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ABSTRACT

RHONDA ROBINSON CLARK. The Error-in-Variables Problem in the
Logistic ?egression Model. (Under the direction of Clarence
E. Davis. '

It is well known that when the indépéndent variable in simple
linear regressfon is measured with error that least squares esti-
mates are not unbiased. This is also true for logistic regression
and the magnitude of the bias is demonstrated through simulation

studies.

Estimators are presented as possible sojutions to the 'error-
in-variables' problem; that is, the problem of obtaining consistent
estimators of model parameters when measurement error is present in
the independent variable. Two solutions require an external esti-
mate of the variance of the measurement error, two require multiple
measures on the independent variable, while two others are exten- |
sions of the method of grouping, and the jnstrumental variable ap-
proach. Simulation studies show that the use of an external esti-
mate of the error variance or multiple measures on the independent
variable leads to estimators with substantially lower mean square
error than the least squares estimate. For the grouping and instru-
mental variable approaches, the proposed estimators have lower mean

square error under some but not all conditions.

The methods discussed are applied to data from the Lipid

Research Clinics Program Prevalence Study.
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CHAPTER 1
INTRODUCTION AND REVIEW OF THE LITERATURE

Epidemiologic data CoT]ected from prospective studies are often
used to model the incidence of disease as a function of one or more
independent variables. A commonly employed statistical procedure
for such studies is multiple logistic regression. For example, in a
prospective study of coronary heart disease in Framingham (Truett,
Cornfield and Kannel (1967)), the variation in the incidence of
disease as a function of serum cholesterol, systolic blood pressure,
age, relative weight, hemoglobin, cigarettes/day, and ECG measured
on the initial examination was investigated. The probability, P,
of developing the disease during the 12-year time interval was esti-
mated for each individual using the logistic regression model:

1

P = -(OL + B]X" + 82X2 + ... 87X7) ’

1+e

In the standard 1inear regression problem one assumes that the
independent variable is measured without error and that the values
of the dependent variable deviate from their true values only by a
random error component representing explanatory variab1es excluded
from the model or sampling error. Under these assumptions the

ordinary least squares (OLS) estimates of the parameters are



unbiased with minimum variance. Violation of these assumptions in
the linear regression model leads to an underestimate of the ex-
pected magnitude of the regression coefficients (Snedecor and
Cochran (1967)). |

It is well known from epidemiologic literature that variables
such as systolic blood pressure and serum cholesterol level are
subject to possible "errors" or variation in measurement. Two recog-
nized sources of this variation are within-individual variability
and observer (interviewer, laboratory) error. Gardner and Heady
(1973) give the following examples of within-individual variability

oé and between-individual variability cﬁ:

TABLE 1.1 Some Examples of Between-Individual and Within-
Individual Variability

Variable Mean VE? VES
Cholesterol (mg %) _ 215 25 40
Blood Pressure (mmHg) 141 9.1 ~ 13.6
Calories (per day) 2846 370 406

Often these errors are combined with sampling error and forgotten.
The purpose of this research is to study the effect of measurement
error on'thé estimated logistic regression modej coefficients and
to propose methods of producing consistent estimates of these regres-

sion coefficients when error in the independent variable is present.



1.1 The Error-in-Variables Prob]em in Linear Regression

1.1.1 Introduction

There are several possible situations out of which the finite
set of independent pairs of obsérvationsr(X],Yi), (X2,Y2), cee
(Xn’Yn) might arise. In each of the sftuations that will be dis-
cussed, there is a corresponding set of true values that will be
denoted as (U],V]), (U2.V2), ces (un,vn). In the regression
situation the following linear relationship between the true vari-

ables U and V holds:

V=a+ U+t
CE(V]U) = o+ BU

where V is a random variable, U may be fixed or random, and t has
mean 0 and variance o%. In the particular case where U and V are
bivariate normal, this is the correlation model and E(U|V) = y + V.

