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SUMMARY
The symmetrical Tukey lambda distributions are the distributions of
[XA 1 (l—X)A] X A_l where X has a standard uniform distribution (range 0
to 1). Systems of multivariate distributions can be formed by applying trans-
formations

A A

_ i i -1
Y,o= [x, (1-%,) 71 % Ay

when Xi (1 =1,...,m) have a joint Dirichlet distribution (with O < Xi <

Z?=l Xj < 1). Since no more than one of the X's can have a uniform distri-
bution, though all have beta distributions, we are led to study distributions
of [XA - (l—X)A] when X has a general beta distribution on [0,1]. These
distributions are termed extended Tukey lambda distributions. Properties of

these distributions are studied. Properties of the multivariate ones are also

described and a numerical illustration is presented.

1. INTRODUCTION
The Tukey lambda distributions [2,7,8] have been found to be useful in a

number of univariate sampling problems. These are distributions of
&) Y = [a7" - @-DMA

where a > 0, and T has a standard uniform distribution, with density
PT(t) =1 (0 <t <1).

The transformation (1) is monotonic increasing if A > 0, and decreasing if

A< 0. If a=1, the distribution of Y 1is symmetrical. Some properties

of such symmetrical lambda distributions have been described by Joiner and

Rosenblatt [5].



If it is desired to form a multivariate distribution with variables
which can be obtained by some such transformation as (1), it is natural to
consider a joint Dirichlet distribution for Tl,...,Tm, with density

m
F[.Zoej] m 6.-1 m 90-1
(Eryernst ) = —d" Te, J 1- ) t,
1 m m j=1 j j=1 |
TTree,) -
j=0

(60,...,em > 0; tl,...,t

2
2) pTl,...,Tm

m

The marginal distribution of Tj is standard beta, with parameters ej,

22=0 ei - ej. Clearly, no more than one of the m variables T .,Tm can

100
have a uniform or indeed a symmetrical distributiom.

We are thus led to consider the distribution of Y idin (1) when T has
a standard beta distribution with general parameters © (> 0) and § (> 0).

We shall refer to r.v. Y in (1) when T has a standard beta distri-
bution as an extended lambda variable.

Since we can now obtain skew distributions even with a =1, we will
restrict ourselves to this case. In the next section, we will describe some

properties of this family of distributions, and in the final section we will

describe multivariate distributions with members of this family as marginals.

2. EXTENDED TUKEY LAMBDA DISTRIBUTIONS
If A > 0 the range of variation of
y = [ - a-n'nt
is from A—l to A+l. If A < ¢ it is unlimited. Corresponding to A = 0,
we take Y = log[T/(1-T)] which also has unlimited range of variation

(see [3]1).

The density function of Y is

G) ey = 3,017 2 a-nf Tt s -0



where each t has to be expressed in terms of y +to satisfy the relation
y = [£ - a-o'nh
(A simple explicit form for pY(y) is not available.)
The r-th moment about zero is
o

) [B(e,)17 AT ¥
j=0

() DY B+ =1, ¢+ ).
In the case X = 0, the j~th cumulant of Y is X,(Y) = w(j“l)(e) +
4
(—l)Jw(j—l)(¢), (see [3]). From (4) it is possible to compute the mean, var-

iance, VB, and 82 of Y. Some values of /61 and 82 are given in

1
Table 1.

Consider now the variation in shape of the distribution of Y with
changes in X, the parameters 6 and ¢ having fixed values. Since

2 2
Y- (@d-y) = 2y -1 = Y - (1-Y)

we see that the values of /Bl and 82 must be the same for A =1 and
A = 2. In each one of these two cases we have a beta distribution with the
same parameters (though different range) as that of the original variables.
In virtue of the continuity of the function involved, 82 must take a maxi-
mum or minimum value for some value of A between 1 and 2. It is, in fact,

a minimum when 6 = ¢, but can be a maximum when 6 # ¢, and occurs for a

1.45 -- see Table 2 for

value of X 1in a remarkably narrow range about A
a few examples. By considering neighboring loci of (/81,82) (for A varying)
with slightly different values of 6 and ¢ it can be seen that, at least
for some values of /Bl and 82 there will be more than one set of values

(9,0,1) giving these values for the shape parameters.



Table 1

Moment-ratios for extended Tukey lambda distributions

0 ¢
0.25 0.25
0.25 0.5
0.25 1.0
0.25 5.0
0.25 10.0
0.5 0.5
0.5 1.0
0.5 5.0
0.5 10.0
1.0 1.0
1.0 5.0
1.0 10.0
5.0 5.0
5.0 10.0

10.0 10.0
Table 2

0 ¢
0.25 0.25
0.25 0.5
0.25 1.0
0.25 5.0
0.25 10.0

0.5 0.5

0.5 1.0

0.5 5.0

0.5 10.0

(* = minimum)
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This might be expected since there are three parameters available to give
two specified values (/Bl and 82). Another way of looking at the situation,
is to consider what happens when A is fixed, but 6 and ¢ vary. It is
known that for A =1, the region between the boundary 62 - (/61)2 -1=0
and the Type III line 26, - 3(/81)2 -6 =0 is covered. For A > 0, gen-
erally, the region covered is that between the line 82 - (/81)2 - 1=0 and
the line (Johnson and Kotz [4]) corresponding to (Type III variable)k. The
latter is approached as ¢ - «» with 0 remaining constant.

