently, \(\sum_{n=1}^{\infty} \sqrt{\lambda_n} \phi_n Y_n^1(\omega)\) converges in \(L_2(\nu)\), a.s. \([P_1]\). Now using the fact that \(L_2(\nu)\) convergence implies the existence of a subsequence that converges to the same function a.e. \([\nu]\) and the fact that \(\sum_{n=1}^{\infty} \sqrt{\lambda_n} \phi_n Y_n^1(\omega)\) converges to \(Y^1(\cdot, \omega)\) a.e. \([\nu]\), for almost all \(\omega\), we have that \(\sum_{n=1}^{\infty} \sqrt{\lambda_n} \phi_n Y_n^1(\omega)\) converges to \(Y^1(\cdot, \omega)\) in \(L_2(\nu)\), for almost all \(\omega\). The proof of (i) is now complete.

(ii) There exists a \(\mathcal{F} \times \mathcal{F}\)-measurable Gaussian process \(Z^1\) with covariance \(K_2\) defined on some probability space \((\Omega_2, \mathcal{F}_2, P_2)\).

Proof of (ii). By Kolmogorov's existence theorem, there exists a Gaussian process \(n\) with covariance \(K_2\) defined on some probability space \((\Omega_2, \mathcal{F}_2, P_2)\). Let \(T_2\) be the \(\nu\)-null set of \(T\) such that \(K_2\) vanishes off \(T_2\). Define

\[
Z^1(t, \omega) = n(t, \omega) \chi_{T_2} \times \Omega_2(t, \omega),
\]

where \(\chi_{T_2} \times \Omega_2\) is the indicator of \(T_2 \times \Omega_2\). Then, clearly, \(Z^1\) is Gaussian with covariance \(K_2\); further, since \(Z^1(t, \omega) = 0\) a.e. \([\nu \times P_2]\), \(Z^1\) is \(\mathcal{F} \times \mathcal{F}_2\)-measurable.

(iii) Let \((\Omega_1, \mathcal{F}_1, P_1), Y^1, Y^1_n\)'s, and \((\Omega_2, \mathcal{F}_2, P_2)\), \(Z^1\) be as in (i) and (ii), respectively. Let \(\Omega, \mathcal{F}, P = (\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2, P_1 \times P_2)\), and \(\Pi_j\) be the projection of \(T \times \Omega\) onto \(T \times \Omega_j\), \(j = 1, 2\). Let \(Y_n = Y^1_n \circ \Pi_1\), \(Y = Y^1 \circ \Pi_1\), \(Z = Z^1 \circ \Pi_2\) and

\[(3.3) \quad X_t = Y_t + Z_t, \quad t \in T;\]
then the processes \(X, Y, Z \) and r.v.'s the \(Y_n \)'s satisfy the required properties of Theorem 1(a).

Proof of (iii). It is clear that \(\Pi_j \) is measurable from \((\Omega, \mathcal{T} \times \mathcal{F})\) onto \((T \times \Omega_j, \mathcal{T} \times \mathcal{F}_j), j = 1, 2\). Therefore, since by (i) and (ii) \(Y^1 \) and \(Z^1 \) are \(\mathcal{T} \times \mathcal{F}_1 \) and \(\mathcal{T} \times \mathcal{F}_2 \)-measurable, respectively, \(Y \) and \(Z \) are \(\mathcal{T} \times \mathcal{F} \)-measurable. The rest of the proof follows from (i) and (ii) and the observation that for any \(t_1, \ldots, t_n, s_1, \ldots, s_m \in T \) and any \(A \in \mathcal{B}(\mathbb{R}^2), B \in \mathcal{B}(\mathbb{R}^m) \),

\[
P((Y^1_{t_1}, \ldots, Y^1_{t_n}) \in A, (Z^1_{s_1}, \ldots, Z^1_{s_m}) \in B) = P_1((Y^1_{t_1}, \ldots, Y^1_{t_n}) \in A),
\]

\[
P_2((Z^1_{s_1}, \ldots, Z^1_{s_m}) \in B),
\]

where \(\mathcal{B}(\mathbb{R}^k) \) is the class of Borel subsets of the k-Euclidean space \(\mathbb{R}^k \). We omit the details.

