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1. INTRODUCTION

We consider the following problem. Three independent random samples

(k) _ (&) (k) (k) - . L=
ga = (Xla ’XZa ”"’Xpa ', a—l,z,...,nk, k=0,1,2 (L.

from three unknown p-variate populations with continuous cumulative distribution
functions (cdf's) F(O)(g), F(l)(g), and F(z)(§) are given. It is known that
F(l)(g) and F(z)(g) are distinct and F(O)(§) is a mixture of F(l)(g) and F(z)(§),
i.e.,

FOG =0 1P + @-0FP @, oea (1.2)

The 'mixture rate' O is unknown. To estimate 6.
For this problem we consider procedures which utilize only the observational
ranks, and hence, can be used when ranks only are available.

For the i-th variate, let us rank all the N=n +n,+n, observations from the

012
three samples together, and let the rank of Xis) so obtained be Rgz). In this
way, from (1l.1) we derive the rank vectors
k k k k
g(g ) - (R](_a),Réa),...,RIga))', o=1,2,...,m 3 k=0,1,2 (1.3)
Now suppose a pxN score matrix (depending on N)
i G (D P (1.4)
is given. With its help, we convert the.ranks into rank scores
: k k .
aNi(Ria)) = aia) (say), a=l;...,nk; k=0,1,2; i=1l,...,p. (1.5)
Here aig) represents the random rank score corresponding to the observation Xéi).

Let



&) _ (k) _(k) C (k) _ e
a, = (a a ...,apa ', u—l,2,...,nk, k=0,1,2

la 27 2a
Pk
(k) _ =(k) —(k) =(k)y _ 1 (k)
e R TEN s azl a, - (1.6)
(0)

The relation (1.2) means that we can regard the n, observations from F

to have been taken in the following two steps. First, ng Bernoulli trials with

success probability O are performed. Then, for each trial, an observation from
(1D L(2) . . . , ,
I3 or F is taken according as the trial shows a success or a failure. With
this interpretation, it immediately follows that if the number r of successes were
observable, we could disregard the rest of the data, and take t = r/n0 as our
estimate of 8. Since r is not observable, we use the data to find some sort of

'estimate' of t.

If r, as well as the serial numbers Qg 50y e e 50 (1<a, <a <...<ar§p0) of the

—"1 "2 :
trials resulting in success are given, then, conditionally, Xéo), a=al,a2,...,ar,
d. . . X(l) _l 2 d (0) #
would have the same distribution as X, a=1, ,...,nl an ga , O al,az,...,ar,
the same distribution as Xéz), a=l,2,...,n2. Hence, given r and al,az,...,ar,
the random score vectors §§0), a=ul,a2,...,ar would be interchangeable with

(2)

(0) . .
and 2 ", a#al,az,...,ar would be interchangeable with a, "

1
gé ), 0L=l,2,...,nl

d=l,2,...,n2. Thus, we would have
w2 (0) _ -(1) _ =(2)
Bz |r,ap,...,0) = t E(a |zyoy,.0) + (1-0)E@E 7 [r,0p,...50)

so that unconditionally also,

G - 2™ - a-0:?®) = (1.7)
For any fixed non-null p-vector %, we have, therefore,

E[(%'é<2) _ g'é(O)) _ t(%lé(z) _ &v'é(l))] =0 (1.8)



This suggests that we take as a determination of t, and hence, as an estimate of

0

~

(1)

provided the denominator is non-zero and the ratio lies in [0,1]. As F and
F(Z) are distinct, for a suitable score matrix éN’ and a suitably chosen £, these
conditions are expected to be realised with high probability at least in large
samples. We call 5(&) as 'the fixed-% linear rank-score estimate' of 6. 1In the
sequel, we shall allow { itself to be determined by the data so as to achieve
maximum asymptotic efficiency. The corresponding estimate would be called
'optimised linear rank-score estimate'.

In the remainder of this section we consider some general results on random

sequences that will be used repeatedly later.

LEMMA 1.1 If g(x) is a real-valued function continuous over an open p-dimensional

interval I, a

N is a p-vector sequence such that for sufficiently large N, §NC:JC:I

where J is a bounded closed interval and XN is a sequence of random p-vectors such

P P
that gN - ag? o, then, g(gN) - g(gN) - 0.

Proof. Clearly we can find a closed bounded interval J', such that JCJI'C I such
that for sufficiently large N, aNeJ' and gNEJ' with probability arbitrarily close
to 1. As g(x) is uniformly continuous in J' the lemma follows.

Given a sequence of random p-vectors §N and a sequence of positive definite
matrices EN’ we say gN is asymptotically N(Q,EN) if for every non-null p-vector %,
&'XN/[%'QN&]% converges in law to N(0,1).

