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Abstract

A random graph on n vertices is a random subgraph of the complete graph
on n vertices. By analogy with this, the present paper studies the
asymptotic properties of a random submatroid wr of the projective geometry
PG(r-1,q). The main result concerns Kr’ the rank of the largest projective
geometry occurring as a submatroid of w, - We show that with probability
one, for sufficiently large r, Kr takes one of at most two values depending
on r. This theorem is analogous to a result of Bollob;s and Erdos on the
clique number of a random graph. However, whereas from the matroid theorem
one can essentially de;ermine the critical exponent of w s the graph theorem

gives only a lower bound on the chromatic number of a random graph.
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A. Introduction

A random submatroid of a matroid M 1is obtained from M by performing
a set of independent trials, one for each element of !, at which the element
is deleted with probability 1-p and retained with probability p. 1In the
study of random graphssuch a process is used starting with the complete graph
on n vertices; every simple graph on n vertices is a possible outcome of
the experiment. There are no matroids which are analogous to complete graphs
in this sense and so we choose to begin with projective geometries, the random
submatroids of which can be thought of as random simple matroids representable
over a given finite field. A more complicated model for generating random
natroids was proposed by Knuth [7] and implemented by Cravetz [4]. However,
this approach does not seem easily amenable to probabilistic analysis.

The theorems of this paper may be informally summarized as follows. Fix
a prime power q and for r = 1,2,..., let Mr denote PG(r-1,q), the pro-
jective geometry of rank r over GF(q). Our analysis is unaffected by
whether we assume the matroids Mr to be nested or disjoint. Let Wy sWos e

be the random submatroids of M obtained by performing sets of inde-

l’M?.’ oo
pendent trials as described above, p being the fixed probability of retention
of an element. We shall assume that 0 < p < 1. For any sequence kl’kZ""’
we derive the expected values in wr of the numbers of circuits of size kr’
independent sets of size kr’ flats of rank kr’ and bases (Proposition 1 and
Section D). 1In the cases of the numbers of circuits and independent sets, we
show that with probability one these random variables are asymptotic to their
expected valués (Theorem 3). A consequence of this is Theorem 4 which implies
that with probability one there is r0 such that each w, for r > r, has a

circuit of size r + 1, and therefore has rank r and is connected. 1In the

last section we consider the random variable Lr’ the rank of the largest



subspace of Mr all of whose elements are deleted. We show that with prob-
ability one, for all sufficiently large r, Lr takes its value in a set Vr
which contains either a single integer or a pair of consecutive integers. Since
the critical exponent c. of W, is just r - Lr’ a similar statement can be
made about c. (Theorem 7). Curiously, the asymptotic value of c. is
r - 1ogqr + o(logqr), and only lower-order terms in the asymptotic expansion
involve the value of p.

The proofs in the last section parallel those of Grimmett and McDiarmid
[6], Matula [8,9],and Bollobas and Erdos [3] for analogous results on random
graphs. A summary of many of these graph-theoretic results appears in Bollobas's
book [2]. It should be noted that in the area of random graphs the terminology
used in limiting results is not uniform. In particular, if Al’AZ"" is a
sequence of events, some authors use the term "An occurs almost surely" to mean
merely that 1 - P(An) approaches zero as n approaches infinity. We have
‘ stated our theorems using the term "with probability ome"; such theorems are
true strong laws in the probabilistic sense.

In general we shall follow Welsh [11] for all matroid terminology which
is otherwise unexplained. Some notation and a few simple inequalities will

be useful. Remembering that q 1is fixed, we define

¢ -1
hy = M| =S
-1 -k+1

[rl, = @ - D@~ -Deo(@ -1, k=121
[r]O = 13 [r]k =0 if k<0 or k>r ;
) - ok

| kT kT,

Evidently, hr = [;]

We will be concerned with the asymptotic growth of the above quantities as r

. increases, for various choices of k depending on r. The obvious
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inequalities

j-1
dr<d -1<qd for j-=1,2,
and
m--l m-n
172 54 if m>n (1)
n z zZ
q -1
imply that
k (r-k) r k(r-k+1)
q <[ <a (2)
We also have
k k
@D 5 > @D 3)

To sharpen these bounds we notice that

ke-(3)
[r]k = q Hr,k ’
where
~-r -r+l ~-r+k-1
H o, =0-qd)@-q ...(l-q )
b
Obviously Hr Kk < 1. TFor lower bounds we observe first that
Jk =
-r+k . k
He p 2 1-gq )

which approaches 1 as r tends to infinity if kq“r+k approaches 0.
Regardless of the growth of k, we can obtain a lower bound by using the

inequality'TT(l - an) >1 - Xan (for O f_an < 1):

T‘[‘m - g0 T gho4-2
Hr,k Z-n=1 R nzlq a-1

Even though the simpler bound %—E—% is zero for q = 2, the infinite

product is never zero.



