ON ADAPTIVE SCALE-EQUIVARIANT M-ESTIMATORS IN LINEAR MODELS

by

Jana Jurečková
Department of Statistics and Probability
Charles University, Prague, Czechoslovakia

and

Pranab Kumar Sen
Department of Biostatistics
University of North Carolina, Chapel Hill, NC 27514

Institute of Statistics Mimeo Series No. 1422

December 1982
On Adaptive Scale-Equivariant M-Estimators in Linear Models
JANA JUREČKOVA and PRANAB KUMAR SEN*

Based on the concept of regression quantiles (due to Koenker and Bassett), an adaptive, scale-equivariant version of M-estimators in linear models is considered. Various properties of the proposed estimator are studied.

KEY WORDS: Adaptive estimator; linear models; M-estimators; regression quantiles; scale-equivariance.

1. INTRODUCTION

Let X_1,\ldots,X_n be n independent random variables (r.v.) with distribution functions (d.f.) F_1,\ldots,F_n, respectively, all defined on the real line R.

Consider the simple linear model where

$$F_i(x) = F(x - \beta_i'z_i), x \in R, i=1,\ldots,n,$$

(1.1)

$\beta = (\beta_1,\ldots,\beta_p)$ is an unknown vector of $p(\geq 1)$ parameters, the z_i are known vectors of regression constants, and the d.f. F is assumed to be absolutely continuous and symmetric about 0. Let $M_n = (M_{n1},\ldots,M_{np})'$ be the Huber M-estimator of β, i.e., it is a solution of

$$\sum_{i=1}^{n} z_i \psi(X_i - t'z_i) = 0,$$

(1.2)

where the score-function ψ is defined by

$$\psi(x) = \begin{cases}
 x, & |x| \leq k, \\
 \text{ksgn}x, & |x| > k,
\end{cases}$$

(1.3)

for some specified value of $k(>0)$. We write

$$X_n = (X_1,\ldots,X_n)'$$

and $M_n = M_n(X_n)$.

(1.4)

M_n is known to be a robust estimator of β having other desirable properties.

* Jana Jurečková is a Professor, Department of Statistics and Probability, Charles University, Prague, Czechoslovakia, and Pranab Kumar Sen is Cary C. Boshamer Professor, Department of Biostatistics, University of North Carolina, Chapel Hill. The second author's research was supported by the National Institutes of Health, Contract NIH-NHLBI-71-2243-L.
too. However, it has one discouraging property, namely, unlike the R- or L-

estimators, M_n is not scale-equivariant i.e., $M_n(dX_n)$ is generally not equal
to $dM_n(X_n)$, for all $d > 0$. This is particularly due to the fact that $\psi(dx) \neq
d\psi(x)$ for all x, whenever $k < \infty$. On the other hand, the choice of k in (1.3),
linked to the minimax property of M_n for the error-contamination model, may
generally depend on the scale parameter of F or on the amount of contamination
through the percentile points of F, which may not be precisely known. For this
reason, Huber (1973, 1981) suggested the use of a studentized version, viz.,

$$
\sum_{i=1}^{n} c_i \psi ((X_i - t_i') c_i)/s_n ,
$$

(1.5)

where s_n is some suitable estimator of the scale parameter. We consider here
an adaptive (scale-equivariant) estimator which does not require the location-
scale model for the d.f. F and is somewhat related to the studentized version.
The proposed estimator is based on the concept of regression quantiles due to
Koenker and Bassett (1978) and the same is introduced in Section 2. The main
results on the properties of the proposed estimator are presented in Section
3. The concluding section deals with a general class of M-estimators and their
corresponding adaptive versions.

2. AN ADAPTIVE M-ESTIMATOR

Following Koenker and Bassett (1978), we define for every $\alpha : 0 < \alpha < 1$,

$$
\phi_\alpha(x) = \alpha - I(x \leq 0) , \ x \in \mathbb{R} ,
$$

(2.1)

$$
\rho_\alpha(x) = x\phi_\alpha(x) , \ x \in \mathbb{R} .
$$

(2.2)

The α-th regression quantile $\hat{\beta}_{x}(\alpha)$ is then defined as any solution (t) for which

$$
\sum_{i=1}^{n} \rho_\alpha(X_i - t_i') c_i
$$

(2.3)

Consider the residuals

$$
\hat{X}_i(\alpha) = X_i - \hat{\beta}_{x}(\alpha)' c_i , \ i = 1, \ldots , n
$$