If V and U are Tinearly related as follows:
V=oa+8l

and if both V and U are fixed, the re]ationshfp between the vari-
ables is called functional. If the above.relationship'hplds, but
V and U are random variables, we have a structural relationship
between V and U. If we fail to observe the true variables U and
V in any of the above situations, and inSteadrobserve X=U+¢
and Y = V + n,'we have what is known as the error-in-variables
problem or measurement error. For the remainder of this study we

shall concern ourselves with the error-in-variables problem when



the relationship between the true unobserved variables is structural.
Suppose that only V is subject to error, then V = a + gU be-
comes

Y-n=o+pl

}Y =q+ BU +n

where E(n) = 0, n has variance o; and is independent of U. Thus the

relationship between the observed values is a regression type rela-
tionship with
E(Y|U) = o + BU

The ordinary least squares (OLS) estimators are, in this case, both
consistent and unbiased.

If V is not subject to error, but U is, then

V=o+B(X- g

>
n

-a/g+1/8V+ e

a*¥ + gV + €
E(X|Y) = o* + g*V

where E(¢) = 0, ¢ has variance oé and is ihdependent of V. Again,
we have avregression type relation with the OLS estimatoks being
consistent estimators of o and 8 (B = 1/8*%, a = -a*/B*).

If both U and V are subject to error the problem becomes com-
plicated. The relationship between the observed variables is

Y=0a+B8X+n - B&

The error term is now n - Be and is no longer independent of X

since X = U+ e. The OLS technique in this situation Teads to



biased and inconsistent estimates of the regression parameters.
That is, if b is the OLS estimator of B8, then
e
E(b) = Y 3

2 2
o,to
u €

where oﬁ is the variance of U.

In another model proposed by Berkson (1950), observations are
made on V for a given X. Here again X =U+ eand Y =V +n. We
afe no longer trying to observe a given U, but for éach fixed X
there are a number of U's which could have given rise to that par-
ticular observed X. Also for each U.there is a probability that
the observed fixed X is an obsefvation on that U with error €. The

U's are now random variables distributed about the fixed X with

error €. Now ¢ is independent of X (but not of U), and
Y=a+B8X+n - Be

where both n and ¢ are ihdependent of X. Assuming that E(n)=E(¢€)=0,

then -
_ E(Y|X) = a + BX

where X is fixed, and we again have a situation in which the OLS

estimator of 8 is unbiased and consistent.

1.1.2 vC]assica] Approaches to the Error-in-Variables Problem

A number of approaches have been proposed for dealing with the
error-in-variables probTem under the structural mode].} We will
begin with the classical approaches discussed by Moran (1971) and
Madansky (1959). |

Let the relationship between the unobserved true variables be



Vi =q + BUi

where Vi and Ui are both random variables. However, we actually

observe the variables Xi = Ui t g and Yi = Vi *+ n,. Under the

following assumptions:
1. n; and g are normally and independently distributed with
means equal to 0 and variances c% and oé'respectively,

2. U; is normally d1str1buted with mean p and variance ¢

1 U’

3. Ui’ n; and E; are mutually independent,

- the observed variables X and Y are jointly distributed in a bivariate

normal distribution with parameters u, o2, oé, o;, o and B, where

u
E(X) = u | E(Y) = o + By
- 2 2 - 2 2 2
var(X) = o, * o2 ~Var(Y) = B oy * o
Cov(X,Y) = B 03 (1.1.2.7)

The following quantities are jointly sufficient for the equations

in (1.1.2.1):

n X; n Y.
X = ! Y = -
121 n izl n
N (x,-%)° n (v, -y)
R - 1
g (y y)(X ) . (1.1.2.2)

The maximum 1ikelihood equations are derived by setting the quanti-
ties in (1.1.2.1) equal to those in (1.1.2.2) if we can assume that

the latter five quantities are functionally independent.



The féct that we have five equations ahd six ‘unknowns makes
the pafameters ca, oé, ca, a, and B unidentifiable. In order to‘
~avoid this problem we need to change some of our assumptions orr
obtain additional information. In particular, if we knew oé, o;,
or c;/oé and were sure thatvcov(e,n) = 0, we cou]d'estimate B and
subsequently o. Both Moran (1971) and Madansky (1959) give the

following estimates of g when additional information is available.

1. o2 known:
o known

2 ) ~2 .
3. cn/ce known:

8, =4

‘] Z 2
Xy [syy-xsxx +V/Isyy-xsxx) + 4 S 2]

4. When both oé and o; are known, we are confronted with an
over-identification situation. We now have four parameters
and five equations. As a result we arrive at inconsisten-

cies. That is

- g2)")
By = Sxy (sxx e)

- 2 -.l
and By (Syy on) Sxy



are both derived from the same system of equations. In
large samples these two estimates will become asymptoti-
cally equivalent. Because of the inconsistencies, a
maximum likelihood solution cannot be arrived at by
equating (1.1.2.1) to (1.1.2.2). Kiefer (1964) points

out that under these circumstances the proper procedure

is to Write out the Tikelihood and maximize it with respect
to the four unknown parameters o, B, U, and oﬁ. Barnett

(1967) gives the resulting eguations.

