Research supported by the Air Force Office of Scientific Research under Grant AFOSR-72-0596.

SOME REMARKS ON THE EQUIVALENCE OF GAUSSIAN PROCESSES

A. Gualtierotti and S. Cambanis

Department of Statistics
University of North Carolina at Chapel Hill
Institute of Statistics Mimeo Series No. 874

June, 1973
Some Remarks on the Equivalence of Gaussian Processes

Technical Report

A. Gualtieriotti and S. Cambanis

June 1973

AFOSR-72-0596

Institute of Statistics Mimeo Series No. 874

The distribution of this report is unlimited.

The norms in a reproducing kernel Hilbert space corresponding to equivalent Gaussian processes are characterized, and some representations are obtained for all Gaussian processes equivalent to a fixed Gaussian process.

KEY WORDS: Gaussian processes, reproducing kernel Hilbert spaces, representation of equivalent Gaussian processes.
SOME REMARKS ON THE EQUIVALENCE
OF GAUSSIAN PROCESSES

A. GUALTIEROTTI AND S. CAMBANIS

ABSTRACT. The norms in a reproducing kernel Hilbert space corresponding
to equivalent Gaussian processes are characterized, and some representa-
tions are obtained for all Gaussian processes equivalent to a fixed
Gaussian process.

Key words and phrases. Gaussian processes, reproducing kernel Hilbert
spaces, representation of equivalent Gaussian processes.

1 Research supported by the Air Force Office of Scientific Research under
Grant AFOSR-72-0596.
1. INTRODUCTION. Let \(X = \{X_t, \ t \in T\} \) and \(Y = \{Y_t, \ t \in T\} \) be real, zero-mean Gaussian processes with respective covariances \(R_X \) and \(R_Y \), defined on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\), where \(T \) is an arbitrary index set.

Denote by \(P_X \) and \(P_Y \) the probabilities induced on \((R^T, \mathcal{C}(R^T))\) by \(P, X \) and \(Y \) respectively, where \(\mathcal{C}(R^T) \) is the \(\sigma \)-algebra generated by the cylinder sets of the set \(R^T \) of real functions on \(T \). \(L_2(X) \) and \(L_2(Y) \) will denote the subspaces of \(L_2(\Omega, \mathcal{F}, \mathbb{P}) \) generated by \(X \) and \(Y \) respectively, and \(H(X) \) and \(H(Y) \) the corresponding reproducing kernel Hilbert spaces (RKHS's).

The associated canonical isometries will be denoted by \(U_X \) and \(U_Y \) respectively \((U_X t = R_X(t, \cdot), \ t \in T, \) and similarly for \(U_Y \)). We say that the processes \(X \) and \(Y \) are equivalent, or that the probabilities \(P_X \) and \(P_Y \) are equivalent, \(P_X \sim P_Y \), if \(P_X \) and \(P_Y \) are mutually absolutely continuous. The following properties are well known:

(i) \(P_X \sim P_Y \) if and only if \(Y_t = FX_t, \ t \in T \), where \(F \) is an equivalence operator from \(L_2(X) \) to \(L_2(Y) \) (i.e., \(F \) has bounded inverse and \(I-F^*F \) is Hilbert-Schmidt) \([6]\); or equivalently if and only if \(Y_t = X_t - AX_t, \ t \in T \), where \(A \) is a Hilbert-Schmidt operator in \(L_2(X) \) and \(I-A \) has bounded inverse, and the equality is in law, i.e. \(P_Y = P(I-A)X \) \([9]\).

(ii) If \(P_X \sim P_Y \) then \(sH(X) = sH(Y) \), where \(s \) indicates that what follows is considered as a set and not as a space \([7, \ p. 181]\).

The first question considered in this note is the converse of (ii), i.e., if \(X \) and \(Y \) have the same RKHS's, under what additional condition on the RKHS's are they equivalent? The answer is given in Propositions 1 and 2 and results in a characterization of the norms in a RKHS corresponding to equivalent Gaussian processes.