(2.4)

and, for every $\alpha : 0 < \alpha < \frac{1}{2}$, define $A_n(\alpha) = \text{Diag}(a_{11}(\alpha), \ldots , a_{nn}(\alpha))$, by letting

$$
a_{ni}(\alpha) = \begin{cases}
1, & \text{if } \hat{X}_i(1-\alpha) < 0 < \hat{X}_i(\alpha) \\
0, & \text{otherwise}, \quad \text{for } i = 1, \ldots , n.
\end{cases}
$$

(2.5)
Also, let $\tilde{c}_n = (c_1, \ldots, c_n)'$, and let

$$L_n(\alpha) = (\tilde{c}_n^\prime A_n(\alpha) \tilde{c}_n)^{-1} (\tilde{c}_n^\prime A_n(\alpha) Y_n).$$

(2.6)

Thus, $L_n(\alpha)$ is the ordinary least squares estimator of β based on the $n-2$ observations for which $a_{ni}(\alpha) = 1$, and is therefore termed the trimmed least squares estimator of β. Having obtained this scale-equivariant estimator $L_n(\alpha)$ of β, we consider the residuals

$$\hat{e}_i = Y_i - L_n(\alpha) C_i, \ i = 1, \ldots, n,$$

(2.7)

and the corresponding empirical d.f.

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^{n} I(\hat{e}_i \leq x), \ x \in \mathbb{R}.$$

(2.8)

Further, let

$$\hat{F}_n^{-1}(p) = \begin{cases} \sup \{ x : \hat{F}_n(x) \leq p \}, & 0 < p < \frac{1}{2}, \\ \inf \{ x : \hat{F}_n(x) \geq p \}, & \frac{1}{2} < p < 1, \end{cases}$$

(2.9)

with an arbitrary convention for $p = \frac{1}{2}$. Let then,

$$k_n = (\hat{F}_n^{-1}(1-\alpha) - \hat{F}_n^{-1}(\alpha))/2, \ \alpha \in (0, \frac{1}{2}).$$

(2.10)

Finally, keeping (1.3) in mind, we define

$$\hat{\psi}_n(x) = \begin{cases} x, & |x| \leq k_n \\ k_n \text{sgn} x, & |x| > k_n \end{cases}$$

(2.11)

where k_n is defined by (2.10). Then, the adaptive estimator M_n^* of β is defined as the solution of

$$\sum_{i=1}^{n} \tilde{c}_i \hat{\psi}_n(Y_i - \tilde{t}'C_i) = 0.$$

(2.12)

In the back of our mind, in (1.3), we let $k = F^{-1}(1-\alpha)$, so that by the assumed symmetry of F, $F^{-1}(\alpha) = -k$. The relationship between k_n and k provides the basic key to our subsequent analysis.

3. ASYMPTOTIC PROPERTIES OF M_n^*

The estimator $L_n(\alpha)$ has been studied in further detail by Ruppert and Carroll (1980), and its relation with M_n by Jurečková (1983a,b). We intend to employ these results along with the Bahadur-representation type results for weighted empirical d.f. (due to Ghosh and Sen (1972)) to study the asymptotic properties of M_n^* and its relationship with M_n. Note that by the results of
Ruppert and Carroll (1980), under appropriate regularity conditions, including
\[
\lim_{n \to \infty} n^{-\frac{1}{2}} C_n^\top C_n = Q \quad \text{(positive definite)} \quad (3.1)
\]
and
\[
\lim_{n \to \infty} \max_{1 \leq i \leq n} \{ n^{-\frac{1}{2}} | | C_i | | \} = 0 , \quad (3.2)
\]
for every \(\alpha : 0 < \alpha < \frac{1}{2} \),

\[
n^{\frac{1}{2}}(L_n(\alpha) - \beta) \rightsquigarrow \mathcal{N}_p(0 , Q^{-1} \sigma^2(\alpha, F)) , \quad (3.3)
\]
where \(\sigma^2(\alpha, F) \) is the asymptotic variance of the \(\alpha \)-trimmed mean, and is given by

\[
(1-2\alpha)^{-1}\left\{ \int_{-\xi_\alpha}^{\xi_\alpha} x^2 dF(x) + 2\alpha \xi_\alpha^2 \right\} , \quad \text{where } F(\xi_\alpha) = 1-\alpha. \quad (3.4)
\]
Further,

\[
n^{\frac{1}{2}} | | L_n(\alpha) - M_n(\alpha) | | \to 0 , \text{ as } n \to \infty , \quad (3.5)
\]
where \(M_n(\alpha) \) is defined as in (1.1)-(1.4) with \(k = k_\alpha = F^{-1}(1-\alpha) \). Actually, for \(p=2 \), \(C_i = (1, c_i)^\top \), \(i=1, \ldots, n \), (3.5) has been improved by Jurečkova (1983b) to

\[
n^{\frac{1}{2}} | | L_n(\alpha) - L_n(\alpha) | | = O_p(n^{-\frac{1}{2}}) , \text{ as } n \to \infty . \quad (3.6)
\]