Clearly, pY(y) + 0 or = at the extremes of the range of variation of
y, according as pT(t) + 0 or o, for i > 1.

Other modal values (if any) will correspond to solutions of the equation

dpy (¥) dpy (¥) dpy (¥) 4

- - , dt dt
(5) TS = 0 (note that iy = it &y and Iy # 0).
Since
R S A T T T T ¢ o D Y AR ¢ P
= - _ - _ _ ’
pY(y) dt t 1 t tx 1 + (l-t)x 1

(5) is equivalent to

G)' 6-1-(-Du- (-Du@?-n*t+nt = o

with u = t(1-t). Note that u increases from 0 to « as t increases
from 0 to 1.

From (5)', we have

" A-1 _ (¢-Mu - (8-1) _ 1 - Au + (¢u-8) _
(5) u = oA (-Da - u=a- Gud) - g(u), say.

We consider a few special cases.
For X < 1 < min(8,¢), g(u) increases from 0 to <« as u increases

from (6-1)/($-2) to (6-1)/(¢-1), while u>‘—l decreases as u increases.



Equation (5)" thus has just one root (since for u outside this range, g(u)
is negative).

A similar situation (in reverse) holds if 1 < A < min(6,¢). If
¢ < min(l,\) and © > max(l,A) then g(u) 1is always negative (for u > 0)
and (5)" has no solution. In this case, since 9 > 1 and ¢ < 1, pY(y) >0
as y-> -1 and - » as y - 1. The density function of Y is J-shaped, as
is that of T. A similar situation (in reverse) holds if ¢ > max(1,)) and
8 < min(1,A). For ¢ > 1 and 6 > 1, pY(y) =0 at t =0 or 1, hence the
slope of pY(y) is also zero at these points.

An interesting special case corresponds to A = 6+¢-1. Then (5)"

becomes

-1
9‘1 (e+¢~2)
-1

We also note that in the symmetrical case 6 = ¢, (5)" is satisfied by
ul-l - 1
whence t = % and the corresponding modal value for Y dis 0, as is to be

expected. The distribution can, however, be bimodal (with antimode at 0).

This is so, for example, if X > 1 and 6 = ¢ < %(A2-1+2).

3. METHODS OF FITTING

Although the values of /Bl and 82 do not determine the values of 0,
¢ and A uniquely, it is possible to fit the extended lambda distributions
by maments, using the first, second and third samplie moments. (If the range
of variation is finite, it needs to be known, also.) The procedure is not,
however, very convenient, at any rate at present. An iterative procedure
using a trial value of X to produce values of T corresponding to observed
Y's (either using tables or a computing machine) can be employed. From the

"observed T's" values of 6 and ¢ can be obtained by equating sample mean
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and variance (of T) to the corresponding values (6(6+¢)_l, 6¢(6+¢)—2(6+¢+1)_1
respectively) for a standard beta distribution. Using these values of © and

¢, a new value for A can be obtained by solving the equation

AT (8+0) [T (8+2) _ T(8+))
T(B+d+A) () r(¢) |~

Sample mean Y

The process is then repeated.

Alternatively a form of fitting to specified percentile points might be
employed.

Whatever method is used, tables enabling the transformation
y = tk - (l—t)l to be easily inverted are useful.
4, MULTIVARIATE DISTRIBUTION

Consider the joint distribution of Yl""’Ym where

A A
i} L qom y i, -1 )

and the joint density of Tl,Tz,...,T is given by (2). The conditional dis-

m
tribution of Tj’ given any subset Ta Ta of the remaining T's, 1is
' 120000 3y
. m k A
beta with parameters ej, zi=Oei Zi=leai ej and range of variation O

k
to 1 =~ zh=1Tah'
The corresponding conditional distribution of Yj is not an extended
lambda distribution. It is, one might say, a ''generalized extended lambda dis-

tribution", being the distribution of
A

A
[(cT') J - (1-eT") j]xj’l

when ¢ =1 - EE=lTah’ and T' has a standard beta distribution with param-

m _ 7k - : ps -1
eters Gj, Zi=061 Zi=leai ej and range of variation 0 to Alj .
The range of variation of Yj is thus from -1 to Aj—l[c J--(l—c)

A
3y,

Although this distribution is undoubtedly of somewhat complicated form---gimple
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expressions, even for moments, not being available -- we can get quite a good
‘ idea of the joint distribution by considering percentile points of the array
distributions.