For a symmetric matrix A we use the notations m(A) and M(A) to denote the
minimum and maximum characteristic roots respectively. &(z) denotes the standard

normal cdf.



LEMMA 1.2 Let XN be a sequence of random p-vectors and ZN(pxp) be a sequence

of positive definite matrices such that gN is asymptotically,N(o,ZN). Then,
provided

0 < lim inf {m(Z)/M(Z)} (1.10)

N->o0

we have, for every z

1
e

< z} » ©(z) uniformly in 2#0. (1.11)

P K (2" 4]

Proof. Let us write m(ZN) = mys M(ZN) = MN. Since replacement of gﬁ and ZN by
=L -1 1
MNZKN and M EN does not change g'gN/[g'gNg]é, without any loss of generality,

we may assume M=l for all N. Then (1.10) can be restated as
0 < lim inf m_ < M_ = 1. (1.12)
n inf my <y

The implication of (1.12) is that given any sequence'{Nk} we can find a

subsequence'{Ni} such that lim zN' exists and is positive definite.
ko Tk
Suppose (1.11) does not hold i.e., there is a z' such that

1
-3

sup P{R'X [2'2,8] * < 2"} - o(2")] # 0. - (1.13)

%0
Then we can find a number €>0 and a subsequence'{Nk} such that

1
-

sup [P{L'X, [2'Z, &1 "< 2'} - 8(z")| > ¢ for all k (1.14)
k k *

L#9

and by (1.12) we can choose {Nk} so that

lim §N = some positive definite matrix, say, §0. (1.15)
koo k

Ly
Now, (1.15) together with the fact that Q'XN /[g'gN &]2 + N(0,1) for all &%g,
k k

s . .
implies that XN - XO where we write zo for a random vector distributed as N(g,go).
k



We wow apply a general result on weak convergence due to Ranga Rao ([4] Theorem

4+.2) from which we get that

sup lP{fg"gN <z'} - Py <z'} >0 (1.16)

b k

Now let us denote by Y. a random vector following exactly the distribution

N

k
1
N(g,§N ). Then (1.15) implies XN > Xo’ and again by Ranga Rao's result, we get
k k
sup |P{2'Y, < z'} - P{g'Y <z} >0 (1.17)

#o k
From (1.16) and (1.17) we deduce,
sup |P{L'X, < z'} - P{'Yy <z'} =+o0
2 B R
and hence,
.
2

sup |P{&'X. [&'Z 2172 < 2'} - P{a'y_ [2'%. 2]
%40 S TN NS

[ty

<z'} »o0

1
-3

sup|P{L'X. [2'Z, &1 % < 2'} - 8(2")] » 0. (1.18)
k k

%#o
But this contradicts (1.14). Hence the lemma.

Note. Under the conditions of the lemma, if %N is a sequence of non-null vectors,

] . . . . T
then %N§N is asymptotically distributed as N(O, &NEN&N)'

2. SOME PRELIMINARY RESULTS

In the following sections we shall assume that for every N there is a triplet

(no,nl,nz) such that ng + n, + n, = N. We write

Ak = nk/N, k=0,1,2, )‘o + Al + >‘2 =1 (2.1)

Whenever N—+w ye assume the following holds.



ASSUMPTION I There is a number A¥ (O<A*<%D such that

At < A< 1-A%,  k=0,1,2, for all N ' (2.2)

We write

1 = A, FO + 24P e+ 4P (2.3)
By (1.2), this gives
Hw = 0o @ + 0ya-en)F? (. (2.4)

As AO’ Al’ AZ vary with N, so does H(x). (2.2) entails

PP < Lu,  k0,1,2. (2.5)
We write F%E%(x), H[i](x) for the marginal cdf's of F(k)(§) and H(§) correspond-
(k)

ing to the i-th coordinate and F j](x,y), H[i j](x,y) for the bivariate
b

[i,
marginal cdf's of the same corresponding to the i-th and j—-th coordinates.

Let the empirical cdf's based on the k-th sample be ﬁ(k)(x). Then the same

based on the combined sample is

o =2 P + 2P @ 0, P @ (2.8
The corresponding marginal cdf's are as before denoted by ﬁE?;(x), ﬁ[i](x) etc.
Writing
U(x) = 0, if x< 0,
’ (2.7)
=1, if x> 0,
we have, clearly,
n
~ (k) - L k (k)
F[.](x) o a=1 U(x Xia )

(2.8)



Following Hajek [1] we suppose that there are p 'score functions' @, (u),
i
defined over O<u<l, i=l,...,p, and that, for each i, q&(u) determines the i-th

row of the score matrix (1.4) by either of the following two relations:

ags (@) = @, (N+l o=1,2,...,N, (2.9)

o @ = EQ W), a-1,2,...., (2.10)

(U(l) < U(z) eee < UéN)

are the order statistics of a sample of size N from
the uniform distribution over (0,1)).