Combining the above for later reference:

k k

ke- (%) ke- (%) o ) . ke=(3)

q¢ 2 >lrl >4 TTa-am>%Fq 2, (4)
=1
and
k
kr-(,) _
[r]k ~ q 2 a5 r oo if kq T, o . (5

We will use two standard theorems from probability:

Chebyshev's Inequality. If X 1s a random variable with finite

variance VX and expected value EX, then for any ¢ > O,

2
P(IX—EXIZE[EXI)f_—%VX =—1§(EX2—1)

€ (EX)2 € (EX)

The First Borel-Cantelli Lemma. If {Al,Az,..J is a sequence of

o
events and Z P(An) is a convergent series, then with probability 1 there

n=1
exists ng such that none of the An with n > n, occurs. (That is,
[oo] 0
c
pd_J () a5 = 1)
N=1 n=N

As easy consequence of these theorems we have the following lemmas, which

we will use repeatedly.

Lemma A. Let (Xl,Xz,...) be a sequence of random variables, and suppose

w© VX X
n is a convergent series. Then 1lim Ei2‘= 1 with probability 1.
n=1 (EXn) n=® n

If lim inf EXn is positive, then with probability 1 there is n, such that
n-xo

X is positive for all n> n,.
n -0

1l

bl I

Proof: Tor k
X

_n
EX
n

325,...5 let Ak be the event that there exists n

such that - 1< for n >m . By Chebyshev's Inequality, the

Borel-Cantelli Lemma, and the hypothesis, PAk = 1. Therefore



Q0
1=2( )4
k=1 Ak
that if EX
n
Lemma B. 1If
Finally,

Lemma C. If

P(X # 0) < EX.

X
= P(lim E§2'= 1). To prove the second assertion we note
n

. 1
is positive, then P(Xn < 0) f_P(an - Eaniz-ElEan) . 0

2
VX is finite, then P(X = 0) < —%— =-EX __; _

T ®0? @l

the definition of expectation obviously implies

X 1s a nonnegative integer-valued random variable, then

]



B. Some quantities associated with projective spaces

It is well-known (see, for example, [5]) that [r equals the number

1
of rank-k subspaces of Mr' In this section we shall determine the other

numerical invariants of Mr that will be used in the remainder of the paper.

We shall need the following

r-
Lemma D. If B 1is a basis of Mr’ then there are precisely (q-1) 1

elements x of Mr such that B u x 1s a circuit.

Proof: We view the projective space Mr as the submatroid of the vector
space V(r,q) consisting of those non-zero vectors whose first non-zero
coordinate is one. Then, by symmetry, we may assume that B is the matural

basis of V(r,q). It is clear that B u x is a circuit of Mr if and only

if the vector x has no zero coordinates. Hence if B y x is a circuit,

the first coordinate of x 1s 1, while each of the remaining r - 1
coordinates can be chosen in q -1 ways from among the non-zero elements of

GF(q). O

We now count the members of 1 and Cr which are respectively the

r,k sk

collections of k-element independent sets and k-element circuits of M_.
A k—element independent set I of Mr lies in precisely one flat of

rank k, namely its closure, 1. Therefore

_ (T
IIr,kl B [k]llk,kl

But Ik k is the set of bases of Mk and it is not difficult to show (see,
Hd

for example, [11l, Exercise 16.1.4]) that

=1 - - -
1T =57 (g = By = h)en(iy = b)) (6)



It follows that

1T, 4l = PR [x1, - (7)

To determine |C , we note first that |C =0 for k < 3.

r,k| r,k|

Thus suppose k > 3. Then
_ ., r
|Cr,kl B [k-lllck—l,kl :

Now, in Mk—l’ consider the set of ordered pairs (B,C) where B 1is a basis
and C 1is a circuit containing B. By counting the number of such
pairs in two different ways, first over circuits and then over bases, we get,

using Lemma D, that
_ k-2
kG g = @D ]

Thus, by (6),

=L - _ _1 k-2
|ck_l,kl r(hy_q = )y ;- hp)ee(hy - by ) (a-D)
and so (k—l)
o ==t dq 2 for k > 3 (8)
r,kl ~ q=1 k! ¢ Tlg-p for x 29
Now suppose that 0 equals Cr,k or Ir,k' Then for i in

{0,1,2,...,k} and D in D, the number of members of 0 which meet D
in exactly 1 elements does not depend on the choice of D. We shall call

These numbers

this number oy when D = Cr and Bi when D =1

Wk r,k’

arise in second moment calculations in the next section and the following

result bounds them above.

