ON A KOLMOGOROV-SMIRNOV TYPE ALIGNED TEST

by

Pranab Kumar Sen

Department of Biostatistics
University of North Carolina at Chapel Hill

Institute of Statistics Mimeo Series No. 1442

June 1983
ON A KOLMOGOROV-SMIRNOV TYPE ALIGNED TEST

PRANAB KUMAR SEN
University of North Carolina, Chapel Hill

For testing the hypothesis that two (symmetric) distributions differ only in locations, a Kolmogorov-Smirnov type test based on the aligned observations is considered and its properties studied.

1. Introduction. Let X_1, \ldots, X_m be m independent and identically distributed random variables (i.i.d.r.v.) with a continuous distribution function (d.f.) F, defined on the real line $R = (-\infty, \infty)$. Also, let Y_1, \ldots, Y_n be n i.i.d.r.v. with a d.f. G, defined on R. It is assumed that

$$F(x) = F_0(x - \theta_1) \text{ and } G(x) = G_0(x - \theta_2), \quad x \in R,$$

where $\theta = (\theta_1, \theta_2)$ is an unknown vector of the location parameters, and, we want to test for

$$H_0: F_0 = G_0 \text{ against } H_1: F_0 \neq G_0,$$

treating θ as a nuisance parameter. If $\theta_1 = \theta_2$, then an omnibus goodness of fit test for (1.2) is based on the classical Kolmogorov-Smirnov statistics

$$K^+_{mn} = \sup \{ F_m(x) - G_n(x) : x \in R \},$$

$$K^-_{mn} = \sup \{ |F_m(x) - G_n(x)| : x \in R \},$$

where F_m and G_n are the two sample (empirical) d.f. This test is not suitable when θ_1 and θ_2 are not equal. One possibility to overcome this problem is to estimate θ by some convenient estimator $\hat{\theta}$ and to base the test on the aligned observations $X_i - \hat{\theta}_1, i=1, \ldots, m$ and $Y_j - \hat{\theta}_2, j=1, \ldots, n$. Unfortunately, the resulting test may not be distribution-free, even asymptotically. In this note, we consider

Key Words & Phrases: Alignment; asymptotically distribution-free; empirical d.f.; empirical process; Kolmogorov-Smirnov statistics; tightness; weak convergence.

* Work partially supported by the National Heart, Lung and Blood Institute, Contract No. NIH-NHLBI-71-2243-L from the National Institutes of Health.
a variant form of the Kolmogorov-Smirnov statistics where the alignment procedure works out well when the underlying d.f.'s are symmetric. Along with the preliminary notions, this proposed test is considered in Section 2 and its properties are studied in the concluding section.

2. **The proposed test.** Let \(\hat{\theta}_{1,m} \) and \(\hat{\theta}_{2,n} \) be two arbitrary translation-invariant estimators of \(\theta_1 \) and \(\theta_2 \), respectively, such that

\[
(2.1) \quad n^{\frac{1}{2}} | \hat{\theta}_{1,m} - \theta_1 | = o_p(1) \quad \text{and} \quad n^{\frac{1}{2}} | \hat{\theta}_{2,n} - \theta_2 | = o_p(1).
\]

Consider then the aligned observations

\[
(2.2) \quad \hat{X}_{mi} = X_i - \hat{\theta}_{1,m}, \quad i = 1, \ldots, m; \quad \hat{Y}_{nj} = Y_j - \hat{\theta}_{2,n}, \quad j = 1, \ldots, n,
\]

and let

\[
(2.3) \quad \hat{F}_m(x) = m^{-1} \sum_{i=1}^{m} I(\hat{X}_{mi} \leq x) \quad \text{and} \quad \hat{G}_n(x) = n^{-1} \sum_{j=1}^{n} I(\hat{Y}_{nj} \leq x), \quad x \in \mathbb{R}
\]

be the two empirical d.f.'s based on the aligned observations. Further, let

\[
(2.4) \quad \hat{F}^*_m(x) = \hat{F}_m(x) - \hat{F}_m(-x-) \quad \text{and} \quad \hat{G}^*_n(x) = \hat{G}_n(x) - \hat{G}_n(-x-), \quad x \geq 0.
\]