As in [1] we assume that the following condition is satisfied by the Qi's.
ASSUMPTION II  For each i=1,2,...,p,
9; (W) = ®,(w) - ¢,(v) (2.11)

where Qil(u), ¢&2(u) are both nondecreasing, square integrable and absolutely
continuous inside (0,1).
This implies that ¢i is square integrable over (0,1) and also that for any

0<a<bKl,

b
9, (B) - @ (a) = £ ¢} (w)du (2.12)

where the derivative Qi(u) exists almost everywhere in (0,1).

Let us write

uik) = f q&(H[i](x))dFEgg(x) (2.13)
ofj‘) SR IRRCIONTACH ]<y)>dek) 1 G55) u(k)-ugk) (2.14)

1,5=1,2,...,p; k=0,1,2.



These depend on N through H(x). However, (2.5) together with the square inte-

() (k)

zrability of the Qi's, implies that He s Ojj are all uniformly bounded. Writing

® _ . ® W,y o) _ |, (&) i
u (Ul ,---:Up )'s L (Gij )i,j=l,2,...,p’ k=0,1,2 (2.15)
from (1.2) we get I

(O D (1), @

(2.16)
Finally, we assume that the following conditions hold as N-»,
ASSUMPTION III
(a) for at least one i, lim inf (pgz)—ugl)) > 0,
Noreo i i
(2.17)
or lim sup (u§2)_u§l)) < 0.
i i
Nowo
(b) min {lim inf m(g(k))} > 0. (2.18)

k=1,2 N-»00

The implication of III(a) is that, for at least one value of i, the mean
, (1) . (2) .
value of q)i(H[i](Xi )) is larger than that of cpi(H[i](Xi )) (or vice versa)

1) a4 72

for all but a finite number of wvalues of N. Since F are supposed to
be distinct, for proper choices of the score functions @i, it would be possible
to get this difference reflected in the mean value of ¢i(H[i](Xi)) for at least
one i. Thus III(a) is not unduly restrictive. Assumption III(b) is a sort of
'nonsingularity assumption', which implies that for none of the two populations
F(l), F(Z), any of the p variables becomés ever 'useless' in the sense that its
value is predictable from those of the other variables.

With the above notations and assumptions, we now state and prove some results

to be used in the subsequent sections.

THEOREM 2.1 Under Assumptions I and II




10

-(k k) P :
ai ) ui ) - 0, i=1,2,...,p; k=0,1,2. (2.19)

Proof. To prove (2.19), it will be sufficient to show that

=(k)  (k)y2 _ =(k) =(k)_ (k)q2
E(ay "-uy )° = Var(a; ") + {Eai w1 >0, (2.20)
C (k) (k)
From (2.11), writing aNi(al@iq)’ as. (@iq) (¢ ), to denote quantities
obtained from the function ?iq(u) exactly as ay (a), aiz), Eik) are obtained

from ¢&(u), q=1,2, and letting c stand for a generic constant, we have
(k)| _ =(k) _ (k)
Var(a ) = Var(ai (@il) a; (¢i2))

2 var @ (9, 1)) + Var G (o,,0))

in

A
(¢]

1 ¢ N -
w2 Ugmp oy (@legg) = ay; (00"

+ Xagl[aNi(a!¢iz) - ay; (¢, ,)1%} (2.21)

- 1 ¢N _ . . .
where aNi(cpi ) = N 2a=l aNi(al@iq), q=1,2. The last inequality follows directly

from Hijek's Variance Inequality ([1] Theorem 3.1), as

- (k) _ 1 (k) _ 1 NG
3 (?iq) n zoc—l (Q Zorl aNl( |¢iq
and a ,(al@i ), is nondecreasing in o=1,2,...,N. Now as @iq is square integrable

and aNi(a|¢iq) is as in (2.9) or (2.10), we have as N»x

N 1
l - 3 —
ﬁ'azl[aNi(dl@iq) - Ay @ )17 é log (W9 1%du,  q71,2 (2.22)

where aiq = fé ¢iq(u)du (see [2] pp. 158, 164). From (2.21) and (2.22) we con-

clude that

Var(a(k)) + 0 as No»o , (2.23)
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. Next consider the second term in (2.20). Under our Assumption I, by lemma

5.1 of Hajek [1], given any €>0 we can find a decomposition
9 (W = Y (W + ¥ W) - Y, W (2.24)

such that q'Ji is a polynomial, wil and l,()iz are nondecreasing, and

1 1
_(f) wil(u)du + éwiz(u)du < g. (2.25)