Lemma E.
k-1 i

(-1 1 if 0

i-1
(@-1)" T [x-11,

| A
(=
A
-
1
[
-

1’

1]
=

1, if i



and

k., i
1 k (2)'(2) 1

B < eyt () ¢ — g [r-il,_; for all i in {0,1,2,...,k}.
(¢-1)
Proof: Clearly Oy = 1. We now assume that i < k and let X be a

fixed k-element circuit of Mr' It is clear that oy is equal to the
product of the number of ways to choose an i-element subset Y of X and

the number of ways to add a (k-i)-~element set Z to Y so that Y u Z 1is

a k-element circuit meeting X din Y. Now Y can be chosen in (i) ways.
Moreover, if N1 is the number of choices for Z, then
1
P —
M et N

where N2 is the number of (k-i)-tuples (pl’p2’°"’pk—i) such that

(1) for all j in {1,2,...,k-i-1}, the element pj is not in

Yu {pl,pz,.--,pj}; and

(ii) Y u {pl’pZ""’pk—i—l} U {pk_i} is a circuit.
On using Lemma D, we obtain that

k-2
- h_,)(q-1)

N, = (hr - hi)(hr - hi+l)"'(hr
Therefore

Ny < Gyt (b - BB = b ) - b ) (-7
and thus

0 < Tep TG = )M = b (b - b)) (gD

k-1, i .
(kfi)!(i)q( 27 -1yt e - L

The last expression is the stated bound on Oy



To obtain the bound on B we use an argument similar to the above

i
to get
1

K
By < (b —hp (= by ) (B =y ) s

and rewriting the right-hand side of this, we obtain the required bound. O

The last result of this section specifies one further quantity which
will be needed in a second moment calculation. Define Yy to be the number
of rank-k subspaces of Mr which meet a fixed rank-k subspace in a subspace
of rank 1. Then it is not difficult to show (see, for example, {1, p. 225])
fhat

2
v, = g P

i i k—i] q

(9)

C. Existence of circuits and independent sets

Let {kr} be an arbitrary sequence of positive integers which we

will regard as fixed. For simplicity we denote the families Cr K and
b}
r

Cr and Ir' We also define the random variables Cr and Ir to be

Ir,k by
r

the numbers of k,.—element circuits and kr-element independent sets in w_ -
Notice that a kr-set J 1is a circuit (resp. independent set) in w.

if and only if J is a circuit (resp. independent set) in Mr and none of

the elements of J 1is deleted. So if we define, for each kr—set J

in Mr’

1, if none of the elements of J 1is deleted,
X, = (10)
0, otherwise,
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then
c_= ) X  and I_= )} X
o Jec J T Jel J
r
Moreover, EXJ = P(XJ =1) = le‘. Therefore we have by (8) and (7)
Proposition 1. Kk kr—l
kr 1 p T ( 2 )
= = = 2. i >
EC_ = P |Cr| <1 19 [r]k 1 provided kr~— 3 (1)
r T
and
k
kr 1 Ekr (Zr)
EIr =P !Irl R P P q [r]k (12)
b r r
(g-1) 0

The central result of this section is

o vC o VI
Proposition 2. r2 and z ———E;E- are convergent series.

r=2 (ECr) r=1 (EIr)

The proof is given below. As a corollary of Proposition 2 we get, using Lemma A,

Theorem 3. For every choice of the sequence {kr}’

C
if 3<k <r+1 forall r, then with probability one, lim Ef; = 1;
1 >0 r
if 0<k_ <t forall r, thenwith probability one,lim é— = 1.
> r

Proposition 1 together with (4) and (5) provide asymptotic expressions for
ECr and Elr’ which are almost-sure asymptotic values of Cr and Ir'
Since ECr and EIr are bounded away from zero, we also have from

Lemma A:

Theorem 4. TFor every choice of the sequence {kr}’

if 3 < kr <r+ 1 for all r, then with probability 1 there exists

T such that w has a k =-circuit for all r > r, 3
0 r r — 0
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if 1< kr_i r for all r, then with probability 1 there exists

\ r, such that w_ has a kr—independent set for all r i_ro.