Proof of Theorem 1(b): This follows from Theorem 1 of [1] due to S. Cambanis.

Proof of Theorem 2. Let \(X \) be the Gaussian process on \((\Omega, \mathcal{F}, \mathcal{P})\) as constructed in Theorem 1(a) subject to the additional condition that \(E(X_t) = 0 \), \(t \in T \). Note that, as follows from the proof of Theorem 1, this additional condition is satisfied by \(X \) if we choose the process \(Z^1 \) in the proof of Theorem 1(a) to have zero mean. Let

\[
(3.4) \quad \xi_t = X_t + \theta(t), \quad t \in T;
\]

then, clearly, \(\xi \) is a \(\mathcal{T} \times \mathcal{F} \)-measurable Gaussian process with mean \(\theta \) and covariance \(K \).

Since \(\int_T K(t, t) \nu(dt) \leq \infty \) and \(\theta \in L_2(\nu) \), \(\xi(\cdot, \omega) \in L_2(\nu) \) a.s. [\(\mathcal{P} \)], and since \(L_2(\nu) \) is assumed separable, \(\xi \) induces a Gaussian
measure \(u \) on \(L^2(\nu) \) via the map \(\omega \mapsto \xi(\cdot, \omega) \) if \(\xi(\cdot, \omega) \in L^2(\nu) \),
\(\omega \mapsto 0 \) if \(\xi(\cdot, \omega) \notin L^2(\nu) \) [7, Theorem 3.2]. For each \(f \in L^2(\nu) \),
define (pointwise)

\[
S(f)(s) = \int_T K(s, t)f(t)\nu(dt).
\]

Then it follows from Lemma 3.2 and Proposition 3.5 of [7]; that \(\theta \)
and the operator \(S \) are, respectively, the mean and covariance
operator of \(u \). Further, it is clear from the definition of \(S \)
that its eigenvalues and corresponding eigenvectors, are respectively
\(\{\lambda_n\} \) and \(\{\phi_n\} \) (see (A.3)). The proof of (2.10) now follows from Theorem 4(i),
the above observations, and the following equation

\[
\int_\Omega \exp\{1/2 \lambda \int_T \xi^2(t, \omega)\nu(dt)\}P(d\omega) = \int_{L^2(\nu)} \exp\{1/2 \lambda \int_T \xi^2(t)\nu(dt)\}u(dx),
\]

which is a direct consequence of the change of variable formula
[3, p. 163].

Proof of Theorem 3. Define, for every \(B \in F \),

\[
(3.5) \quad P_\lambda(B) = W(\lambda) \int_B \exp\{1/2 \lambda \int_T \xi^2(t, \omega)\nu(dt)\}P(d\omega),
\]

then it is clear, from (2.10), that \(P_\lambda \) is a probability measure
on \((\Omega, F) \), and, from (3.5), that \(P_\lambda \circ P \) with the R-N derivative
d\(P_\lambda /dP \) equal to the right side of (2.11) a.s. [P]. Thus, the proof
of Theorem 3 will be complete, if we can show that \(\xi_t \) is Gaussian with mean \(\theta_{\lambda} \) and covariance \(K_{\lambda} \). We prove this in the following by showing that \(E_\lambda [\exp(i \sum_{j=1}^n s_j \xi_{t_j})] \) is the right \(n \)-dimensional characteristic function, where \(E_\lambda \) is the expectation relative to \(P_\lambda \), and \(s_1, ..., s_n \) and \(t_1, ..., t_n \) are arbitrary elements of \(\mathbb{R} \) and \(T \), respectively.