Hence, using notations similar to above,

2900 =m0y - e e e s P, -
°° () ~(k) ¢ (k)
gy Gy GDAF T - Lag Wy fy, (g GRG0
‘ Hence
[Eaik)_uik)]z < c{[EEi(k) (q)i)__o{wil(ﬁ[i](x))dFEg (x)1% + [Eaik’ (W, )12

+ B ) 12D fpg (B GOIAFE G 12 + [ [y, 0, GRS G012} (2.26)
Now ]’Ui being a polynomial has bounded second derivative in (0,1), and hence,
by a result of Hijek (see (4.27) in [1]), the first term on the right of (2.26)

has limit QO as N+wo. Further, by Schwartz inequality,

= (k) p 65
R ;1% + [iwiq(ﬂ[i](x))dF[i](x)]?}

I e~1p0

q

; AT e . )17 + T, G- 60012488 60}
< LG L fay el Yiq i) [1]
q=l o ag=1 —o0

< cC

N 0
1
R {5 azl[aNi(ulwi‘l)]z +-o{[ll)iq(u)]2du} (2.27)

|
o~ N

1
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by (2.2) and (2.5). Now, just as in (2.22), we have

2|
I o~

1
. 2 2
. l[aNi(alwiq)] é,wiq(u)du. (2.28)

From (2.25), (2.27) and (2.28), it follows that the other terms on the right
of (2.26) can be made less than an arbitrary quantity by choosing N large

enough. Hence

=(k) (k)
[Ea; -1 71 >0 as N, | (2.29)
(2.23) and (2.29) imply (2.20). Q.E.D.
We define
n,
~(k 1 k) (k =(k)-(k »
300 L L 00,00 509500 2.30
J k o=1 3 |
where agk) is as in (1.5).
pe
THEOREM 2.2 Under assumptions I and II
. P
500 (B

ij ij i,j=1,2,...,p; k=0,1,2 (2.31)

where Oig) is defined as in (2.14).

Proof. As ugk)

N i=l,...,p are uniformly bounded for all N, Theorem 2.1 together

with Lemma 1.1 imply that

i

200300 _ 00,00 8
i J i 1

Hence, to prove (2.31), it will be sufficient to show that

n

k
Lot m 9, (B G e, G GNAF Gey) > 0. (2.32)

nk a=1 1a JU

The proof will be similar to that of Theorem 3.1 of Puri and Sen [3]. We only
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sketch the outline. First using the decomposition (2.24) we can show that the

L.H.S. of (2.32) can be written as

D

= 7 a8 wprald W —f f by G L (0)ar

k o=1

](x,y)+R (2.33)

where by application of Schwartz inequality and use of (2.2), (2.5) and (2.28),

it can be shown that IRI < c*c for sufficiently large N (c is a generic constant).
Hence to prove (2.32), it will be sufficient to show that the difference between
the first two terms in (2.33) converges in probability to zero. Since ¢i is a

polynomial, it is known that

(o) Oy - ok
) =¥ G = O

E p; (g 1 1

(see (2.9) and (2.10)). Hence it will be sufficient to take ay (alw ) =Y, (N+l
Thus recalling (1.5) our problem reduces to showing that

; R(k) R(k)

Bk a=1

(k)
by D) - {w {w by (B GO, (AR L Goy) e (2.34)

N+l

converges to zero. As wi has bounded second derivative in (0,1), by Taylor

expansion, we may write

Ry ( ) R(k) (k) (k)
ig, _ k _ '
Rig (®)
1 ig, k
sl e w a0y (2.35)

i=1,2,...,p-

Substituting (2.35) in the first term of (2.35) we get that (2.34) is equal to

(say)
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(k)

[1,3] oY) HRE

jet
k © o
L QI GO
' n azlwi(H[i](Xia D)y (s (X)) [m {oowi(H[i](x))wj (i () dF
(2.36)

Using the notation (2.7),

k k !
917 v,

and hence, given Xii), can be considered asvthe sum of N Bernoulli variables.
Using this fact and Schwartz inequality, it may be shown that in (2.36) R* is
the sum of terms each of which converges in mean square, and hence, in prob-
ability to zero. As, in (2.36), the difference between the first two terms

converges in probability to zero (by the Khinchin Law of Large Numbers), the

required result follows. Q.E.D.

The following lemma will be required in proving the next theorem.