5. The previous four estimators are derived upon the assump-
tion that cov(e,n) = 0. If cov(e,n) # 0, then cov(x,y) =
cov{e,n) + Boﬁ. Therefore if both cé and o; are known and
we assume that cov(e,n) is not equal to 0, we have five

unknowns and five equations. The estimate of B is

S -
B = /W "n
2
Syx ~ O
. A ‘ n a n
where sign(Bs) = sign| ] X5 - ,Z] Xy Z] Y5

1.1.3 Alternatives to the Classical Approaches

1.1.3.1 The Method of Grouping

| Several methods of solving the error-in-variables problem when
no additional information about variances is available have been

proposed. These methods do not require any distributional assumptions.



One such method is known as the method of grouping. The method con-
sists of okdering,the observed pairs (Xi’Yi)’ se]ectingvproportions
Py and Py such that pi + oy <= 1, placing the first ney pairs in
group Gy, and the last no, pairs in another group G3, and discarding

Gy, the middle group of observations (if py + Py < 1).
Y, - b,

Xp-% B

b
-—
w

Wald (1940) states that és is a consistent estimate of g if:

1. the grouping is independent of the errors e and nys

2. as n» =, by does not approach 0, namely lim ianYi-Yél > 0.
>0

In order to determine when conditions (1) and (2) are satisfied we
consider several possible procedures for assigning observations to
the groups. It is obvious that if the observations are assigned
to the groups randomly, condition (1) would be satisfied but not
condition (2) since then

E(Yﬁ) = E(Yé).
If the magnitude 6f'the Ui‘s were known, it would be possible
to rank the observations by their corresponding magnitude of Ui’
This grouping procedﬁre would satisfy both conditions. However, it
is unlikely that information on the magnitude of the Ui's would be
available without the actual values. Another possibility is to
order the observations (Xi’Yi) by the magnitude of the observed X.'s.
This procedure will not guaranteevconsistency since the ordering

may be dependent on the error. Neyman and Scott (1951) give the
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following necessary and sufficient condition for the consistency of
§6 when the observations are grouped accdrding to the magnitude of

the observed Xi's:

§6 is a consistent estimate of g if and only
- if the range of U has ’gaps"of 'sufficient

Tength' at 'appropriate places' (determined

by ey and pé) where U has probability zero

of occurring.

This condition guarantees that, as n + «, the misgrouped observa-
tions with respect to U do not contribute to plim §6 tending away

e
from B.

1.1.3.2 The Use of Instrumental Variables

A second methdd of obtaining consistent estimates of g involves
thé use of instruménta] variables. Supposé that in addition to
having observations on the variables Xi‘énd Yi’ we also observe
another variable Z, which is known to be correlated with U, and V,,

but is independent of & and ng Then

b @

87 T Tn '
121 (Zi'ﬂ( X-i“.x)

. n ~

is a consistent estimate of B provided § (Zi—TQ(Xi-X) does not
i=1

approach zero and n » » (i.e., cov(Z,X) # 0). It should be noted

that the effectiveness of this method depends on one's ability to

find a variable which is independent of the error and correlated
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with U and onvthe strength of that correlation. Letting Zi take
the values -1, 0, 1 depending on i, where i is independent of the
error, reduces 37 to 36' Also Durbin (1954) suggests that Zi = i
is a better instrumental variable if the rank order of therxi's is
the same as the rank order of the Ui's. That is, it leads to a

more efficient estimate than the method of grouping.