In particular, if we choose kr =r + 1 for circuits we see that with
probability 1 there exists ry such that for all r > rg W has a

circuit of size r + 1 and thus is conmnected and has rank r.

Proof of Proposition 2.

2k=|J nJ, |
Eci = J ) P(XJ XJ =1 = 7 r'v1"v2
JieC . J,eC 142 JieC. J,eCy
2k —|J10J2|
=lc] ) »p (for any fixed J, ¢°C))
r 1 r
J,eC
27 7r
Zkr kr -i
=lcde T L Py
i=0

where oy is the number of kr—circuits intersecting a fixed kr—circuit in
i points.

Therefore,by Lemma E and (8),

k -1, i
EC2 EC” kel o x ( t )'(2) . -k
: 2 T 2k s ;3‘1 } (k _{YT( x)q 2 (q-1)" 1[r—i]k P
(EC ) 2 v r i=0 r -1 1
r p o [C,]
k -1 \ i . k -1
k -
-1+ § ot h ( ? 2 (@n’ + X1 g ( 2 ) (-1
- !
i1 (k_-1) i [r]i pkr [r]kr_1
K. —1_i k! k) -(;) o k_! .
< 1 + z P — N ( )q ~ + - —
i=1 (k -1)! M ir-(3)-1 Ky (k_-1(r-1)
q
q
where the last step follows by (3). Therefore
k -1 k -1
Ve r ak, | k_ r
I ot + — = ,
o (Ecr)2 —ia 1 Polpg" Tt
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where
Fy k ! ) ( 2)
_ i r ry -i(r-
G 5P Gt G
T
Now
t (k —i)2 2
i+l _ 1 ‘'r -(r-2) r
—_ ==/ q < s
t, p il — _r-2
i Pq
and thus ti+l/ti <1 for sufficiently large r. So for sufficiently large r,
kr—l
k k -
_YEL__ <k t. + 3_5 _r < (r+1)3 + q(x+l) r+1 2
- rl r-1 - r-2 r-1 ‘
(EC)) © P lpq Pq P lpa

c s th . .
This is the r  term in a convergent series.

Turning now to independent sets, we proceed almost exactly as for circuits,
k

r ¢ -1
! » B,
i=0

2k
2
ET_ = |T_|p

where Bi is the number of kr—independent sets intersecting a fixed

kr—independent set in i points.

Therefore,by Lemma E and (7),

k
2 2 k . T i
EIr _ EIr < Il l Z']:' p 1 (kr)q(z )—(2) 1 [r_i]
2 2k, 2 — |1 Lo(k-1)D M k -1 k
(EIr) ) !Ir] rl i=0 ‘'r (q¢-1) r
k i
! - i
S 14 Zr oi kr__ q ) (q-1)
- \ -i)1
i=1 (le_~1)! (el
ec?
This differs only slightly from the upper bound obtained on — in the argument
(EC )
above. A straightforward modification of that argument shows r
VIr th
that — is the r term in a convergent series. [J
(E1)
r

D. Expected numbers of bases and flats.

Again we consider as fixed a given sequence {kr} of positive integers;

e L,
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and we define the families Br and Fr of bases and kr—flats (flats of

rank kr) in Mr’ and the random variables Br and Fr’ the numbers of
bases and k -flats in w .
T r

Notice that the results of the previous section imply the existence

with probability 1 of an r, such that W, has full rank for all r > r

0 Z 0

and therefore Br almost surely equals lIr r! for large r. In this sec-
3

tion we find the expected values of Br and Fr in terms of the Tutte

polynomials (see [11, Chapter 15]) of the underlying projective geometries Mi'

We do not obtain asymptotic results. The expected values are given in (16)

and (17).