The fact, mentioned in (i), that all Gaussian processes equivalent to \(X_t \)
are of the form $X_t - AX_t$, with A a Hilbert-Schmidt operator in $L_2(X)$, raises the problem of expressing AX_t in a more explicit way in terms of the process X. This is done in Propositions 4, 5 and 6.

2. THE RKHS OF EQUIVALENT GAUSSIAN PROCESSES. Here, and in the next section, we adopt the notation of the introduction.

Proposition 1. $P_X \sim P_Y$ if and only if $sh(X) = sh(Y)$ and (a) the identity J on $sh(X) = sh(Y)$ is an equivalence operator from $H(X)$ to $H(Y)$, or (b) for every f in $sh(X)$

$$||f||^2_{H(Y)} = ||f||^2_{H(X)} + \langle f \otimes f, \lambda \rangle_{H(X) \otimes H(X)}$$

for some $\lambda \in H(X) \otimes H(X)$ which is symmetric and such that $-R_X \ll \lambda$.

Proof. Suppose first that $sh(X) = sh(Y)$ and J is an equivalence. For every $\xi \in L_2(Y)$ we have $<\xi, Y_t>_{L_2(Y)} = (U_Y(t)(t)) = (J^{-1}U_Y(t)(t)) =<U_X^* J^{-1} U_Y \xi, X_t>_{L_2(X)}$. Let $F^* = U_X^* J^{-1} U_Y$. Since J is an equivalence, so is J^{-1}, and since U_X^*, U_Y are unitary, F^* is an equivalence and so is F.

It now follows from $<\xi, Y_t>_{L_2(Y)} = <F^* \xi, X_t>_{L_2(X)} = <\xi, FX_t>_{L_2(Y)}$, for all ξ in $L_2(Y)$, that $Y_t = FX_t$. Thus $P_X \sim P_Y$.

Conversely, suppose that $P_X \sim P_Y$. Then $Y_t = FX_t$ where F is an equivalence operator from $L_2(X)$ to $L_2(Y)$. For every f in $H(Y)$ we have

$f(t) = <U_Y^* f, Y_t>_{L_2(Y)} = <F^* U_Y^* f, X_t>_{L_2(X)} = [U_X^* F^* U_Y^* f](t) = [J U_X^* F^* U_Y^*](t)$. Thus $J U_X^* F^* U_Y^* = I_{H(Y)}$ and $J = U_Y(F^*)^{-1} U_X^*$. Since F is an equivalence, so is $(F^*)^{-1}$ and since U_X^*, U_Y are unitary, J is an equivalence.

Finally, (b) is equivalent to (a) as it follows from Property (i) and the fact that Hilbert-Schmidt operators on RKHS's have kernels in the direct product of the considered RKHS's [1].

The characterization of Proposition 1 is particularly useful if the elements in the common RKHS can be obtained in the way described in the following Proposition.
PROPOSITION 2. Suppose there exists a pair \((H, L)\), where \(H\) is a Hilbert space and \(L\) a unitary map from \(H\) to \(H(X)\). Then \(P_X \sim P_Y\) if and only if \(sh(X) = sh(Y)\) and for all \(h\) in \(H\),

\[
||Lh||^2_{H(Y)} = ||h||^2_H + \langle Kh, h \rangle_H
\]

where \(K\) is a self-adjoint, Hilbert-Schmidt operator on \(H\) such that \(-1 < \sigma(K)\).

REMARK 1. Condition (1) is equivalent to

(a) \(||Lh||^2_{H(Y)} = ||h||^2_H + \langle Kh, h \rangle_H\), or

(b) \(\langle Lh, Lh \rangle_{H(Y)} = \langle Lh, Lh \rangle_{H(X)} + \langle LKh, Lh \rangle_{H(X)} = \langle h, h \rangle_H + \langle Kh, h \rangle_H\).

