On Robust Tests for Heteroscedasticity

by

Raymond J. Carroll* and David Ruppert**
University of North Carolina at Chapel Hill

We extend Bickel's (1978) tests for heteroscedasticity to include wider classes of test statistics and fitting methods. The test statistics include those based on Huber's function, while the fitting techniques include Huber's Proposal 2 (1977) for robust regression.

Key Words and Phrases: Heteroscedasticity, robustness, linear model, M-estimates, regression, asymptotic tests.

*This work was supported by the Air Force Office of Scientific Research under Contract AFOSR-75-2796.

**This work was supported by the National Science Foundation Grant NSF MCS78-01240.
1. **Introduction**

We consider the general linear model

\[(1.1) \quad Y_i = \tau_i + \sigma(\tau_i, \theta) e_i, \quad \tau_i = c_i^T \beta_0 \quad (i = 1, \ldots, n),\]

where β_0 is an unknown $(p \times 1)$ vector, the $(p \times 1)$ vectors c_i^T are known, the error terms e_i are independent and identically distributed (i.i.d.) with common distribution function F, and $\sigma(\tau_i, \theta)$ expresses the possible heteroscedasticity in the model, with

\[(1.2) \quad \sigma(\tau, \theta) = 1 + \theta a(\tau) + o(\theta) \quad \text{as } \theta \to 0.\]

Bickel (1978), generalizing work of Anscombe (1961), defines robust tests for heteroscedasticity, which in the present context are tests of $H_0: \theta = 0$; the idea is to replace aspects of the usual informal examination of residuals by formal statistical inference about the probability structure of the data. If $\{t_i\}$ are the fitted values (from least squares or possibly a robust regression method (Huber (1973)(1977))) and b is an even function, Bickel's robust test statistic is

\[(1.3) \quad A_b = \frac{1}{n} \sum_{i=1}^{n} (a(t_i) - a(t)) b(r_i)/\hat{\sigma}_b,\]

where

\[(1.4) \quad r_i = Y_i - t_i = \text{residual},\]

\[(1.5) \quad \hat{\sigma}_b^2 = \frac{1}{n} \sum_{i=1}^{n} (a(t_i) - a(t))^2 (n-p)^{-1} \sum_{i=1}^{n} (b(r_i) - b(r))^2,\]

and for any function g,

\[g(x) = n^{-1} \sum_{i=1}^{n} g(x_i) .\]
Bickel makes the following assumption:

(1.6) \(b \) is bounded and has two continuous, bounded derivatives.

Under (1.6) and other assumptions (see Theorem 1 below), Bickel obtains the asymptotic distribution of \(A_b \) under \(H_0: \theta = 0 \) and contiguous alternatives; results are obtained for the case \(p^2/n \to 0 \).

One of the most attractive choices of \(b \) (well motivated in Bickel's Section 3) is Huber's function squared:

(1.7) \[
 b(x) = \begin{cases}
 x^2 & |x| \leq k \\
 k^2 & |x| > k
 \end{cases}
\]

This choice of \(b \) does not satisfy (1.6) so that Bickel's Theorem 3.1 does not apply. He states that the strong smoothness condition (1.6) is "unsatisfactory" and obtains results for (1.7) only when \(p \) is bounded and fitting is by least squares.

In this note we show by a simple modification of Bickel's proofs (using techniques of Carroll (1978)), that results for \(A_b \) can be obtained for \(b \) given by (1.7) even when \(p^4/n \to 0 \) and fitting is by robust estimates or least squares. This result is given in Section 2. In Section 3 we note extensions which obtain scale invariance by robust estimation with scale estimated by Huber's Proposal 2.