1.1.3.3 Replication of Observations

We have seen that in the classical case we can estimate 8
~ when we know 02, c;, or o;/cz. This natura]Ty leads to the consid-
efation of the estimation of B when we can estimate one or more of
these quantities. This is possible if for each (Ui,vi)~there is
more than one corresponding value of (Xi’Yi)'

~ Assume that we have n pairs of values (ui,vi) and Ni observa-

tions on each pair. That is

J=1,25..45N
i= 1,2;..;,n

If the usual assumptions of independence are made, a one-way
analysis of variance can be carried out on the X's and Y's and an
estimate of B computed. Madansky describes the procedure by using

the following ANOVA table..
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where , _
T
Xso = ) X../Ng Yi, ¢ Yi/N;
i jop W i P
S T A
xoo= x.'/N ‘y;o—‘ ‘y../N
i=1 j=1 W i=] j=1 M
n
N= T N
i=1

Tukey (1951) proposes the following estimates of B:

Bg = (11-V)/(1-1V)
By = (III-VI)/(II-V)
8 = YIIT-VI/(T-TV

It is easily seen that these estimates converge to B as n + « and
Ni -+ « for some i.
Housner and Brennan (1948) also give an estimate of 8 when there

are multiple measurements on U and V. They consider the expression

byt S Yiike
i £ X357 %ke
where X3 # Xp- Since

Yig = o+ By ¥ nyy - Bey

then
_(xij'Xu) b'ijka@ = B(Xij-xke) + (nij-nu) - B( e‘ij-ekl)

so that
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o= Vi [nagnie) - Bleggreny)
for all i, j, k, £ and xij not equal to Xppr Summing over all com-
binations of points and ignoring the térms involving the error gives

the following estimate:

>
w—
o
e
Hes13| oS
-~
[Ca

1 J

amde

This estimate approaches g in probability as Ni + o for at least

two distinct values of i. Madansky gives the following suggestions

“on which estimate (§83 §9"§10 or §]]) to use and when:

1. If the relation is believed to be linear, the optimum
al1ocati0h of observations would be at two points. Hence,

the Housner-Brennan estimate is preferred.

2. If the underlying structure is not linear, and one is
trying to épproximate some function in a small area of it's
range by a 1inear function, it may be advisable to increase
n, at the expense of decreasing Ni’ to as little as 2. In
this case, the Tukey components in regression estimate is

better,.

Moran states'thét none of these methods is optimal and suggests
the use of the sum of squares (if p= 0) to estimate oé and °§’ and
then use these estimates in Barnett's solution for the case when cg
and o; are’known. However, this is sti]]vnot the complete maximum

1ikelihood case.
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Many of the ideas and results discussed above in reference to
the error-in-variables problem With one independent‘variable extend
to the multivariate situation. A brief discussion is'given by

Moran (1971).

1.2 Use of the Logistic Regreésion Model in Epidemid]ogic Research

1.2.1 Introduction

One of the most oftén used indicators of disease frequency in
| epfdemio1ogy is the incidence‘rate. Theoretically this rate esti-
mates the probability of disease or death for a particular population
over a fixed time period. It is possible to model this probability
as a function of one or more independentvvariables. The logistic
function is a commonly used model for this purpose. A]though this
study mainly involves the univariate logistic function,‘we note here
that it is in the multivariate case that this function is most often
used. This is because most chronic diseases are effected by mﬁ]tip1e
factors simultaneously.

There are two methods used to estimate o and B in the logistic

regression model

1

Y, = '
'| + e -(-0" + BU'i)

1

+ n‘il

One proposed by Truett, Cornfield and Kannel (1967) uses a linear
discriminant analysis approach.. The other method, proposed by Walker
~and Duncan (1967), uses an iterative procedure to obtain maximum

1ikelihood estimates of the parameters.
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1.2.2 DiScriminant Function Approach

- Assume that we follow N fndividua]s over a fixed time period.
Also assume that this sample is derived from two popu]at1ons D
(those who would develop the disease), and ND (those who would not
develop the disease). The respective samp1e sizes being n] and No*
Suppose also that there exiéts a variable U having a normal distri-
bution with mean Yy in the diseased population and mean uo in the
non-diseased population. Finally, we assume that the variance of ]

is the same in each population.