PROOF OF PROPOSITION 2. Suppose first that \(P_X \sim P_Y\). Then \(J\) is an equivalence and \(J\) can be decomposed as \(J = UW\), with \(W = (J^*J)^{\frac{1}{2}}\) and \(U\) unitary. \((W: H(X) \to H(X)\) and \(U: H(X) \to H(Y)\)). Since \(W\) is onto, for every \(h\) in \(H\) there is a \(g\) in \(H\) such that \(Lh = Wg\). Thus every \(h\) in \(H\) can be obtained as \(L^*Wg\), for some \(g\) in \(H\). Set \(S = L^*WL\). Then \(J = ULSL^*\) and thus for \(h\) in \(H\),

\[
||JLh||^2_{H(Y)} = ||ULSL^*Lh||^2_{H(Y)} = ||LSh||^2_{H(X)} = ||Sh||^2_H.
\]

Now it follows from \(S = L^*U^*JL\) that \(S\) is an equivalence, since it is obtained from an equivalence operator \(J\) by "unitary multiplication." Thus \(I_H - S^*S\) is equal to a self-adjoint, Hilbert-Schmidt operator \(-K\) that does not have \(-1\) among its eigenvalues. Hence, as

\[
||JLh||^2_{H(Y)} = ||Sh||^2_H = \langle (I+K)h, h \rangle_H = ||h||^2_H + \langle Kh, h \rangle_H,
\]

and (1) follows from (a) of Remark 1.

Conversely, suppose that \(sh(X) = sh(Y)\) and (1) holds. Define a unitary operator \(T: H \to H(Y)\) by \(T((I_H + K)^{\frac{1}{2}}h) = JLh\). This definition makes sense since \(T\) is obviously onto and by (1),

\[
||T((I_H + K)^{\frac{1}{2}}h)||^2_{H(Y)} = ||JLh||^2_{H(Y)} = ||(I_H + K)^{\frac{1}{2}}h||^2_H.
\]

But then \(J = T((I_H + K)^{\frac{1}{2}}L^*\), where \(T\) and \(L^*\) are unitary and \((I_H + K)^{\frac{1}{2}}\) is an
equivalence. Hence, \(J \) is an equivalence and \(P_X \sim P_Y \).

REMARK 2. The existence of the assumed pair \((H, L)\) in Proposition 2 is not as restrictive as it appears. In fact, whenever \(H(X) \) (or equivalently \(L_2(X) \)) is separable, this assumption is satisfied and one can take \(H \) to be an \(L_2 \) space. This follows from Theorem 2 of [3]. Indeed, if \(H(X) \) is separable, then, for an arbitrary measure space \((E, \mathcal{E}, \mu)\) such that \(L_2(\mu) \) is separable and infinite dimensional, we have for all \(t \) in \(T \), \(X_t = \int_E \phi_t(u) dZ(u) \), where \(\phi_t \in L_2(\mu) \) and \(Z \) is an orthogonal random measure on \(E \) such that \(L_2(Z) = L_2(X) \). This implies that there is a unitary map \(A: L_2(\mu) \rightarrow L_2(X) \) such that \(A\phi_t = X_t, t \in T \), and clearly \(L: L_2(\mu) \rightarrow H(X) \) defined by \(L = \bigcup_X A \) is unitary. The Hilbert space \(H \) is clearly non-unique. However in some specific cases, \(H \) can be chosen in a natural way. In fact, most of the known RKHS's are obtained in this way. We list some examples below.

EXAMPLES. 1) Let \(X \) have orthogonal increments on \([0,1]\) and start almost surely at the origin, with \(R_X(s,t) = F(s \wedge t), F \) continuous. Then

\[
H(X) = \{ \int_0^t \phi(u) dF(u), \phi \in L_2(dF) \}, < \int_0^t \phi u, \int_0^t \psi dF>_H(X) = <\phi, \psi>_{L_2(dF)},
\]

and \(L: L_2(dF) \rightarrow H(X) \) defined by \([L\phi](t) = \int_0^t \phi dF \) is an isometry. This example includes the Wiener process \((F(u) = u)\).