Recall that \(\xi_t = Y_t + Z_t + \theta(t) \), \(t \in T \), (see (3.3) and (3.4)), and that \(\sum_{n=1}^\infty \sqrt{n} \phi_n(\cdot) \) converges to \(Y(\cdot, \omega) \) in \(L_2(\nu) \) a.s. \([P]\) (see (2.5)). Using these, the independence of the families \(\{Y_t: t \in T\} \), \(\{Z_t: t \in T\} \) (see footnote #2), and the facts \(E(Y_t) = E(Z_t) = 0 \), \(t \in T \), and \(E(Z_t^2) = 0 \) a.e. \([\nu]\), we have

\[
(3.6) \int_T \xi_t^2(t, \omega)\nu(dt) = \sum_{n=1}^\infty \lambda_n Y_n^2(\omega) + 2 \sum_{n=1}^\infty \sqrt{\lambda_n} \phi_n(\theta) Y_n(\omega) + ||\theta||^2 \text{ a.s. } [P].
\]

Using (3.5) and (3.6), we have

\[
E_\lambda [\exp\{i \sum_{j=1}^n s_j \xi_{t_j}\}] = W(\lambda) E[\exp\{i \sum_{j=1}^n s_j \xi_{t_j} + 1/2 \lambda \int_T \xi_t^2(t, \omega)\nu(dt)\}]
\]

\[
= W(\lambda) E[\exp\{i \sum_{j=1}^m s_j \xi_{t_j}\} \times \exp\{1/2 \lambda \sum_{n=1}^\infty \lambda_n Y_n^2 + 2 \sum_{n=1}^\infty \sqrt{\lambda_n} \phi_n(\theta) Y_n + ||\theta||^2\}].
\]

(3.7)

Noting again that \(\xi_t = Y_t + Z_t + \theta(t) \), \(t \in T \), and that \(\sum_{n=1}^\infty \sqrt{\lambda_n} \phi(t) Y_n \) converges to \(Y_t \) a.s. \([P]\) (see(2.4)), the right side of (3.7) is
\[W(\lambda) E \left[\lim \prod_{k} \exp \left(i \frac{m}{2} \sum_{j=1}^{k} \sqrt{\lambda_n} \phi_n(t_j) Y_n + Z_t + \theta(t_j) \right) \right] \]
\[\times \exp \left(\frac{1}{2} \lambda \left(\sum_{n=1}^{k} \lambda_n Y_n^2 + 2 \sum_{n=1}^{k} \sqrt{\lambda_n} \phi_n, \theta \right) Y_n + ||\theta||^2 \right) \right] \]
\[= W(\lambda) E \left[\lim \prod_{n=1}^{k} \exp \left(i \frac{m}{2} \sum_{j=1}^{n} \sqrt{\lambda_n} \phi_n(t_j) - i\lambda \sqrt{\lambda_n} \phi_n, \theta \right) + \frac{1}{2} \lambda \lambda_n Y_n^2 \right] \]
\[\times \exp \left(i \frac{m}{2} \sum_{j=1}^{n} \phi_n(t_j) + \theta(t_j) + \frac{1}{2} \lambda ||\theta||^2 \right) \],

which, by the dominated convergence theorem, is

\[W(\lambda) \lim_{k} E \left[\prod_{n=1}^{k} \exp \left(i \frac{m}{2} \lambda_n Y_n^2 \right) \right] \]
\[\times \exp \left(i \frac{m}{2} \sum_{j=1}^{n} \phi_n(t_j) + \theta(t_j) + \frac{1}{2} \lambda ||\theta||^2 \right) \],

where

\[B_n = \sqrt{\lambda_n} \sum_{j=1}^{n} \phi_n(t_j) - i\lambda \sqrt{\lambda_n} \phi_n, \theta \].