Our proposed tests are based on the statistics

\[
(2.5) \quad \hat{K}_{mn}^* = \sup \{ \hat{F}^*_m(x) - \hat{G}^*_n(x) : x \geq 0 \},
\]

\[
(2.6) \quad \hat{K}_{mn}^* = \sup \{ |\hat{F}^*_m(x) - \hat{G}^*_n(x)| : x \geq 0 \}.
\]

We intend to show that the tests based on the statistics in (2.5)-(2.6) are asymptotically distribution-free and have the same properties as the ones based on (1.3)-(1.4), when \(F_0 \) is symmetric about 0.

3. **Properties of the test.** Because of the translation-invariance of the estimators \(\hat{\theta}_{1,m} \) and \(\hat{\theta}_{2,n} \), without any loss of generality, we may take \(\theta_1 = \theta_2 = 0 \) and note that the residuals in (2.2) are translation invariant too. Further, we assume that there exists a positive \(\lambda_0 \), such that on letting \(N = m+n \),

\[
(3.1) \quad 0 < \lambda_0 \leq \lambda_N = m/N \leq 1 - \lambda_0 < 1, \quad \text{for all} \ N.
\]

Also, we assume that the d.f. \(F_0 \) (and \(G_0 \)) are symmetric and have uniformly continuous probability density functions (p.d.f.) \(f_0 \) (and \(g_0 \)) almost everywhere (a.e.). Finally, replacing \(\hat{\theta}_{1,m} \) and \(\hat{\theta}_{2,n} \) by \(\theta_1 \) and \(\theta_2 \), respectively, in (2.2), we denote the corresponding empirical d.f.s in (2.4) by \(F^*_m \) and \(G^*_n \), respectively.
Then, we have the following

Theorem 1. Under (2.1), (3.1) and the assumed regularity conditions on F_0 and G_0,

\[(3.2)\quad \sup \{ m^{\frac{1}{2}} |\hat{F}_n^*(x) - F_n^*(x)| : x > 0 \} = o_p(1), \]
\[(3.3)\quad \sup \{ n^{\frac{1}{2}} |\hat{G}_n^*(x) - G_n^*(x)| : x > 0 \} = o_p(1), as N \to \infty. \]

Proof. We shall only prove (3.2), and (3.3) follows precisely on the same line.

Let $t_m = m^{\frac{1}{2}}(\theta_{1,m} - \theta_{1})$. Then, by (2.2) and (2.3), for every $x \geq 0$,

\[(3.4)\quad \hat{F}_n^*(x) = F_m^*(x + m^{-\frac{1}{2}}t_m) - F_m^*(-x + m^{-\frac{1}{2}}t_m) = F_m^*(x) + \{ F_m(x + m^{-\frac{1}{2}}t_m) - F_m(x) \} - \{ F_m(-x + m^{-\frac{1}{2}}t_m) - F_m(-x) \}, \]

so that

\[(3.5)\quad m^{\frac{1}{2}} |\hat{F}_n^*(x) - F_n^*(x)| \leq m^{\frac{1}{2}} \{ F_0(x + m^{-\frac{1}{2}}t_m) - F_0(x) - F_0(-x + m^{-\frac{1}{2}}t_m) + F_0(-x) \}
+ m^{\frac{1}{2}} \{ F_m(x + m^{-\frac{1}{2}}t_m) - F_m(x) \} + F_0(x)
- m^{\frac{1}{2}} \{ F_m(-x + m^{-\frac{1}{2}}t_m) - F_m(-x) \} + F_0(-x). \]

Now, the first term on the right hand side of (3.5) is equal to $m^{\frac{1}{2}} \{ f_0(x + m^{-\frac{1}{2}}t_m) - f_0(-x + m^{-\frac{1}{2}}t_m) \}$, where $0 < a, b < 1$, and using the symmetry and uniform continuity of the pdf f_0, we conclude that under (2.1) (insuring the boundedness of t_m in probability), this converges to 0, in probability, as $m \to \infty$, uniformly in $x \geq 0$.