2) Let \(X \) have the covariance \(R_X(s,t) = F(s \wedge t) G(s \wedge t) \), where \(F \) and \(G \) are continuous with bounded variation on \([0,1]\), \(F \) is strictly positive, except at the origin, and \(G \) is strictly positive. Suppose further that \(H(u) = F(u)/G(u) \) is strictly increasing. Then \(H(X) = \{ G(t) \int_0^t \phi(u) dH(u), \phi \in L_2(dH) \} \) and

\[
<G(\cdot) \int_0^\cdot \phi dH, G(\cdot) \int_0^\cdot \psi dH>_H(X) = <\phi, \psi>_{L_2[0,1]}.
\]

Thus \(L: L_2(dH) \rightarrow H(X) \) defined by \([L\phi](t) = G(t) \int_0^t \phi dH \) is unitary.

3) Let \(X \) be a linear operation on a stationary process with spectral measure \(\mu \). Then \(R_X(s,t) = \int_{-\infty}^{\infty} \phi_s(\lambda) \overline{\phi_t(\lambda)} d\mu(\lambda) \) and if \(H \) is the closure in \(L_2(\mu) \)
of the linear span of \(\{ \phi_t, t \in T \} \) then \(H(X) = \{ \int_{-\infty}^{\infty} \phi_t \overline{\phi}_u, \phi \in H \} \) and \(\langle \phi, \psi \rangle_{H(X)} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi_t \overline{\phi}_u \, d\mu \). Thus \(L : H \to H(X) \) defined by \([L\phi](t) = \int_{-\infty}^{\infty} \phi_t \overline{\phi}_u \, d\mu \) is unitary. This includes the case where \(X \) is stationary \((\phi_t(\lambda) = e^{it\lambda}) \) and then \(H = L_2(\mu) \) if \(T = R \).

4) Let \(X \) be a linear operation on a harmonizable process with two-dimensional spectral measure \(r \). Then \(R_X(s,t) = \int_{-\infty}^{\infty} \phi_s(u) \overline{\phi}_t(v) \, dr(u,v) \) and if \(H \) is the closure in the Hilbert space \(\Lambda_2(r) [5] \) of the linear span of \(\{ \phi_t, t \in T \} \) then
\[
H(X) = \{ \int_{-\infty}^{\infty} \phi_t(u) \overline{\psi}_v \, dr(u,v), \, \phi \in H \}
\]
and
\[
\langle \int_{-\infty}^{\infty} \phi_t \overline{\psi}r, \int_{-\infty}^{\infty} \phi_u \overline{\psi}u \rangle_{H(X)} = \langle \phi, \psi \rangle_{\Lambda_2(r)} = \int_{-\infty}^{\infty} \phi(u) \overline{\psi}(v) \, dr(u,v).
\]
Thus \(L : H \to H(X) \) defined by \([L\phi](t) = \int_{-\infty}^{\infty} \phi_t(u) \overline{\psi}_v \, dr(u,v) \) is unitary. This includes the case where \(X \) is harmonizable \((\phi_t(u) = e^{it\mu}) \) and then \(H = \Lambda_2(r) \) if \(T = R \).

REMARK 3. The existence of the pair \((H,L)\) as described in Proposition 2 is easily seen to be equivalent to the existence of a representation of the covariance \(R_X \) of the form \(R_X(s,t) = \langle \phi_s, \phi_t \rangle_X \) where \(\{ \phi_t, t \in T \} \subseteq H \).

Proposition 2 can be also expressed in terms of covariances and it then contains as particular cases the results of [10] and [8].

PROPOSITION 3. Suppose there exists a pair \((H,L)\), where \(H \) is a Hilbert space and \(L \) a unitary map from \(H \) to \(H(X) \). Let \(\phi_t = L^* R_X(t,*) \) or \(R_X(s,t) = \langle \phi_s, \phi_t \rangle_X \) (see Remark 3). Then \(P_X \sim P_Y \) if and only if
\[
(2) \quad R_Y(s,t) = R_X(s,t) - \langle M \phi_s, \phi_t \rangle_X
\]
where \(M \) is self-adjoint, Hilbert-Schmidt and such that \(\sigma(M) < 1 \).