‘ LEMMA 2.1 Under assumptions I and II, as N-x,

/ﬁ-E{Eio) -9 Eil)—(l—e)5§2)} >0, i=1,...,p (2.37)

Proof. We recall that, if t denotes the unobservable proportion of 'observations

erom V1 among x{?, 0=1,2,...,n , then (1.7) holds. Hence (2.37) will follow

if we can show

E{‘/ﬁ'(t—e)'(e—zi(z)—éil))} +~ 0, i=1,...,p,

or equivalently, as E(t) = 0,

E{vﬁkc—e)[(5(2)-5§1))—E(5§2)-5§1))]} >0, di=l,...,p (2.38)

i
As t is a binomial proportion, by Schwartz inequality, the modulus of the left

hand member of (2.38) is dominated by

/(6(1-0)+ Var -2} < A261-0) [var(B{D) + var(3: )1}
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which tends to zero by (2.23). Q.E.D.

THEOREM 2.3 Under assumptions I, II, and III(b), as N-w, 5(0)—65(1)—(1—6)5(2)

2 -0} 2
is asymptotically distributed as N(Q, ﬁL.E(O) + kil g(l) + a-e°

o oy 9

2(2)) where

~

£ is given by (2.14) and (2.15).

Proof. We have to show that for any nonnull p-vector 2=(21,...,2p)',

So » -+ N(0,1) (2.39)
{ gy 4 8 ey, (1207 (1-8)* (2)2}

-~ ~ T ~~

o l 2

Now, by assumption III(b), the denominator in

(2.40)

,«
|=

g5y 4 g2 . N
o~ T 7 i A 2

is bounded away from zero. So, by lemma 2.1, the expression (2.40) converges

to zero as N»e. Hence (2.39) will follow if we can show

%'(é(o) aP_q- e)a(z)) E{g'(5(0)—65(1)—(1-9)5(2)}

+ N(0,1) (2.41)

1
2 a2 “3
no ~ o~ ~ l ~ o~ ~ nz ~ o~ ~

(2.41) follows from the results of Hiajek.[1l] in the same way as Theorem 4.1 of
[{3]. Specifically, one has to show first that when Qi’ i=1,2,...,p, have bounded
second derivatives in (0,1), the left hand member of (2.41), has asymptotically

the same distribution as
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n
RES > SRR ](x(°)>] = ) 2o xD))

(X
Dy =1 i=1 © 1 a=1 i=1 * [1]

(l 6) (2)
agltlglz ¢, gy Xy N1}

slci

e RO
n -~ - ~ nz

o 1

This follows by an application of Hajek's [1] inequality (4.26) (the in-
equality actually holds under both (2.9) and (2.10)) and Assumption III(b). As,
by Lindeberg-Feller Central Limit Theorem, (2.42) is asymptotically distributed
as N(0,1) (see (2.14)), we get that when @2, i=1,...,p exist and are bounded,
(2.41) holds. Generally, under Assumptions I, II and III(b) we use the
decomposition (2.24) as in [1], to show that we can approximate the lgft hand
member of (2.41) arbitrarily closely by another expression of exactly the same
form but based on polynomial scores-generating functions wi. Hence the theorem
follows. (Note that because of the particular nature of our problem, we do not

require a 'centering assumption' as in [3]) Q.E.D.

3. FIXED-Z LINEAR RANK SCORE ESTIMATE

Given a nonnull vector & (pXl) in (1.9) we have proposed

Ol(—(z) (0))
%v(écz)'_ é(l))

6 =61 = (3.1)

as an estimate of 8, provided the denominator is non-zero and the ratio lies

in [0,1]. Let & be such that

1im inf 2" @ -y Py >0 (3.2)
N0
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Under Assumption III(a), it is always possible to choose £ so that (3.2)

@, ®) 5 o,

i5 realised, (For instance, we make take £i>0, if lim inf (M,
i

£ <0, if lim sup (u(z)

(15 .
i P ) < 0, and £i=0, otherwise.). By Theorem 2.1, and

(2.16) we have

P (3.3)

~

(3.2) and (3.3) imply that, with probability approaching 1 as N+, (3.1) gives

a well-defined estimate of 0. In fact, as by our assumptions, the elements of

~

. P
u(k> remain bounded, by Lemma 1.1, we immediately get 6-0 > 0, so that 6 is a

~

consistent estimate of 0. Furthef, by the same argument
- - - -1 P

and by Theorem 2.3, Vﬁ'%'{é(o) - Gé(l) - (1—6)5(2)} is asymptotically normal

with mean 0 and variance

N g0y gz o Mgy (g gy2 . N
n ~ = = n, ~~ ~ n

o} 1 2

As, by our assumptions, (3.5) is bounded, /ﬁ'&'{:(o)— 5(1)-(1—6)5(2)} is

bounded in probability. Heﬁce, by well-known results,
has asymptotically the same distribution as

So, VN (5—6) is asymptotically normal with mean 0 and variance
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sy gz o Mgy My gogy2 o B
HO ~ -~ nl ~o ~ nz

%lg(z)%}{&'(E(z)_g(l))}—z (3.6)

By the second relation of (2.16), (3.6) can be written as

N 2 1 -2 N N 1
6c1-0) + X4 @@y + o 4 o+ -0 P
n ~ = ~ ~ n n, '~ n n,’ = bt
o o 1 o 2
(3.7)

It is to be noted that the first term in (3.7) represents the asymptotic
variance of N(t-8).