Let
P(D|U) = probability of disease for an individual charac-
terized by U.
P(ND|U) = probability of not having the disease given U.
P(D) = p = unconditional probability of disease.
P(ND) = = unconditional probability of not having the disease.

probability of U given the individual does not

fo(U)=P(U|ND)
A have the disease.

f](U)=P(UlD) = probability of U given the individual does have
the disease. :

From Bayes' Theorem:

P(U{D)P(D

P(D[U) = 5rUTHYPTD) + PTUIND)P(ND

In particular, if the distribution of fO(U)'and f](U) are univariate
normals with means My and Hg respectivé]y, and with the same vari-
ance oa, then

1

P(D|U) = .
1+ e '(0‘ + BU)
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where o = - log =P - -2—03— (11-Hg) (uy+up)

Hi=U
8 = 170 .
02
u B
The following sample estimates of o and B are derived by in-
serting maximum 1likelihood estimates of Hys Hgs Ps and oﬁ into the

-above equations.

n .
- log ﬁg-- %—B(u]+u0)

Q>
]

2 2
(ny=1)S% + (n,-1)S
where Sﬁ -0 0 1 L

ny +ng - 2
Sg and S% are sample variances of U giveny =0,y =1,
respectively. '

An estimate of risk can be computed for each individual conditional

upon his value of U as

'l.
-(a + BU)

P(D|U) =
1+e

1.2.3 Weighted Least Squares/Maximum Likelihood Approach -

Walker and Duncan (1967) assume that the logistic function is
an appropriate model for the probabi]ity that an individual will
develop a particular disease conditional upon the risk factor U.
They proceed from that assumption fo use weighted least squares

estimation to obtain estimates of the éoeffiéients.pf the model:
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L + ni = f(Ui:asB) + ni

where

B(Y,1U) = L = P,

'l + @ -(a+ BU.i)

' ,is the probabiTity that the ith individual in the sample acquires
the disease within the follow-up period given Ui’
| They approximate the function f(Ui,a,B) using a first order

Taylor Series Expansion around initial values o and Bo as

3f (U s0nsBp) 3f (U 400584)
. i*"0°*"0 i**0°"0
f(UisasB) = f(Ui’aosso) + ) (a'ao + 3B
Letting
o . . _
Pio and Qo =1 - Py

1+ e (9 * Boly)

Yi is approximated as

e

Yi # Pig * Pyg Qyola - ag) * Py Qyg Us(8 - Bg) * ny

Y*x & Ux(o - eo) + n*

The iterative weighted least squares estimate of © = (a,B) is then

A _a ! . -1 .
By =B (UW )T U Y >

where U is a nx2 matrix having as its ith row (1,U1), wr is a
diagonal weight matrix determined as the inverse of the variance
matrix of n*, and Y* is a nx1 vector of rescaled observations

Yi'Pir‘
Pirqir

(8-85)
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The previous results are identical to those obtained by using
maximum 1ikelihood equations. Given a sample of n individuals free
of disease who are followed for a fixed period of time and identi-
fied at the end of the period as having developed the disease or not,
then the probability of disease given the variab]erui is

] P
= 'i

PlYglup =

where Y; = 1 if the ith individual has the disease and Y, = 0 other-
wise. The likelihood of the sample of n individuals is given by

L(a,B) = . Piyi (.I'P-i)'l-v.i

1

DRE

The Tikelihood equations are then

Because of the nonlinearity of the above equations, this method re-
quifes the use of an iterative computing technique. The most often
used iterative method is the Newton-Raphson technique, which is

based on the first order Taylor Series Expansion of

where 0 = (a,B). »
(9’90)
T(0) = T,(Oo) + T'(oo)(e-oo) + T"(eo) —T—*t ...
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T(6) & T(6p) + T*(05)(6-0,)

- Setting T(€) = 0 and solving for © gives us the MLE of ©, .
8= 0y + [T'(6p)1" T(eg)

In practice the initial estimates ére the discriminant function esti- -
mates. The right side gives a new trial value for which the process
is repeated until successive O estimates agree to a specified extent
and T(e) = 0 at convergénce. This method works we11 if T(e) is

stable over a range of values near © (i.e., if the 1ikelihood func-
tion is close to normal in shape). Asymptotic Tikelihood theory
guarantees this for large samples. The method fails if the Tikeli-

hood is multimodal.

1.2.4 Comparison of the Approaches

One of the major drawbacks of the discriminant function approach
is its requirement that U be normally distributed. This requirement
is rarely satisfied, even approximately, although in some cases the
appropriate transformation can be made to normalize the variable.
Truett, Cornfield and Kannel's results do however show that despite
extreme‘non-nofma]ity of U the agreement between observation and
expectation is quite good.