PROOF. Assume first that \(P_X \sim P_Y \). Then \(Y_t = FX_t \) where \(F \) is an equivalence operator from \(L_2(X) \) to \(L_2(Y) \). It follows that \(Y_t = FU_X^t L \phi_t \) and
\[
R_Y(s,t) = \langle L^* U_{X} F^* U_{X}^* L \phi_s, \phi_t \rangle_{H}.
\]
Thus (2) is valid with \(M = L^* U_{X} (I_{L_2(X)} - F^* F) U_{X}^* \). Since \(I_{L_2(X)} - F^* F \) is self-adjoint, Hilbert-Schmidt with \(\sigma(I_{L_2(X)} - F^* F) < 1 \), and \(U_{X}, L \) are unitary, it follows that \(M \) is self-adjoint Hilbert-Schmidt with
σ(M) < 1.

Conversely, assume that (2) is valid. Then \(\phi_t = L^*U_Xx_t \) yields

$$
<\phi_t, \phi_t> = \langle U_X^*LML^*U_Xx_s, x_t \rangle L_2(X) \quad \text{and} \quad (2) \text{ is written } R_Y(s, t) =
$$

$$
= \langle (I_{L_2(X)} - U_X^*LML^*U_X)x_s, x_t \rangle L_2(X). \quad \text{Since } M \text{ is self-adjoint, Hilbert-Schmidt,}
$$

with \(\sigma(M) < 1 \), and \(U_X, L \) are unitary, it follows that \(U_X^*LML^*U_X \) is self-adjoint, Hilbert-Schmidt. Also \(I_{L_2(X)} - U_X^*LML^*U_X = U_X^*L(I_H - M)L^*U_X > 0 \) and hence its square root \(F_0 \) is an equivalence. We then have \(\langle Y_s, Y_t \rangle_{L_2(Y)} = R_Y(s, t) = \quad \quad \)

$$
= \langle F_0x_s, F_0x_t \rangle_{L_2(X)} \quad \text{which implies that the map } F_0x_t \rightarrow Y_t \text{ extends to a unitary operator } U \text{ from } L_2(X) \text{ to } L_2(Y) \text{ and then } Y_t = FX_t \quad \text{where } F = UF_0 \text{ is an equivalence. Thus } P_X \sim P_Y.
$$

REMARK 4. The relationship between the operators \(F, K \) and \(M \) of Property (i) and Propositions 2 and 3 respectively is as follows

$$
F = U[U_X^*L(I_H + K)^{-1}L^*U_X]^{\frac{1}{2}} = U[U_X^*L(I_H - M)L^*U_X]^{\frac{1}{2}}
$$

$$
K = L^*U_X[(F^*F)^{-1} - I_{L_2(X)}]U_X^*L = (I_H - M)^{-1} - I_H
$$

$$
M = L^*U_X(I_{L_2(X)} - F^*F)U_X^*L = I_H - (I_H + K)^{-1}.
$$

We also have

$$
R_Y(s, t) = <\psi_s, \psi_t>_H \quad \text{where } \psi_t = (I_H - M)\phi_t.
$$

PROOF. The expressions relating \(F \) and \(M \) are derived in the proof of Proposition 3. It then suffices to derive the relationship between \(K \) and \(M \).

Since \(sH(X) = sH(Y) \) we have \(R_Y(t, \cdot) \in H(X) \). Let \(\psi_t = L^*R_Y(t, \cdot) \). Then

$$
R_Y(s, t) = <\psi_s, \psi_t>_H. \quad \text{By Remark 1 we obtain } R_X(s, t) = <R_X(s, \cdot), R_Y(t, \cdot)>_{H(Y)} =
$$

$$
= <J\phi_s, J\phi_t>_Y = <\phi_s, (I_H + K)\phi_t>_Y. \quad \text{Since } R_X(s, t) = <\phi_s, \phi_t>_H \text{ we have}
$$

$$
<\phi_s, \phi_t>_H = <\phi_s, (I_H + K)\phi_t>_H. \quad \text{Since } \{R_X(t, \cdot), t \in T\} \text{ is complete in } H(X) \text{ and } L
$$

is unitary, \(\{\phi_t, t \in T\} \) is complete in \(H \) and hence \(\phi_t = (I_H + K)\psi_t \).