2. Main Results

Where possible we adopt Bickel's notation. Without loss of generality we assume \(n^{-1} \sum c_i^t c_i = I \). To provide a frame of reference we state:

Theorem 1 (Bickel (1978)). Suppose the following hold:

(2.1) \[
 \max |\tau_i| \leq M ,
\]
\[(2.2)\]
\[n^{-1} \sum (a(\tau_i) - a.(\tau))^2 \geq M^{-1} > 0,\]

\[(2.3)\]
\[|\theta n^{\frac{1}{2}}| \leq M,\]

\[(2.4)\]
\[F \text{ is symmetric about zero},\]

\[(2.5)\]
\[M^{-1} \leq J_2(F) \leq M \text{ where for } F' = f(\text{absolutely continuous}) ,\]
\[J_2(F) = \int (x f'(x)/f(x) + 1)^2 f(x) dx,\]

\[(2.6)\]
\[\text{Var}(b(\varepsilon_{1})) \geq M^{-1} > 0 ,\]

\[(2.7)\]
The function \(a\) is twice boundedly and continuously differentiable,

\[(2.8)\]
If \(d_i = t_i - \tau_i, \sum d_i^2 = O(p),\)

\[(2.9)\]
\[b(x) = b(-x),\]

\[(2.10)\]
b is bounded and satisfies (1.6),

\[(2.11)\]
\[p^2/n \to 0 .\]

Then

\[(2.12)\]
\[P_\theta \{A_b \geq z\} = 1 - \Phi(z - \Delta_b) + o(1) ,\]

where

\[(2.13)\]
\[\Delta_b(\theta, n) = \theta \left[\sum_{i=1}^{n} (a(\tau_i) - a.(\tau))^2 \right]^{\frac{1}{2}} \text{E} e_{1} b'(e_{1}) [\text{Var}(b(e_{1}))]^{-\frac{1}{2}} .\]

Our generalization of Theorem 1 to incorporate such functions as (1.7) is

Theorem 2. Suppose (2.1)-(2.9) and the following hold:

\[(2.14)\]
b is bounded, Lipschitz of order one, and has two bounded continuous derivatives except possibly at a finite number of points, which we take as \(\pm c.\)
Then (2.12) holds. (Assumption (2.8) is discussed in the next section.)

Proof of Theorem 2. The key results in Bickel's proof are (A34)-(A37) with

\[w_{ij} = 1 - 1/n \quad (i = j) \]
\[= -1/n \quad (i \neq j). \]

Because \(b \) is bounded and Lipschitz of order one, (A34)-(A36) follow exactly as given by Bickel. He uses (A37) to prove

\[
(n^{-1/2} \sum_{i=1}^{n} (a(\tau_i) - a(t))b(r_i)) \]
\[= n^{-1/2} \sum_{i=1}^{n} (a(\tau_i) - a(\tau))b(\varepsilon_i) \]
\[+ n^{-1/2} E b'(\varepsilon_i) \sum_{i=1}^{n} (a(\tau_i) - a(\tau))d_i + o_p(1), \]

where \(d_i = \tau_i - \tau_i \). Instead of proving (A37) we will prove (2.16) directly. As seen in Bickel's (A41)-(A47), (2.16) is verified by proving either (A48) (as Bickel has done) or

\[
n^{-1/2} A_n = n^{-1/2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} a(\tau_i)(b(r_j) - b(\varepsilon_j) + d_j b'(\varepsilon_j)) \to 0. \]

We will prove (2.17). Note that in Bickel's proofs of (A41)-(A47) the assumption (1.6) is not needed; the weaker assumption (2.14) suffices. Since \(r_j = \varepsilon_j - d_j \), with \(I \) being the indicator function, rewrite

\[
A_n = \sum_{i} \sum_{j} w_{ij} a(\tau_i)(b(\varepsilon_j - d_j) - b(\varepsilon_j) + d_j b'(\varepsilon_j)) \]
\[\times \{(I(-c + a_{n} < \varepsilon_{j} - c - a_{n}) + I(c - a_{n} < \varepsilon_{j} - c + a_{n}) \]
\[+ I(-c - a_{n} < \varepsilon_{j} - c + a_{n}) + I(\varepsilon_{j} > c + a_{n}) + I(\varepsilon_{j} < -c - a_{n}) \}
\[= A_{n1} + A_{n2} + A_{n3} + A_{n4} + A_{n5}, \]

where $a_n \to 0$ will be specified later. We also write $A_n = \Sigma_i \Sigma_j K_{ij}(n)$. We can further write

$$
A_{n1} = \Sigma_i \Sigma_j K_{ij}(n) \left\{ I(-c < \varepsilon_j - d_j < c) \right\} \left\{ I(-c + a_n < \varepsilon_j < c - a_n) = A_{n1}^{(1)} + A_{n1}^{(2)} \right\} I(|\varepsilon_j - d_j| > c)
$$