Now using the independence of the r.v.'s \(Y_n \)'s and the independence of the two families (see footnote #2) \(\{Y_n: n = 1, 2, \ldots\} \), \(\{Z_t: t \in T\} \), and recalling that

\[E[\exp \left(i \frac{m}{2} \lambda_n Y_n^2 \right)] = (1 - \lambda_n)^{-1/2} \exp \left(-\frac{1}{2} B_n^2 (1 - \lambda_n)^{-1} \right) \],

it follows that the expression in (3.8) is
\[(3.10) \quad = W(\lambda) D(\lambda)^{-1/2} \exp \{-1/2 \sum_{n=1}^{\infty} (1 - \lambda \lambda_n)^{-1}\beta_{n}^{2} \} \]
\[\times \exp \left\{ i \sum_{j=1}^{m} s_j \theta(t_j) - 1/2 \sum_{j=1}^{m} \sum_{k=1}^{m} s_j s_k K_{2}(t_j, t_k) \right\} \]
\[\times \exp \left\{ 1/2 \lambda \| \theta \|^2 \right\}. \]

Substituting the value of \(B_{n} \) from (3.9) in (3.10) and observing that \(\| \theta \|^2 = \sum_{n=1}^{\infty} <\phi_n, \theta>^2 + \| \dot{\theta} \|^2 \) (see (A.5)), we see that the expression in (3.10) is

\[(3.11) \quad = W(\lambda) D(\lambda)^{-1/2} \exp \left\{ i \sum_{j=1}^{m} s_j \theta(t_j) + \sum_{n=1}^{\infty} \lambda \lambda_n (1 - \lambda \lambda_n)^{-1} \phi_n(t_j)phi_n^*(t_j) \right\} \]
\[\times \exp \left\{ -1/2 \sum_{j=1}^{m} \sum_{k=1}^{m} s_j s_k (K_{2}(t_j, t_k) + \sum_{n=1}^{\infty} \lambda (1 - \lambda \lambda_n)^{-1} \phi_n(t_j)\phi_n(t_k)) \right\} \]
\[\times \exp \left\{ 1/2 \lambda \| \dot{\theta} \|^2 + \sum_{n=1}^{\infty} (1 - \lambda \lambda_n)^{-1} <\phi_n, \theta>^2 \right\}, \]

which, in view of (2.6) - (2.8), is

\[= W(\lambda) D(\lambda)^{-1/2} \exp \left\{ i \sum_{j=1}^{m} s_j \theta(t_j) - 1/2 \sum_{j=1}^{m} \sum_{k=1}^{m} s_j s_k K_{2}(t_j, t_k) \right\} \]
\[\times \exp \left\{ 1/2 \lambda \| \dot{\theta} \|^2 + \sum_{n=1}^{\infty} (1 - \lambda \lambda_n)^{-1} <\phi_n, \theta>^2 \right\} \]
\[= W(\lambda) W(\lambda)^{-1} \exp \left\{ i \sum_{j=1}^{m} s_j \theta(t_j) - 1/2 \sum_{j=1}^{m} \sum_{k=1}^{m} s_j s_k K_{2}(t_j, t_k) \right\}, \]

by the definition of \(W(\lambda) \) (see (2.9)). Thus,
\[E_{\lambda}[\exp \{i \sum_{j=1}^{m} s_j \xi_{t_j} \}] = \exp\{i \sum_{j=1}^{m} s_j \theta_\lambda(t_j) - 1/2 \sum_{j=1}^{m} s_j s_k \bar{K}_\lambda(t_j, t_k)\}, \]

as desired.

Proof of Corollary 1. Since \(K \) is an M-kernel and \(\theta \in L_2(\nu) \), there exists, by Theorem 2, a \(\mathcal{T} \times \mathcal{F} \)-measurable Gaussian process \(\xi \) on a probability space \((\Omega, \mathcal{F}, P)\) with mean \(\theta \) and covariance \(K \). Let \(\xi_t = |f(t)|^{-1/2} \xi_t, t \in T \); then, clearly, \(\xi \) is \(\mathcal{T} \times \mathcal{F} \)-measurable and Gaussian with mean \(\rho \) and covariance \(\Sigma \); further, the proof of (2.12) follows immediately from (2.10).