We now have \(R_Y(s, t) = <R_Y(s, \cdot), R_X(t, \cdot)>_{H(X)} = <L\phi_s, L\phi_t>_H(X) = <\psi_s, \phi_t>_H = <(I_H + K)^{-1}\phi_s, \phi_t>_H \) and since \(R_X(s, t) = <\phi_s, \phi_t>_H \) it follows from (2) by inspection
that \(M = I_H - (I_H + K)^{-1} \). Hence \(K = (I_H - M)^{-1} - I_H \) and also \(\psi_t = (I_H + K)^{-1} \phi_t = (I_H - M) \phi_t \).

3. REPRESENTATION OF EQUIVALENT GAUSSIAN PROCESSES. When a pair \((H, L)\) as described in Propositions 2 and 3 exists, then one can obtain explicit representations of the process \(AX_t \) in Property (i). Here it is more appropriate to consider the unitary map \(V: H \to L_2(X) \) related to \(L \) by \(V = U^* L \).

PROPOSITION 4. Suppose that there exists a pair \((H, V)\), where \(H \) is a Hilbert space and \(V \) a unitary map from \(H \) to \(L_2(X) \). If \(A \) is a Hilbert-Schmidt operator in \(L_2(X) \), then \(AX_t = VAh_t \), where \(A \) is a Hilbert-Schmidt operator in \(H \) and \(h_t = V^* X_t \).

PROOF. If \(\bar{A} = V^* AV \), then \(\bar{A} \) is Hilbert-Schmidt in \(H \) and \(AX_t = AVh_t = VV^* AVh_t = V\bar{A}h_t \).

EXAMPLES. 5) Let \(X \) be as in Example 1. Then \(V: L_2(dF) \to L_2(X) \) is defined by \(V\phi = \int_0^1 \phi(u) dX_u \). Consequently \(h_t = I_t \), the indicator function of \([0, t]\) and \(AX_t = \int_0^1 \bar{A}h_t(u) dX_u \). Since a Hilbert-Schmidt operator in \(L_2(dF) \) is of integral type with kernel \(\alpha(u, v) \) in \(L_2(dF \times dF) \) we finally have

\[
AX_t = \int_0^1 \int_0^t \alpha(u, v) dF(v) dX_u.
\]

This result is obtained for the Wiener process in [9].

6) Consider the case where the covariance of \(X \) has the representation \(R_X(s, t) = \int_E \phi_s(u) \phi_t(u) d\mu(u) \) with \((E, E, \mu)\) a finite (for simplicity) measure space and \(\phi_t \in L_2(\mu) \). This includes both Examples 2 and 3. Then there is an orthogonal random measure \(Z \) on \(E \) such that \(X_t = \int_E \phi_t(u) dZ(u) \) [5]. Let \(H \) be the closure in \(L_2(\mu) \) of the linear span of \(\{\phi_t, t \in T\} \). Then \(V: H \to L_2(X) \) is defined by \(V\phi = \int_E \phi(u) dZ(u) \). Consequently \(h_t = \phi_t \) and \(AX_t = \int_E \bar{A}\phi_t(u) dZ(u) \). As in Example 5, \(\bar{A} \) is of integral type with kernel \(\alpha(u, v) \) in \(L_2(\mu \times \mu) \) and finally we have

\[
AX_t = \int_{EE} \alpha(u, v) \bar{\phi}_t(v) d\mu(v) dZ(u).
\]