So far we have considered £ as a fixed non-null vector. Before concluding
this section, we note that, if in (3.1) we replace % by &N’ where &N is a
sequence of non-null vectors, then provided (i) the elements of &N are uniformly
bounded and (ii) %N satisfies (3.2), the above conclusions will hold true for

é(&N) as well. This is because, (3.3) and (3.4) obviously apply to %N’ and

asymptotic normality of Vﬁ-&&{é(o)—Gé(l)—(l—e)é(z)} with mean 0 and variance

N g0y g2 N gsMy a2 . Hg'p g
n ~N~ ~N n ~N~ ~N n oo bt
o] 1 2
£ . . - 2 N (k)
ollows by lemma 1.2, since by our assumptions the latent roots of 2k=0 o z
k

are bounded away from both zero and «.

4. OPTIMiSED LINEAR RANK SCORE ESTIMATE
In the previous section we have seen that the second term in the expression
(3.7) for the asymptotic variance of /ﬁ_(é(%)—Q) depends on £. In this section we
investigate what will be its minimum value and whether it is possible, by any means,
to attain this minimum. The problem is involved because the matrix in the second
term of (3.7) involves the unknown 8 but is still tractable provided we are pre-

pared to solve higher degree polynomial equations. We first state the following

well-known algebraic lemma.
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LEMMA 4.1 For a positive definite matrix G(pXp) and non-null vector §(le),

min

= {8'¢
o (

1
1

Hecin]

%
)2

oo

and the minimum is attained for G = g*$ where g is an arbitrary non-zero

number.

By our Assumptions III(a) and (b), for sufficiently large N, E(z)—g(l)=5

(say) # o, and

N
6(;"

(o}

+olyr M 4 - &+ -0 - ge6) (say) (4.1)
1 o) 2

is positive definite. Hence, by the above lemma, the minimum value of the asymptotic

variance (3.7) of vﬁ?é(g)-e), over all possible choices of {, is

N

n
(o]

6(1-0) + Y+ (8¢ (ore1 (4.2)

If 6 were known, to attain this minimum in 6(&) we could take £ so that
G(e)L = ¢ (4.3)

Of course, the solution of (4.3), which we denote by &N would depend on N. But
as noted at the end of section 3, the results of that section would still remain
true (G(6) and § being bounded, so are the elements of &N).

These considerations suggest that to estimate § in an optimal manner we may

.

proceed as follows.

Let g(k) = (aig)) where 8§?) is given by (2.30). For any s (0<s<l), we set up
8s) = s+ e8P + e+ -9 HE®, (4.4)
N n, n, "~ n n, =

Consider the set of (p+l) simultaneous equations
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21(5(2) _ 'é(o)) _ S'%'(é(Z) - %(l)') =0 (4.5)

~ ~

2y _ 7D

()2 = 2 (4.6)

in the (p+l) unknowns s and (Ql,...,Q )=%'. By Theorem 2.1 we have
- - P
2P -3 _55 (4.7)
Also by Assumption I, Theorem 2.2, and expression (4.4)

~ P
G(s) -~ G(s) > Q uniformly in O<s<l. (4.8)

Hence, the equations (4.5) and (4.6) are suggested naturally from (3.1) and (4.3).

(We write s instead of 6, to avoid confusion with the true value). If s=§N,

>

N

%=%N is a real solution of (4.5) and (4.6), such that QgéNﬁl, we propose BN as

an estimate of 6. The following two theorems describe its properties.

THEOREM 4.1 With probability approaching 1 as N»=, the equations (4.5)-(4.6)

possess a real solution. If éN’ QN is any such solution, and &N is the unique
solution of (4.3), then, as Nox
_eN - e’ &N_%N - 9 (4.9)

Proof. Because of our assumptions I, II, and III(b) we can find numbers m and

Mo such that

0<m < min m[G(s)] < max M[G(s)] S_MO < ® (4.10)
0<s<l 0<s<1

for all sufficiently large values of N. Hence, by (4.8), we can find numbers

mé and M; such that, as N,

Prob{0 < m' < min m[é(s)] < max M[g(s)]_g Mé < o}l (4.11)
0<s<1 0<s<1
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If G(s) is positive definite, from (4.6),
g = B tE® -3y, (4.12)
which, on substitution in (4.5), gives
GP 3Dy 817t EP-2)-s@ P 3By e 17 E P -2 W)=0 (4.13)

Since each cofactor of a(s) is a (2p-2)-th degree polynomial in s, (4.13)
represents a (2p-1)-th degree polynomial equation in s. Clearly, if with
probability approaching 1, (4.13) has a real solution for s, (4.5)-(4.6) will
also have a real solution for s, %.