Bases.

r
EB_ = izo E(B_ | rank(w ) = 1)P(rank(w) = 1) ,

and

E(Br | rank(wr) = i)

[}
= JEM E(Br | rank(wr) = i and w, giJ)P(wr cJ | rank(wr) = i)
i

(wvhere Mi is the family of rank~i subspaces of Mr)

)

]

E(Br | rank(wr) =i and w_ < JO

for any fixed rank-i subspace JO of Mr' Now such a JO is isomorphic to Mi’
so an argument similar to that used for Proposition 1 shows that this last
quantity equals pl times the number of i-independent sets in Mi; that is,

R i .
s ) [l

it 9 (q-l)i @

E(Br ] rank(wr) = 1) =

To find P(rank(wr) = 1) we use the following theorem of Oxley and

Welsh [10]. If M is a matroid of rank i on h elements and w is
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a random submatroid of M, then
i h-1i -1
P(rank(w) = 1) = p (1 - p) T(M;1,(1-p) ) , (14)
where T(M;x,y)  is the Tutte polynomial of M. Using this theorem:

P(rank(wr) = i) = Z P(all elements of Mr -~ J are deleted and
JeM
1 W, has full rank in J)

= IP&IP(Mr - JO is deleted)P(a random submatroid of b& has
full rank)
Here J, can be any fixed member of Mi . It follows that
h h,~1

i 1

pra-p toTeu31,(-m)7h

h_
P(rank(w ) = 1) [i](l—p) r

r i hr-i -1
= [i] p (1-p) T(Mi;l,(l-P) ) . (15)
Combining (13) and (15) gives
r 21 h -i (;) [r], -1
EBr = Z 11 (1-p) q — T(Mi;l,(l“P) ). (16)
i=0 ’ (q-1)

Notige ' that the term corresponding to 1 = r dominates this sum because w_

almost surely has rank r for sufficiently large r.

Flats. EFr equals the number of kr—flats in Mr times
the probability that a given such flat has full rank in W, - By (14),
b ke

ooy rT(Mk ;1,<1-p>'1>. (17)

r
EFr = [k 1(1-p)
r r



E. Largest full subspace.

For r =1,2,..., let Kr be the rank of the largest full subspace of
wr; that is, the largest subspace of Mr with no deleted elements. Our main
result in this section is Theorem 6, which implies that with probability 1
there is r, such that for all r ZArO the random variable Kr has at most
two possible values. Symmetry gives a similar result (Theorem 7) for the rank
of the largest subspace of Mr with no retained elements, and hence for the

critical exponent of wr. (1t is merely for convenience of notation that our

results are proved for full rather than empty subspaces.)

For an arbitrary integer k, let Fr k be the family of rank-k subspaces
b4
of M ; then
r
I 4
|Fr,k| [k]
Let Nr K be the number of full rank-k subspaces of w_. As with circuits and
s :

independent sets,

N .= ) X
r,k J
JsFr’k
where XJ is defined by (10). Therefore, for any J in Fr K’
b
T hk
EN, = IFr’kIP(xJ =1 =[Jp " .
Moreover, K < k if and only if N =0 .
T r,k
In this section "log" will denote base-q logarithms and "ln" natural
logarithms. We also let
1
1.q-1
b= () :
so that
hk —qk+1

b >1 and p =

15
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For any € > 0, define

_ r log r

dr,e L}og Tog b + ?J.

Notice that if 0 < £ < 1, then either dr 0 and dr ¢ are equal or they differ
’ >

by 1. It can also be checked that if € 1is a given positive number and j and k denote

. S 1 > .
dr,O and dr,e’ then for sufficiently large r, ENr,j >1 ENr,k+1

Proposition 5. For any € > 0, z P(K > d ) and Z P(K < d ) are
=1 r r,E = r,0

convergent series.

The proof is given below. As a corollary we get from the Borel-Cantelli Lemma.

Theorem 6. Suppose 0 < £ < 1. Then with probability 1 there exists r, such

K has its value in the set {d , d } (which may be
r r,0 T,E

FR=4

that for every r > Ty

a singleton or a pair).

This theorem translates immediately by symmetry to a result on the rank

Lr of the largest subspace of Mr with no retained elements and on the critical

exponent ¢ of w, where ¢_ =r ~-L . For e >0 let
T r T r -

' - r log r
dr,E [}og log b’ + EJ
where 1
R SN L ¢
b' = l—p)

Theorem 7. Suppose O < € < 1. Then withprobability 1 there exists L such

that for every r >r,, L and c¢ have their values in the sets {d' .,d' _}
— 0 r r r,0’ r,e

and {r - d;’e,r - d; }, respectively.

,0
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We note two more consequences of the above before proving Proposition 5.
Firstly, the asymptotic expressions for Kr’ Lr’ and c. have high-order terms

that are independent of p:
K. ~L_ =~ dr,O ~log r + o(log r), and c. ~T - log r + o(log r)

This is in contrast to the growth of the size of the largest clique in a random
graph as found in [6,9,2]. Secondly, with probability one, Kr is eventually
greater than two and hence for sufficiently large r, wr is representable only

over fields containing GF(q).