In the case of Example 2, \(H = L_2(dH) \) and \(AX_t = G(t) \int_0^t \alpha(u, v) dH(v) dZ(u) \).
7) Consider the case where the covariance of X has the representation
\[R_X(s,t) = \int \int \phi_s(u) \overline{\phi}_t(v) \text{d}r(u,v) \] with (E,E) a measurable space, r a two-dimensional spectral measure on $E \times E$ and ϕ_t in $\Lambda_2(r)$. Then there is a random measure Z on E such that $X_t = \int \phi_t(u) dZ(u)$ [5]. Let H be the closure in $\Lambda_2(r)$ of the linear span of $\{\phi_t, t \in T\}$. Then $V: H \rightarrow L_2(X)$ is defined by $V\phi = \int \phi(u) dZ(u)$. Consequently $h_t = \phi_t$ and $AX_t = \int \overline{A\phi_t}(u) dZ(u)$, where \overline{A} is a Hilbert-Schmidt operator in $\Lambda_2(r)$. However, no kernel representation of \overline{A} seems to be available because Λ_2 is a more complicated space than L_2. Nevertheless, as follows from (i) of the Lemma at the end of this section, if E is an interval, \overline{A} is the limit in the operator norm of a sequence of Hilbert-Schmidt operators $\{A_n\}_{n=1}^{\infty}$ in $L_2(u)$ with kernels $\{a_n\}_{n=1}^{\infty}$ and we thus have
\[AX_t = \lim_{n \rightarrow \infty} \int \int \phi_t(v) \overline{a_n}(w,u) d\nu(v,w) dZ(u) \]
where the limit is in $L_2(P)$. Consider now the important particular case where there is a measurable process $\{Z_u, u \in E\}$ and a measure μ on E equivalent to the Lebesgue measure such that $\int Z(u,u) d\mu(u) < \infty$ and for every $B \subset E$,
\[Z(B) = \int_B Z_u d\mu(u). \]
Then $X_t = \int \phi_t(u) Z_u d\mu(u)$ and
\[AX_t = \lim_{n \rightarrow \infty} \int g^{(n)}_t(u) Z_u d\mu(u) \]
where $g^{(n)}_t(u) = \int \phi_t(v) \overline{a_n}(w,u) R_Z(v,w) d\nu(v,w) du(w)$ is in $L_2(u)$, the integral is defined almost surely, i.e., on the paths of Z, and the limit is in $L_2(P)$. As particular cases of this example we obtain the following representations.

PROPOSITION 5. Let X be mean square continuous, T an interval and A a Hilbert-Schmidt operator on $L_2(X)$. Then
\[AX_t = \int g_t(u) X_u d\mu(u) = \lim_{n \rightarrow \infty} \int g^{(n)}_t(u) X_u d\mu(u) \]
where the measure μ on the Borel sets of T satisfies (ii) of the Lemma, $g_t \in \Lambda_2(R_x \times u \times \mu)$, the first integral is defined in quadratic mean, $g^{(n)}_t \in L_2(u)$,
the second integral is defined almost surely, i.e., on the paths of X, and
the limit is in $L_2(P)$.

PROOF. X has a measurable modification which is henceforth considered.
There exist finite measures μ, equivalent to the Lebesgue measure, and such
that $\int_T R_X(t,t) d\mu(t) < \infty$ [2]. Let $dr(u,v) = R_X(u,v) d\mu(u) d\mu(v)$. Since X is
mean square continuous, it has a representation $X_t = \int_T \phi_t(u) X_u d\mu(u)$ with
$\{\phi_t, t \in T\} \subseteq \Lambda_2(\mathbb{R})$ [2]. The result then follows from the last case considered in
Example 7.

PROPOSITION 6. Let X be mean square continuous on $[0,1]$, $X_0 = 0$ a.s., and
R_X of bounded variation on $[0,1] \times [0,1]$. Let A be a Hilbert-Schmidt operator on
$L_2(X)$. Then

$$AX_t = \int_0^1 g_t(u) dX_u = \lim_{n \to \infty} \int g_t^{(n)}(u) dX_u$$

where $g_t \in \Lambda_2(d^2 R_X)$, μ corresponds to $d^2 R_X$ as in (i) of Lemma, $g_t^{(n)} \in L_2(\mu)$
are of the form $g_t^{(n)}(u) = \int_0^t \int_0^1 a_n(w,u) d^2 R_X(v,w) \, dv$, and $a_n \in L_2(\mu \times \mu)$.