Now, by Theorem 2.1 and the first relation in (2.16)
- - P
a® 30 g5 (4.14)

By (4.7), (4.8), (4.14) and Lemma 1.1, in view of (4.10) and the uniform
boundedness of §, the polynomial in (4.13) has a stochastically vanishing dif-

ference with

(6-5)8' [6(s)1718 (4.15)

By Assumption III(a), § is non-null for all sufficiently large N. Hence the
values of (4.15), and therefore, with probability approaching 1, those of the
left hand member of (4.13), at s = 0ic are of opposite signs. Thus with prob-
ability approaching 1 as N»®, (4.13) wou%d have a root between 0te, whatever €.
This proves the first part of the theorem.

~

Again, if 6_, & 1is any solution of (4.5)-(4.6), we can write

N’ ~N

i, = 817 E® -3, (4.16)
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) @&(5(2) _ é(O))
6

N = ~ ~(2 -(1 ’ (4.17)
G -0,

orovided 8(§N) is positive definite and the denominator in (4.17) is positive.

By (4.11), G(SN) is positive definite in probability. Also by (4.7) and (4.11),

as by Assumption III(a), §'§ is bounded away from zero, we can find an £€>0 such

that

Prob{gﬁ(é(z) - é(l)) > e} » 1. (4.18)
Now, from (4.17),

A ﬁé{(g(z)_;(o))_6(5(2)_§(l))}
6 -0 =
N Q&(E(Z)—é(l))

. (4.19)

-(2) - - - P
By (4.7) and (4.14), g( )—g(o)—e(é(z)—g(l)) > o. By (4.7) and (4.11) the ele-
ments of ﬁN are bounded in probability. These facts together with (4.18),

~ P
imply from (4.19), that 6N~9 + 0. Hence we get that

A oA P
(B - 68 > 0. (4.20)

N P
(4.7), (4.16), and (4.20) imply QN—QN + 0 by Lemma 1.1. Q.E.D.

Note: The above theorem shows that §N is a consistent estimate of 6. If 0<6<1,
then for large N, with high probability éN lies in [0,1]. Trouble arises if €=0
or 1. If we conventionally take éN to be 0(l) whenever s-solution of (4.5)-(4.6)
is negative (exceeds 1), then, whatever O, 6N always lies in [0,1] and is a con-
sistent estimate of 6. The cases 0=0 or 1 are of importance in the context of
the problem of classification, where the 0-th sample may have come exclusively

from F(l) or F(z). It is intended to discuss this problem in a subsequent

communication.
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A

THEOREM 4.2 If §N’ %N is any real solution of (4.5)=(4.6), as N, %ﬁ'(éN—e)

is asymptotically normally distributed with mean 0 and variance

2(1-0) =& + [§'¢TH (8] (4.21)
(o]

"~

Proof. As earlier, with probability approaching 1, we can represent GN by (4.17),
so that
(6, -0) = — — + — - >, (4.22)

where &N = g(@)_l§ is the solution of (4.3).

Now by theorem (2.3), /ﬁT(l—G)é(z) + 65(1) - 5(0)} is asymptotically normal
with o mean vector, and a dispersion matrix which by (2.16), and (4.1) can be
written as

6(1-6) * =- §8' + G(8) (4.23)

n
[¢}

By our assumptions (4.23) is uniformly bounded. Hence the elements of
/E-{(l—G)é(z) + 65(1) - 5(0)} are stochastically bounded. Therefore, the second
relation in (4.9), and (4.19) imply that the second term on the right of (4.22)
converges in probability to zero.

Again, by our assumptions, the roots of (4.23) are bounded away from both
0 and ». Hence, as noted at the end of section 3, by Lemma 1.2,
/ﬁ-%ﬁ{(l—ﬁ)é(z) + Gé(l) - 5(0)} is asymptotically normally distributed with
mean 0 and variance

6(1-0) - [8'¢7(8)8]1% + 8'¢ 1(®)§

[¢]

Also, by (4.7) and (4.9),
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P

2GP -3 - e l@s > o

I{e2)

Combining these facts, we get that the first term on the right of (4.22) is
asymptotically normal with mean 0 and variance given by (4.21). This completes
the proof of the theorem. Q.E.D.