Proof of Corollary 2. Define \(P_\lambda \) as in (3.5) replacing \(\xi_t \) by \(|f(t)|^{1/2} \xi_t \). Then by (2.12), \(P_\lambda \) is a probability measure, and, by the definition of \(P_\lambda \), \(P_\lambda \sim P \) with the R-N derivative \(dP_\lambda/dP \) equal to the right side of (2.13) a.s. \([P]\). Since the process \(\xi \) of Theorem 3 is related to \(\xi \) by \(\xi_t = |f(t)|^{1/2} \xi_t \) and since it is shown to be Gaussian on \((\Omega, \mathcal{F}, P_\lambda)\) with mean \(\theta_\lambda \) and covariance \(K_\lambda \), it follows that \(\xi \) is Gaussian on \((\Omega, \mathcal{F}, P_\lambda)\) with mean \(|f(t)|^{-1/2} \theta_\lambda(t), t \in T \), and covariance \(|f(s)|^{-1/2} |f(t)|^{-1/2} K_\lambda(s, t) \).

Proof of Theorem 4(i): Choose an orthonormal set \(\{\psi'_k: k = 1, 2, \ldots, k\} \) of \(H \) so that \(\{\psi_n\} \cup \{\psi'_k\} \) is a Hilbert basis of \(H \), where \(k \) is finite or \(+\infty \). It follows that \(\{\psi_n\} \cup \{\psi'_k\} \) is a family of independent r.v.'s on \((H, \mathcal{B}(H), \mu)\), that \(\psi'_k \)'s are degenerate at \(\langle \psi'_{k}, m \rangle \) and that \(\psi_n \)'s are Gaussian with mean \(\langle \phi_n, m \rangle \) and variance \(\epsilon_n \). Using these facts, Parseval's relation and the monotone convergence theorem, we have
\[\int_{H} e^{\frac{1}{2} \lambda \|x\|^{2}} \mu(dx) = \int_{H} \exp\{\frac{1}{2} \delta (\sum_{j=1}^{\infty} \langle \psi_{j}^{*}, x \rangle^{2} + \sum_{j=1}^{n} \langle \psi_{j}^{*}, x \rangle^{2})\} \mu(dx) \]

\[= \lim_{n} \int_{H} \exp\{\frac{1}{2} \delta \sum_{j=1}^{n} \langle \psi_{j}^{*}, x \rangle^{2}\} \mu(dx) \]

\[\times \{ \int_{H} \exp\{\frac{1}{2} \delta \sum_{j=1}^{n} \langle \psi_{j}^{*}, x \rangle^{2}\} \mu(dx) \} \]

\[= \lim_{n} \int_{H} \exp\{\frac{1}{2} \delta \langle \psi_{j}^{*}, x \rangle^{2}\} \mu(dx) \]

\[\times \{ \int_{H} \exp\{\frac{1}{2} \delta \langle \psi_{j}^{*}, x \rangle^{2}\} \mu(dx) \} \]

\[= \lim_{n} \left[\prod_{j=1}^{n} (1 - \delta \delta_{j})^{-\frac{1}{2}} \exp\{\frac{1}{2} \delta \sum_{j=1}^{n} \langle \psi_{j}^{*}, m \rangle^{2} (1 - \delta \delta_{j})^{-\frac{1}{2}}\} \right] \]

\[\times \exp\{\frac{1}{2} \delta \sum_{j=1}^{n} \langle \psi_{j}^{*}, m \rangle^{2}\} . \]

\[= \left[\prod_{j=1}^{\infty} (1 - \delta \delta_{j})^{-\frac{1}{2}} \exp\{\frac{1}{2} \delta (\|m\|^{2} + \sum_{j=1}^{\infty} \langle \psi_{j}^{*}, m \rangle^{2} (1 - \delta \delta_{j})^{-\frac{1}{2}}\} \right] \]

\[= U(\delta)^{-\frac{1}{2}} \infty . \]