PROOF. The proof is obvious from Example 7 and the observation that

$$X_t = \int_0^1 I_t(u) dX_u, \ I_t \ \text{the characteristic function of the interval } [0,t], \ i.e.,$$

$$\phi_t = I_t.$$

LEMMA. Let E be an interval, E its Borel sets, r a finite, two-dimensional
spectral measure on $E \times E$, and K a Hilbert-Schmidt operator on $\Lambda_2(\mathbb{R})$. If

(i) μ is the finite measure defined on E by $\mu(B) = |r|(E \times B)$ for all $B \in E$, or if

(ii) $dr(u,v) = R(u,v) d\mu(u) d\mu(v)$, where R is a covariance and μ a finite measure

on E, equivalent to the Lebesgue measure and such that $\int_E R(u,u) d\mu(u) < \infty$,

then $L_2(\mu) \subseteq \Lambda_2(\mathbb{R})$, and there is a sequence of Hilbert-Schmidt operators $\{K_n\}_{n=1}^\infty$
on $L_2(\mu)$ with kernels $\{k_n\}_{n=1}^\infty$, that are defined from $\Lambda_2(\mathbb{R})$ to $L_2(\mu)$ by

$$[K_n f](u) = \langle f(\cdot), k_n (\cdot, u) \rangle_{\Lambda_2(\mathbb{R})}$$

and are such that $K_n \to K$ in the operator norm in

$\Lambda_2(\mathbb{R})$.

PROOF. Both (i) and (ii) imply that $L_2(\mu) \subseteq \Lambda_2(\mathbb{R})$ and that there is a sequence

\(\{f_n\}_{n=1}^{\infty} \) in \(L_2(\mu) \) which is orthonormal and complete in \(\Lambda_2(\mathfrak{r}) \). For (ii) this is shown in [2] and for (i) it is shown as Theorem 2 of [4].

In the sequel \(\langle \cdot, \cdot \rangle \) and \(||\cdot|| \) denote inner product and norm in \(\Lambda_2(\mathfrak{r}) \). Since \(K \) is Hilbert-Schmidt we have
\[
\sum_{n,m=1}^{\infty} |\langle Kf_n, f_m \rangle|^2 < \infty.
\]
For every \(f \in \Lambda_2(\mathfrak{r}) \) we have
\[
f = \sum_{n=1}^{\infty} \langle f, f_n \rangle f_n \quad \text{and thus} \quad Kf = \sum_{n=1}^{\infty} \langle f, f_n \rangle Kf_n = \sum_{m=1}^{\infty} \{ \sum_{n=1}^{\infty} \langle Kf_n, f_m \rangle \langle f, f_n \rangle \} f_m.
\]
Define
\[
k_N(u,w) = \sum_{n,m=1}^{N} \langle Kf_n, f_m \rangle f_n(u) f_m(w).
\]
Since \(k_N \) is in \(L_2(\mu \times \mu) \), it defines a (finite rank) Hilbert-Schmidt operator \(K_N \) on \(L_2(\mu) \). \(K_N \) is also defined from \(\Lambda_2(\mathfrak{r}) \) to \(L_2(\mu) \) by
\[
[K_N f](u) = \langle f(\cdot), k_N(\cdot, u) \rangle = \sum_{n,m=1}^{N} \langle Kf_n, f_m \rangle \langle f, f_n \rangle f_m.
\]
Then
\[
||Kf - K_N f||^2 \leq ||f||^2 \sum_{n,m=N+1}^{\infty} |\langle Kf_n, f_m \rangle|^2
\]
which implies that \(K_N \rightarrow K \) in the operator norm in \(\Lambda_2(\mathfrak{r}) \).

REFERENCES