The following reduction shows the structure of the equations (4.5)-(4.6)
more clearly. With probability approaching 1, in large samples, f(l) and §(2)

are both positive definite, and therefore, it is possible to find a non-singular

matrix C (pxp) such that

~

2
C'g(l)g =1, Q'E( )9 = Diag(yl,yz,...,yp), (4.24)

where Y1oYpae s, aTe the latent roots of {i(l)}—lf(z). Let

Cl (5(2)_5(0)) = g=(dl, ... ,dp) ]

C'(é(Z)"'é(l)) = E=(b1" .. ’bp) L

Then, putting £=Ch, §=(hl,...,hp)', and premultiplying (4.6) by C', from (4.5)-

(4.6) we derive the (p+l) equations in s and h:

By (4.4) and (4.24), these can be explicitly written as

P P -
izlhidi - sizlhibi =0 (4.25)

N N N N _ -
{s,(-rg + s EI) + (1-s) (no + (1-s) nz)Yi}hi b, i=l,...,p (4.26)

Here di’ bi’ Yy i=l,...,p are all known. To solve these we may substitute
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for hi in (4.25), using (4.26), and then solve the resulting polynomial equation
in s. Alternatively, we may put arbitrary values of hl,...,hp in (4.25) to get
a rough estimate of s and use (4.26) to solve for hl,...,hP and then proceed by
iteration.

As for the sampling variance of the estimate GN, in large samples, we

may use

2 1@PaMy ddpTEP-aMn (4.27)
. |

where G(GN) is obtained by putting GN for s in (4.4). As gN is a consistent
estimator of 8, (4.27) also is consistent in the sense that the ratio of (4.27)

~

to the true asymptotic variance of GN converges in probability to 1.

5. DISCUSSION
From Theorem 4.2, we get that the asymptotic variance of the optimised

N

linear rank score estimate eN is given by

L 6(1-9) +3 1s'{ce)y o1t (5.1)
(o]

Qhere § = B(z)—g(l) and G(0) is given by (4.1). Of this the first term is the
variance of t = r/no, the standard estimate that we would use if r (the number
of 'first-population observétions' in O-th sample) were observable. The second
term represents the inflation in the variance due to the unobservability of r.

Clearly, larger the value of §'{G(6)}—1§, more accurate the estimate. We know

that if G(pxp) is positive definite, then for the partitioning

84 611 G2
§ = , Q = s
$) €1 S22
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where §l is a gq-vector and G is of order gxgq, we have

11

o' gt 82 8] 6y

The equality holds if and only if §2 = 9219116 Hence, so long as this special

21
condition is not met and the matrix g(e) remains positive definite, considera-
tion of a larger number of variables would increase the accuracy of éN'
The choice of the score functions ¢1(u),...,¢p(u) is, of course, of great
importance. In choosing these, we should use any knowledge that we may possess
about the way F(l) and F(z) differ from each other. Again, the general principle
would be to choose the scores so that Q'{Q(G)}_lé is as large as possible. We
propose to deal with these aspects of the problem in a later communication.
Incidentally, we remark that the application of the procedures developed in this
paper require? only knowledge of the observational ranks. However, when the
observational values (l.l) are themselves available, we may use these in the
same way as rank scores, to get an estimate of 6 based on the sample means pro-
vided (i) all second order moments exist for F(l), F(z) and (ii) F(l), F(z)

differ in location (i.e., in mean vector). Under appropriate conditions, the

asymptotic variance of this estimate would have the same form as (5.1), with

U(k) (k)

~

’ §(k) now standing for the mean vector and dispersion matrix of F , k=1,2,

The procedures considered in this paper encompass a wider variety of problems,

gince the score functions are free to be chosen to take account of any kind of

(2) .

divergence between F(l) and F .

Another point of practical importance is the effect of the relative values

on the accuracy of the estimate. While specific recommenda-

of n 1 and n

n
0’ 2
tions here must depend on the choice of score functions, some general observa-

tions can be made. Generally, it would be profitable to have a large ng not

only because that reduces the first term in the asymptotic variance (5.1) but
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also because in (4.1) (at least for O near around %) the dominant terms being
made small, that reduces the second term in (5.1) as well. Similarly, it would
large relative to n

be preferable to have n 9s OF vice versa, according as 0 is

1
expected to be close to 1 or O.

Finally, we remark that, although we have followed the 'best linear combina-
tion' approach to obtain the estimate of section 4, we could have obtained an
estimate by an alternative approach. Thus starting from the vector
é(o) -0 é(l) - (1-8) 5(2), instead of equating a linear combination of its ele-

ments to zero, we could minimize a positive definite quadratic form in its elements

to get the estimate. Minimization of

(where A is a positive definite matrix) with respect to 6, gives us an estimate

in the form

(5(2)'5(1))'6(5(2)'5(0))/(5(2)'5(1))'é(é(z)‘é(l))-

Optimisation with respect to the choice of A then leads us practically to the

same solution as before.
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