The median regression of Y, on Y Y

, for example is
Byseees 3

AL A
Y Y = ry 3 - (1-c1y) 3
Med (le ayseens ak) (cTy) (1-eTy)
where
m k 1
I, (6,, )6, - )8 =-86,) = =
Ty a0t i1 2
k A A
c = 1- ) T ;3 Y = [T, B (-1, ) h]Ah L
h=1 %hn % h h
(Note that T, does not depend on Y Y .) An approximate formula for
% ayseecs By
T% (based on (Mean-Mode) * 3 (Mean-Median)) 1is
1 k k -1 ¥ o4
0, + =(6.-0 .- 0 6.+6 .+ g =2 6, +0,+ 0 .
{ | 3( j 0 iZl ai)( j o izl ay ) } (J 0 z a )

i=1 "1
Other percentile points can be obtained in a similar way, but special

care must be taken to allow for the sign of A..

The effect of a change in the values of Y

Y from :
apseees Ay yal,...,yak
to y! y' 1is easily assessed. Since
senes’dp
Po- 3
1.(8., 6, - 6 - 6.) if A, >0
R A R S J
Pr(Yy, < =
s ylyal’_ "yak] m k
1-1.(6,,)6,- )6 -6, if A, <0
R = B = W 1
where
A, Ao
y = [y ) - @-et) Iy
with
k A A
_ -1 h _ _ h -
c = 1- 7 £, Oy Iy (1-t,) ] vy)
i=1 i



we have
m k
ICt/C'(ej’-zoei—izleai_ej) if Aj > 0
' ' =
Pr[Yj < ylyal,...,yak] B 0 "
1- Ict/C,(ej,izoei-izleai—ej) 1 Ay <0,
where c¢' = 1—2§=1t;., provided of course that y lies within the conditional

limits of variation of Yj in each case. If Aj > (0, these are

A A

-1 to [cd - (1-c) Jij'l
A, Ao
-1 to [e'd - (@-c") J]Aj
respectively, if Aj < 0, they are
Y A,
A le T @1-0) 1 to =,
1 A,
Aj [c' L (1-¢") J] to o,

respectively.
Tables of percentile points of the beta distribution [1, 6] can be used
to construct regions of various kinds containing specified proportions of the

joint distribution.

5. NUMERICAL ILLUSTRATION

As a simple example, we shall consider the case
6, =2, 6, =90, =1, Al = 0.5 and Az = 0.5.
Then

Y, = 2[/Tj - /<1—Tj>] G =1,2),

where T, has a beta distribution with parameters 1 and 3. The moments and

moment ratios of Yj are

E[Yj] = - - = -0.089; var(Yj) 0.1093;

45
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/Bl(Yj) = -3.391 and B, = 14.903.

(The (81,82) point is in the Pearson Type I region.) The conditional dis-

tribution of Y given Y has cumulative distribution function

2’ 1’
; 2
Pr(y, < yIYl =yl = 1.2 = 1- @19,
z I3 3 %
where y = 2[(ct)?-(1l-ct)?] with c¢ = l—t1 and y, = 2[t12—(l-t1)2] (so

that according as vy 20

e, = ¥ IFGGy, D7D

Constants needed for calculation of a few percentiles of this conditional

distribution are set out below:

P = Prly, < y[Yl =y;] t = 1-Y/(@1-P)
0.01 0.00513
0.05 0.02532
0.25 0.13397
0.50 0.29289
0.75 0.50000
0.95 0.77639
0.99 0.90000.

1
z

p
Then y = 2[{t(l-tl)} - {l—(l-tl)t}2] where t, 1is given in the fol-

1
lowing table

Y1 & ) Y
-0.5 0.32600 0.1 0.53533
~0.4 0.36000 0.2 0.57053
-0.3 0.39453 0.3 0.60547
-0.2 0.42947 0.4 0.64000
-0.1 0.46467 0.5 0.67400

0 0.50000.

Thus for example, the median of YZ’ when Yl = 0.3 is

%
2{{0.29289 x 0.39453}° - {1 - 0.29289 x 0.39453}%] = =1.201
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For Yl = -0.3, the median is
¥ %
2[{0.28289 x 0.60547}° - {1 - 0.29289 x 0.60547}°] = -~ 0.986.

Note that since t = 0.29289 for P = 0.5, the conditional median is not

greater than
% 3
2[(0.29289)% - (0.70711)°] = - 0.547

whatever be the value of Yl'

6. CONCLUDING REMARKS

Although the preceeding results are mathematically not very elegant, the
distributions do have some practical appeal. In particular, computation of
probabilities, is relatively straightforward. The original Dirichlet distri-
bution determines the mathematical structure of the results. We have not so
far been able to find a natural parent distribution giving formulae which are
any simpler.

By comparison with Dirichlet distributions, the extra parameters
Al A

TELVIERE

value of this feature. It is likely that in some, perhaps most, cases only a

,Am introduce added flexibility. Evidence is lacking on the general

few of the variables will need transformation (i.e., most A's will be 1 (or,
equivalently, 2)). In such cases, the untransformed variates will, of course,
still have conditional beta distributions (with nonstandard range) just as in

Dirichlet distributions.
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