On the other hand, if we make use of the weak convergence of the empirical process $m^{\frac{1}{2}} (F_m - F_0)$ to a Brownian bridge, then, by the tightness part of this weak convergence, (2.1) and the uniform continuity of f_0, each of the other two terms on the right hand side of (3.5) converges to 0, in probability, as $m \to \infty$; the conclusion remains true under the sup-norm metric when we make use of the modulus of continuity for the empirical process $m^{\frac{1}{2}} (F_m - F_0)$. Hence, the proof of (3.2) is complete.

By virtue of Theorem 1, we conclude that under the hypothesis of Theorem 1,

\[(3.6)\quad \sup \{ N^{\frac{1}{2}} |\hat{F}_n^*(x) - \hat{G}_n^*(x) - F_m^*(x) + G_n^*(x)| : x \geq 0 \} \to 0, as N \to \infty. \]

Note that F_m^* is the empirical d.f. of the $X_{1 - \theta_{1}}$ whose true d.f. is $F_0^*(x) = F_0(x) - F_0(-x)$, $x \geq 0$. Similarly, G_n^* is the empirical d.f. corresponding to the true d.f. $G_0^*(x) = G_0(x) - G_0(-x)$, $x \geq 0$. Hence, if we define
(3.7) \(K_{mn}^* = \sup \{ F_m^*(x) - G_n^*(x) : x \geq 0 \} \) and \(K_{mn} = \sup \{ |F_m^*(x) - G_n^*(x)| : x \geq 0 \} \),
then, these are respectively the one and two-sided Kolmogorov-Smirnov statistics
for the two samples with observations \(|X_i - \theta_1|, i=1, \ldots, m \) and \(|Y_j - \theta_2|, j=1, \ldots, n \).
From (2.5), (2.6), (3.6) and (3.7), we conclude that under the hypothesis of
Theorem 1, as \(N \to \infty \),
\[
N^{1/2} \left| \hat{K}_{mn}^* - K_{mn}^* \right| \xrightarrow{P} 0 \quad \text{and} \quad N^{1/2} \left| \hat{K}_{mn} - K_{mn} \right| \xrightarrow{P} 0.
\]
This exhibits the asymptotic equivalence of the proposed tests and the ones
based on the statistics in (3.7). In particular, under \(F_0 = G_0 \), \(F_0^* \) and \(G_0^* \) are
also the same, and hence, we have for every \(d \geq 0 \),
\[
(3.9) \quad \lim_{N \to \infty} \Pr_{H_0} \{ (mn/N)^{1/2} \hat{K}_{mn}^* \geq d \} = \exp(-2d^2),
\]
\[
(3.10) \quad \lim_{N \to \infty} \Pr_{H_0} \{ (mn/N)^{1/2} \hat{K}_{mn} \geq d \} = 2 \sum_{r=1}^{\infty} (-1)^{r-1} \exp(-2r^2 d^2),
\]
see for example, Hájek and Šidák (1967, p.190). Thus, under \(H_0 : F_0 = G_0 \) and the
regularity conditions of Theorem 1, for \((mn/N)^{1/2} \hat{K}_{mn}^* \) and \((mn/N)^{1/2} \hat{K}_{mn} \), the
limiting distributions in (3.9) and (3.10) apply. Also, for contiguous alternatives,
the power properties of \(K_{mn}^* \) and \(K_{mn} \) are shared by the proposed tests.

In this context, we may use the sample medians for \(\hat{\theta}_{1,m} \) and \(\hat{\theta}_{2,n} \) and these
satisfy (2.1) whenever \(f_0(0) \) and \(g_0(0) \) are positive. Other robust estimates
of location may also be used, and this may avoid the assumption of a finite
second moment which is usually needed with the sample mean. It is also possible
to improve (3.8) by using the Bahadur-Kiefer representation for the sample
quantiles in (3.5) and the Komlos-Major-Tusnady strong approximation for the
reduced empirical processes. However, for our specific purpose, these are not
really needed.

REFERENCE