Proof of Theorem 4(ii). Define, for every \(B \in B(H) \),

\[(3.12) \quad P_{\delta}(B) = U(\delta) \int_{B} \exp\{\frac{1}{2} \delta \|x\|^{2}\} \mu(dx) , \]

then it is clear, from (2.14), that \(P_{\lambda} \) is a probability measure on \((H, B(H))\), and, from (3.12), that \(\mu \sim P_{\delta} \) with the R-N derivative \(dP_{\delta}/d\mu \) equal to right side of (2.15) a.s. \([\mu]\. \) Let \(x \) be a fixed element of \(H \), then, using arguments similar to the ones used in the
proof of Theorem 3, it can be shown that

$$\int_H \exp(i<x,y>) P_\delta(dy) = \exp(i<x,\theta_\delta> - 1/2 <x, S_\delta x>).$$

This shows that P_δ is Gaussian on H with mean m_δ and covariance operator S_δ. Therefore, since in a separable Hilbert space the mean and the covariance operator determine the Gaussian measure uniquely (see, for example, [7, p. 399]), it follows that $P_\delta = \nu_\delta$. The proof is now complete.

Proof of Corollary 3. Since E is nuclear and p is continuous on E, there exists a continuous hilbertian seminorm q on E and a constant $k > 0$ such that $p(x) \leq q(x, x)$ for all $x \in E$ [8, p. 102]. Denote by E_q, the semi-inner product space (E, q), and by N, the quotient inner product space $E_q/q^{-1}(0)$ with the inner product $<x, y> = q(x, y)$, where $x = x + q^{-1}(0)$ and $y = y + q^{-1}(0)$. Let H be the Hilbert space obtained by completing N in $<,>$. The space E_q is separable, since E is; therefore, since the quotient space of a separable normed space is separable, N and hence H is separable.

Denote, by i, the identity map of E onto E_q, and, by Q, the quotient map of E_q onto N. The map i is continuous, since q is a continuous seminorm on E. Therefore, since quotient map Q is continuous, $\psi = Q \circ i$ is continuous linear map from E into H. Therefore, $\nu_1 = \mu \circ \psi^{-1}$ is a Gaussian measure on $(H, \mathcal{B}(H))$, where $\mathcal{B}(H)$ is the σ-algebra generated by the open sets of H. Since, for $x \in E$, $q(x, x) = ||\psi(x)||^2$, where $||\cdot||$ is the norm in H, it follows from the change of variable formula [3, p. 163] that
\begin{equation}
\int_{E} e^{aq^2(x,x)} u(dx) = \int_{H} e^{a|y|^2} \mu_1(dy).
\end{equation}

The proof of the corollary now follows from (2.14), (3.13) and the fact \(p^2(x) \leq kq^2(x,x), x \in E \).

We conclude by noting that if \(E \) is any linear topological space (not necessarily nuclear) and \(p \) a continuous Hilbertian semi-norm in Corollary 3, then using Theorem 4 and a proof similar to that of the corollary, one can easily show that the integral in (2.16) is finite. However, if \(p \) is not Hilbertian and \(E \) is not nuclear, our method does not seem to give a proof of the finiteness of the integral in (2.16).
REFERENCES

FOOTNOTES

1. This terminology is motivated by the classical theorem of Mercer, which asserts, in the present terminology, that every continuous (hence trace-class, relative to Lebesgue measure) kernel K on $[0, 1] \times [0, 1]$ admits expansion of the type given in (2.3).

2. That is, for any $t_1, \ldots, t_m; s_1, \ldots, s_n$ in T and any $A \in \mathcal{B}(R^m)$, $B \in \mathcal{B}(R^n)$, we have $P((Y_{t_1}, \ldots, Y_{t_m}) \in A; (Z_{s_1}, \ldots, Z_{s_n}) \in B) = P((Y_{t_1}, \ldots, Y_{t_m}) \in A) \times P((Z_{s_1}, \ldots, Z_{s_n}) \in B)$, where $\mathcal{B}(R^k)$ is the class of Borel sets of the k-Euclidean space R^k. As follows from the proof of this theorem, the families of r.v.'s $\{Y_n\}$ and $\{Z_t; t \in T\}$ are also independent. These two facts will be important for us in the proof of Theorem 3.

3. Note that, since S_δ is a bounded, linear, nonnegative, self-adjoint and trace-class operator on H and $m_\delta \in H$, the measure ν_δ exists [5, p. 243].