The Walker-Duncan weighted least squares approach makes no such
assumptions about the distribution of the indepehdent variab]é. A]so
thfs‘approach forces the total number of expected cases to equal the
total number of observed cases. This is a desirable property for any

smoothing procedure. As stated previously, this procedure is iterative
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and therefore computationally more difficult than the discriminant
function approach.

Halperin, B]éckwe]der and Verter (1970) prefer the weighted
least squares approach on theoretical grounds since it does not
assume any particular distribution of U and it gives results which.
asymptotically converge to the proper value if the logistic model

holds.

1.3 OQutline of the Research

The purpose of this research is to study the effect 6f measure-
ment error in the independent variable on the estimated logistic
regression model coefficients and to propose methods of producing
consistent estimates of the coefficients. The main focus of this

study is the univariate logistic regression model:

Y, = : 1 +.n.

i i
1+ e ~(0+8U;)

In Chapter II the bias in the estimated coefficients of the
univariate logistic model is described for several different distri-

butions of the unobserved independent variable, U.. Also, a

i
description of the bias is given for the multivariate logistic
regression model with two independent variables, one measured with-
~out error and the other measured with error.

| In Chapter III we investigate as possible solutions to the
error-in-variables problem under the logistic regression model: an
adaptation of the method of grouping, the use of instrumental vari-

ables, and solutions when certain variances are known. The criteria
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for comparison between these methods and the iterative weighted
‘least squares meihod is the simulated bias and MSE of the estimated
coefficient.

In Chapter IV the use of multiple measures of the independent
variable is investigated. A comparison is made between the use of
one measurement, the mean of m measurements, and the James-Stein
estimate of the independent variable as the independent variable in
the model. Again the criteria for comparison are the simulated bias
and MSE. |

Finally, in Chapter V the methods discussed are applied to a
data set from the Lipid Research Ciinics Program Prevalence Study.
That data set contains observations on 4171 men and WOmen. The
variables of interest are cholesterol level, triglyceride level, and
age, with the outcome variable being mortality status at 5.7 years
after the measurements are taken. Other variables brought into the
study and used as instrumental variables are HDL cholesterol lével
and Quetelet index (weight/heightz). 7

A summary of the results and recommendations for further re-

search are given in Chapter VI.



CHAPTER I1
 DESCRIPTION OF THE BIAS DUE TO MEASUREMENT ERROR

Before investigating possible solutions to the error-in-variables
problem under the logistic regression model, it is importént to make
two determinations. We must first determine whether there is a bias
under this model. Secondly, we must determine the direction and mag-
nitude of the bias given that it exists. If there is no bias or if
the bias is always small and/or away from the null, there would be
little need for this study. It is a]so.of interest’to describe the
bias for different distributions of the independent variable and to
detérmine whether the distribution of the independent variable has an
effect on the bias. Therefore, in this chapter the bias is described

for the following cases:

1. Simple linear regression;
2. Multiple linear regression (two independent variables);

3. Simple logistic regression where the independent variable
is

a) conditionally normal;
b) conditionally exponential;
" ¢) unconditionally normal;

d) unconditioné]]y exponential.



4, Multiple logistic regression where the independent variables

are _
a) conditionally bivariate normal;

b) unconditionally bivariate normal.
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2.1 A Review of the Simple Linear and Multiple Linear Regression

Cases

2.1.1 Simple Linear Regression Case

It was stated previously that in the simple linear error-in-

variables problem the OLS estimate of Bu is biased. That is, if éx

is the OLS estimate based on the observed values, then

and the bias is

Proof

Assume that the true relationship between V and U is

V. = o, + Bu 4]
but we observe
X=U+ ¢
Y=V+n

E(c) = E(n) = E(Ue) = E(nV¥) = E(Ve) = E(Un) = E(en) = 0

= 2 = N2
vat € oe, var U 0y
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then .
g = SOV(XY) _ cov(uy) Sy
X var X 2 2 2
+
' o T % %y
2
_cov(uy) . _Cu
2 2 + 2
% Oy T O
2
) %
- BU 2 2
+
Oy T %

It is known from OLS theory that Ex iszconsistent for By - This im-

plies that §x is consistent for B bﬁrii—1ﬂ and not for B.. The bias
, . outoy toog u

is always towards the null and if cé is small relative to cﬁ, the

bias is small.