As in Bickel's (A48), since b is differentiable on $(-c, c)$,

$$
|A_{n1}^{(1)}| = O_p(\varepsilon \, d_j^2) = O_p(p) .
$$

Note that if $-c + a_n < \varepsilon_j < c - a_n$ and $|\varepsilon_j - d_j| > c$ then $|d_j| > a_n$. Then, by (2.1), since b is Lipschitz and $w_{ij} = \delta_{ij} - 1/n$,

$$
|A_{n1}^{(2)}| \leq M_1 \sum_{j=1}^n |b(\varepsilon_j - d_j) - b(\varepsilon_j) + d_j b'(\varepsilon_j)| I(-c + a_n < \varepsilon_j < c - a_n, |\varepsilon_j - d_j| > c) \\
\leq M_2 \sum_{i=1}^n |d_j| I(|d_j| > a_n) \leq M_2 (\sum_{j=1}^n d_j^2)^{1/2} (\sum_{j=1}^n I(|d_j| > a_n))^{1/2} = O_p(p/a_n) .
$$

Thus $|A_{n1}| = O_p(p/a_n)$. Similarly, $|A_{n4}| = O_p(p/a_n), |A_{n5}| = O_p(p/a_n)$.

Further, by (2.1) and since b is Lipschitz,

$$
|A_{n2}| \leq M_1 (\sum_{j=1}^n d_j^2)^{1/2} (\sum_{j=1}^n I(c - a_n \leq \varepsilon_j \leq c + a_n))^{1/2} .
$$

A similar bound holds for $|A_{n3}|$. Since by (2.5) F is Lipschitz in neighborhoods of c, Lemma 1 of Carroll (1978) shows

$$
\sum_{j=1}^n I(c - a_n \leq \varepsilon_j \leq c + a_n) = O_p(\max(\log n, n(F(c + a_n) - F(c - a_n))) .
$$

Provided $n a_n \geq \log n$, (2.20) and (2.21) give

$$
|A_{n2}| = O_p((n \, pa_n)^{1/2}) , |A_{n1}| = O_p((n \, pa_n)^{1/2}) .
$$

This yields

$$
n^{-1/2} A_n = O_p((p/a_n)^{1/2} + n^{-1/2} (p/a_n)) .
$$

If we take $a_n = n^{-1/4}$, (2.15) and (2.22) yield
\[n^{-\frac{1}{2}} A_n = o_p(1) , \]
completing the proof. \[\Box \]

3. Extensions
A. Scale invariance

The test statistic \(A_b \) is not scale invariant. To obtain such invariance, one would rewrite the model (1.1)-(1.2) so that \(\sigma(\tau, \theta) = (1 + a(\tau)\theta + o(\theta))/\sigma_0 \), where \(\sigma_0 \) is a scale parameter consistently estimated (when \(\theta = 0 \)) by a scale estimate \(\hat{\sigma} \) (provided by least squares or Huber's Proposal 2 for robust regression).

To obtain scale invariance, Bickel suggests replacing \(b(r_i) \) by \(b(r_i/\hat{\sigma}) \). The statements and proofs of Theorems 1 and 2 must be modified for this new test statistic which we denote \(A_b(\hat{\sigma}) \). An analogue of Theorem 2 is

\textbf{Theorem 3.} Suppose the conditions of Theorem 2 hold and, in addition,

\[(3.1) \quad n^{\frac{1}{2}} (\theta - \sigma_0) = o_p(1),\]

\[(3.2) \quad \mathbb{E}\{b'(\epsilon_1)\epsilon_1\}^2 < \infty,\]

\[(3.3) \quad \mathbb{E}\{b''(\epsilon_1)\epsilon_1\}^2 < \infty.\]

Then (2.12) holds for \(A_b(\hat{\sigma}) \).