Proof of Proposition 5. We prove that

rZP(K > d +1) >0 as r +» (18)
r -_ I‘,E -
and

2
r P(Kr < dr,O) -0 as r > o, (19)
and the proposition follows.

To prove (18) we notice that for any k, by Lemma C,

r —qk+1
P(Kr.i k) = P(Nr K # 0) §_ENr k= [k]b s

b 3

and so,by (2),

k
qk(r—k+1)b—q +1

: P(Kr > k) <

Now if k =4d + 1, then
r,E

’

r logr qe < qk r log r q1+ €
log b - log b

| A

and

k £ £
pd 5 qFllos r)a” | rq

So
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rzP(K s d +1) < rZ(r log r 1+€)r_dr,€ —rqE b
r — T,€ - log b 4 r
_ log r 1+€ r-dr,e b r2
B € 4 3
-1 d
rq log b q r,€
r
which tends to 0 as r > o, Thus (18) is proved.
Next we prove (19). For any k, by Lemma B,
EN2 Kk
P(K_<k) =P(N_, =0) <-1+——F52
r r,k — (EN )2
r,k
Now ]
2h, -|J.nJ, |
2 o
BN, =] y P(X, X =1) = ] ) p k12
3
JleFr,k J2€Fr,k 12 JlgFr,k J2€Fr,k
2h -|J. nJ_ |
= |F_ | ) P k 12 (for any fixed J, ¢ F_ )
r,k T eF 1 r,k
2¢"r K
r 2hk k —hi
=LJe " lygp
i=0

where Yi is the number of rank-k subspaces intersecting a fixed rank-k sub-

space in a rank-i subspace. Now, because of (9),

EN, k
-1+ 5 < -1+ ) T,
(BN, i=0
e [?][izi] k-1)% i1
T, = =2 ¢ bt 7, 1=0,1,...,k
i r
;]

Now, by (1), TO < 1; and (2) implies that

i \ .
pd -1 qk—1(r-—2k+1)

T, < (1=1,2,...,k
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Therefore
o i
P(K <) < ]s;
i=1

where
11 kei(r-2k+i)
sy = b4 q

Now we show that if k = d » then for sufficiently large r the function

r,0

X
£y = pd "L QX (E=2kek)

first decreases and then increases and has exactly one critical point in the
interval 1 < x < k. It will follow that

k
2

P(Kr < k) < (sl + Sk) for k =4d and sufficiently large r. (20)

r,0

We use the fact that if k = dr 0’ then
’

® K
TTerb S gy e o < @

We can rewrite f(x) as

k (qx—l)log b - x(r-2k+x)
qq
and it suffices to show that the nonconstant part of the exponent,

g(x) = ¢*log b - x> - (r - 2K)x ,

has the properties claimed above for f(x). But

' = X - _ .
g'(x) qgInb 2x r + 2dr,0 ;

[ ]e)

- ' . - _
g' (1) = qlndb 2 r + 2d1_,0 ,
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which is obviously negative for large r. Moreover,

' - .k _ r log r _
g' (k) q 1lnb r z-q Tog b 1nb r

= r(log r)lnq - ¢

which is positive for large r. Thus g(x) first decreases and then increases

for 1 < x < k, and so g' (x), being continuous, has an odd number of zeros in
[1,k]. But g'(x) has at most two zeros, since it is the difference
between the convex function qxlnb and the linear function 2x + (r - 2k). So

g'(x) has exactly one zero in [1,k], the assertion about f(x) 1is

proved, and (20) follows. We get

k
P(Kr < ¥ ilic_(bq--l qk-r+2k-l + e -1 qk k(r k))

q - k k2 -
b 3k-r + 1 kbq q +k-kr

' = Zbq X 2b

But we can use (21) to show that each of these terms is o(r_z):

q q
2 b 3k-r 2 b r log r 1
r 2bgq kq < r 2bq ( log b ) qr—3k >0 as 1>,
and
k 2
k“4k-
log(r2 E% kb2 q e kr)‘i 2 log r - log 2b + loglog(£1%§gE£ ) +rlogr

+ k2 + k - kr

r(log r - k) + o((log r)4)

<r(log r - 108(51%2331) + 1) + o((log r)4)

+ - ® gg r > o, ad
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