2.1.2 Multiple Linear Regression Case

Cochran (1968) examines the bias when there are two independent
variables in the model as follows: Suppose the true unobservable
relationship is

V=g +8, U +8 U
u u1 1 u2_ 2

but the following variables are observed

»X-l = U],+ €
X2 = Uz + Ez
Y =V +nq

. 2 2 2 2
where_U1, U2, €y and €q have variances qu1, cuz, 651’ and 052,
respectively, and are uncorrelated. The coefficients Bu and Bu
' 1 2

are therefore estimated based on the observable relationship
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Y=ot Bx]xl +\szxz tn

Let the variance-covariance matrices for the U's and X's be:

(52 po. O | 62 + g2 po. O ]

u] -u.l u2 : u] 51 u] u2
zu ) 2 ix ) 2 | 2
po,, O c po.. © cc + g0

i Uy U, Uy ] ) Uy Uy Uy ezJ

Since cov(U1U2) = cov(Xlxzf = po, O and

192
Acov(u],y) cov(xy»y)
' xuy' cov(uy,y) COV(Xz,y) txy

If

Bu] : Bx]

By = By =

6”2 Bx]

Then

By = *x-] *xy'=$x-] 4:uBu‘

This implies that if &  and §x are the OLS estimates of B and
1 2 o

B s then
U2 : | . cu
Bu'l' R](l'P?Rz) + Bué DBl‘"g R](]"Rz)
2 = = 1
E(g, ) = 8, =——
(0] . -
U] ,
Bu] Qa‘u_— Rz(]'R]) + Buz Rz(]'p R])
E(B, ) =8, = 2

X X 2
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2
-,
where p = cov(U]UZ) and R; = ,» 1=1,2.
| o *o2 :

U; &4

If the correlation between Uy and U, is zero (i.e., p=0), then
BB, ) = 8
1
E(B )
2 2
which is identical to the results in the univariate case.

If only one variable is subject to measurement error, for

example U2’ then s
U

2
Buz p'a."" (]'Rz)
A Yy
E(B, ) = B, +—
1 1 1 - p2 R2
~ -nl

Even though U]_is measured without error there is a bias in the
estimation of B - This bias may be negative or positive, depending
on the signs of é s B , and p. It is possible to produce situations
in which Bu1 < B butzE(B ) > E(B ) Since f < 1 we observe a
larger bias in éxz for the mu1t1p1e regress1on case than for the
simple linear regression case. Also as p increases to 1, the bias

in the multiple linear regression case increases.
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2.2 Mathematical Descr1pt1ons of the Bias Under the Log1st1c
Regression Model

In Chapter I we discussed three methods of estimating the
coefficient B8 in the logistic regression model. The discriminant
function approach assumes that U'is conditionally normal and yields
an estimator of g, that can be used to describe the bias in esti-
mating Bye The iterative weighted least squarés and the maximum
likelihood methods make no distributiona1 assumpfions about U, but
do not produce a closed-form solution to B, thus making a mathe-
matical description of the bias difficult to obtain. In this
section the bias is described mathematically with the independent
variable conditionally distributed. ' o

 Assume that U|Y=T - N(uj,02) and U[Y=0 ~ N(uj,02), then from
Chapter 1

L !
%
and

_ 1- 1
a, == 1n j—pRL oy (uruo)(ufuo)
u

Under the error-in-variables model

- X
Y=Y

U+ ¢

where ¢ ~ N(O,cé) and is independent of U and

var(X|Y) = var(U]Y) + var €

2 = 2 2
= o2 +
oy = oy * oL

Therefore
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2+2
Oy %

These results are identical to those obtained in the simple linear
case. We conclude that when the true independent variable comes
from a mixture of two normals with equal variance and measurement
error exists in the independent variable, the discriminant function
estimate of the coéfficients using the obsérved dataris not unbiased.
The bias is always toWards the null and is debendent.upon the mag-
nitude of cé relative to that of of.

Next we investigate the bias when U|Y=1 . Exponential (A]) and
U]Y=0 ~ Exponential (AO). In this case

1

P(Y=1]U)

M- Aq=A
I+ expl- (-In i%'“p‘.’) + 10*2) 0]

1

-(a, + B U
e R

where

| A e
L= 1(1-9) .5, =10

Y
If we observe X = U + ¢ where ¢ ~ N(O,oé) and € is independent of U,

then

var(X|Y=0) var(U|Y=0) + var e

2 - 32 2
oxo ‘AO + ce