\textbf{Remark.} Assumption (3.1) is the subject of part B of this section. Assumptions (3.2) and (3.3) hold if \(b \) is constant outside an interval (as is (1.7)).

\textbf{Sketch of the proof of Theorem 3.} We need to verify substitutes for Bickel's (A35) and (A37) when \(b(r_i) \) is replaced by \(b(r_i/\hat{\sigma}) \), \(b(\epsilon_1) \) is replaced by \(b(\epsilon_1/\sigma_0) \), and the remainder terms are (respectively) \(o_p((np)^{\frac{1}{2}}) \) and \(o_p(p) \). To prove the
substitute for (A35) one must show that

\[(3.4) \sum w_{ij} b(r_i/\hat{\sigma}) b(r_j/\hat{\sigma}) - \sum w_{ij} b(r_i/\hat{\sigma}) b(e_j/\hat{\sigma}) = O_p((np)^{1/2})\]

\[(3.5) \sum w_{ij} b(e_i/\hat{\sigma}) b(e_j/\hat{\sigma}) - \sum w_{ij} b(e_i/\sigma_0) b(e_j/\sigma_0) = O_p((np)^{1/2})\] .

Using the special form of \(w_{ij}\), (3.4) follows from (2.8) and the fact that \(b\) is bounded and Lipschitz; (3.5) is a consequence of (3.1) and (3.2). Statement (A37) is more complex. The analogue of (A42)-(A45) is to show

\[\sum_{i,j} w_{ij} (a(\tau_i) - a(t_i)) b(e_j/\hat{\sigma}) = O_p(p) ,\]

for which (using Bickel's proof) it suffices to show

\[(3.6) \sum_{i,j} w_{ij} a'(\tau_i) d_i(b(e_j/\hat{\sigma}) - b(e_j/\sigma_0)) = O_p(p) .\]

We rewrite (3.6) as

\[(3.7) \sum_{i,j} w_{ij} a'(\tau_i) d_i(e_j b'(e_j/\sigma_0) - E e_i b'(e_i/\sigma_0)(1/\hat{\sigma} - 1/\sigma_0)\]

\[+ \sum_{i,j} w_{ij} a'(\tau_i) d_i(b(e_j/\hat{\sigma}) - b(e_j/\sigma_0) - (1/\hat{\sigma} - 1/\sigma_0)e_j b'(e_j/\sigma_0)\]

\[= B_{1n} + B_{2n} .\]

That \(B_{1n} = O_p(p)\) follows from using the Schwarz inequality, the boundedness of \(a\), and then applying (3.1) and (3.2). That \(B_{2n} = O_p(p)\) is complicated notationally but is a consequence of a weakened version of Lemma 2 of Carroll (1978). This verifies (3.6).

The analogue of (A48) is to show that

\[(3.8) \sum_{i,j} w_{ij} a(\tau_i)(b(r_j/\hat{\sigma}) - b(e_j/\sigma_0)) = O_p(p) .\]
First note that (3.1) and the proof of Theorem 2 can be used to show that

\begin{equation}
\sum_{i,j} w_{ij} a(\tau_i) (b(\tau_j/\hat{\sigma}) - b(\epsilon_j/\hat{\sigma}) - (d_1/\hat{\sigma})b'((\epsilon_j/\hat{\sigma})) = O_p(p) \tag{3.9}
\end{equation}

To verify (3.8) we must show that the difference between (3.8) and (3.9) is $O_p(p)$; this is a consequence of the following:

\begin{equation}
\sum_{i,j} w_{ij} a(\tau_i) (b(\epsilon_j/\hat{\sigma}) - b(\epsilon_j/\sigma_0)) = O_p(p) \tag{3.10}
\end{equation}

\begin{equation}
\sum_{i,j} w_{ij} a(\tau_i) d_j/\hat{\sigma} (b'(\epsilon_j/\hat{\sigma}) - b'(\epsilon_j/\sigma_0)) = O_p(p) \tag{3.11}
\end{equation}

\begin{equation}
\sum_{i,j} w_{ij} a(\tau_i) d_j b'(\epsilon_j/\sigma_0) (1/\hat{\sigma} - 1/\sigma_0) = O_p(p) \tag{3.12}
\end{equation}

Equations (3.11) and (3.12) follow by applying the Schwarz inequality, (2.8), (2.14), (3.1) and (3.3). We can rewrite (3.10) as

\begin{equation}
\sum_{i,j} w_{ij} a(\tau_i) (b(\epsilon_j/\hat{\sigma}) - b(\epsilon_j/\sigma_0)) - (1/\hat{\sigma} - 1/\sigma_0)\epsilon_j b'(\epsilon_j/\sigma_0) + \sum_{i,j} w_{ij} a(\tau_i) [\epsilon_j b'(\epsilon_j/\sigma_0) - \epsilon b'(\epsilon_1 / \sigma_0)] (1/\hat{\sigma} - 1/\sigma_0) = B_{n1}^* + B_{n2}^* \tag{3.13}
\end{equation}

the last step following since $\sum w_{ij} a(\tau_i) = 0$. That $B_{n1}^* = O_p(p)$ follows as in the proof of Theorem 2, while $B_{n2}^* = O_p(p)$ follows from (3.1) and the Chebychev inequality. \(\Box \)

B. On assumption (2.8). Huber's Proposal 2 for robust regression is to solve

\begin{equation}
\sum_{i=1}^{n} \psi((Y_i - c_i \beta)/\sigma)c_i = 0 \tag{3.12}
\end{equation}

\begin{equation}
\sum_{i=1}^{n} \psi^2((Y_i - c_i \beta)/\sigma) = \xi = E \psi^2(Z) \tag{3.13}
\end{equation}

the last expectation taken under the standard normal distribution function. Huber (1973) shows (2.8) under the following conditions:
(3.14) \(\psi \) is odd and non-decreasing,
\(\psi \) has two bounded continuous derivatives,
\(\sigma = 1 \) and only (3.12) is solved,
\(\gamma p + 0, \) where \(\gamma \) is the maximum diagonal element of the projection
matrix \(C(C'C)^{-1} C' = CC' = \Gamma \) (since \(\gamma \geq p/n, \ p^2/n \to 0 \)
is necessary.)

The above conditions are very restrictive in assuming \(\sigma \) known, and Huber's function
\((\psi(x) = \max(-k, \min(k,x))) \) does not satisfy the smoothness condition.

Carroll and Ruppert (1979) have generalized Huber's result by means of the
techniques used in the proof of Theorem 2. They utilize the full system
(3.12)-(3.13) and assume only that \(\psi \) satisfies (2.14), which is true for all
functions used in practice. The price paid is a stronger condition on the growth
rate of \(p; \) they require that for some sequence \(a_n \to 0, \) both \(\gamma p/a_n^2 \to 0 \) and
\(n\gamma a_n \to 0. \) When the design is balanced (\(\gamma = p/n, \) then \(a_n = p^{-1+\varepsilon} \) for any
\(\varepsilon > 0 \) suffices, but that requires \(p^{4+2\varepsilon}/n \to 0. \)

C. Smoothness of \(F. \) Condition (2.5) is rather strong. Ruppert and Carroll (1979)
show by entirely different methods that when \(p \) is fixed and \(b \) satisfies (2.14), (2.5)
can be relaxed by requiring only that \(F \) is Lipschitz of order one in neighborhoods
of \(\pm c. \)
References

On Robust Tests for Heteroscedasticity

Raymond J. Carroll and David Ruppert

Department of Statistics
University of North Carolina at Chapel Hill

Air Force Office of Scientific Research
Bolling AFB, DC

July 1979

10

Distribution unlimited - approved for public release

Heteroscedasticity, robustness, linear model, M-estimates, regression, asymptotic tests.

We extend Bickel's (1978) tests for heteroscedasticity to include wider classes of test statistics and fitting methods. The test statistics include those based on Huber's function, while the fitting techniques include Huber's Proposal 2 (1977) for robust regression.