It may be noted that (3.6) holds in the general case of \(p \geq 2 \), and, further, under appropriate regularity conditions, we shall show that

\[
n^{\frac{1}{2}} | | M_n^*(\alpha) - M_n(\alpha) | | = O_p(n^{-\frac{1}{2}}) , \text{ as } n \to \infty , \quad (3.7)
\]
where \(M_n^*(\alpha) \) is defined by (2.10)-(2.12). This would establish the equivalence of all the three estimates \(M_n(\alpha) \), \(L_n(\alpha) \) and \(M_n^*(\alpha) \) (of \(\beta \)) up to the order \(O_p(n^{-3/4}) \), so that they all share the common properties of the Huber estimator \(M_n(\alpha) \). In addition, \(M_n(\alpha) \) is not scale-equivariant but \(M_n^*(\alpha) \) is so. Hence, the proposed adaptive estimator combines the desirable properties of the Huber estimator and, at the same time, is scale-equivariant.

We define \(e_i = X_i - \beta C_i \), \(i=1, \ldots, n \), so that these are i.i.d.r.v. with the d.f. \(F \). Let then \(K^* = [-k, k]^p \), and, for every \(t \in K^* \), let

\[
Z_n(\alpha)(t) = n^{-\frac{1}{2}} \sum_{i=1}^{n} C_i \psi_\alpha(e_i - n^{-\frac{1}{2}} t C_i) , \quad (3.8)
\]
where \(\psi_\alpha \) is defined by (1.3) with \(k = k_\alpha \). Also, let

\[
S_n^*(x; t) = n^{-\frac{1}{2}} \sum_{i=1}^{n} C_i I(e_i \leq x + n^{-\frac{1}{2}} t C_i) , \quad x \in \mathbb{R}, \ t \in K^* . \quad (3.9)
\]

Let then
\[\omega_n(x,t) = \| S_n^*(x;\tilde{t}) - S_n^*(x;0) - f(x)Q_n \tilde{t} \|, \quad (3.10) \]

where \(Q_n = n^{-1}C_n^{-1}Q \) (by (3.1)) and \(f=F' \). Also, we assume that
\[\tilde{c}_n = n^{-1} \sum_{i=1}^{n} c_i \rightarrow \tilde{c} \quad \text{as} \quad n \rightarrow \infty, \quad \text{where} \quad \| \tilde{c} \| < \infty. \quad (3.11) \]

Then, we have the following

Lemma 1. Under (3.1), (3.2), (3.11) and the assumed absolute continuity of the density function \(f \), over \([-k, k]\), as \(n \rightarrow \infty \),
\[\sup \{ \omega_n(x,t) : t \in K^*, -k \leq x \leq k \} = O_p(n^{-1/2}). \quad (3.12) \]

The proof runs parallel to Theorem 3.1 of Ghosh and Sen (1972), and hence, is omitted. Actually, Ghosh and Sen considered an almost sure order, and hence, needed more stringent regularity conditions. In view of Theorem 3.1 of Springer and Sen (1983), the Bahadur-type representation holds even without the concordance-discordance condition of Jurečková (1977), so that (3.12) also holds without such extra conditions.

Note that by (3.8) and (3.9),
\[Z_n(\alpha) = \int_{-\infty}^{\infty} \psi_\alpha(x)dS_n^*(x;\tilde{t}), \quad t \in K^*, \quad (3.13) \]
while, by the classical central limit theorem (for independent summands),
\[Z_n(\alpha)(0) \sim \mathcal{N}(0, Q \int_{-\infty}^{\infty} \psi_\alpha^2(x)dF(x)), \quad (3.14) \]
and hence,
\[||Z_n(\alpha)(0)|| = O_p(1). \quad (3.15) \]

Further, by (3.10), (3.12) and (3.13),
\[\sup \{ ||Z_n(\alpha)(t) - Z_n(\alpha)(0) + Q_n t(1-2\alpha) || : t \in K^* \} \]
\[= \sup \{ ||Z_n(\alpha)(t) - Z_n(\alpha)(0) + Q_n t(\int_{-\infty}^{\infty} f(x)d\psi_\alpha(x)) || : t \in K^* \} \]
\[= \sup \{ ||\int_{-\infty}^{\infty} S_n^*(x;0) - S_n^*(x;\tilde{t}) + f(x)Q_n \tilde{t} d\psi_\alpha(x) || : t \in K^* \} \]
\[\leq \sup \{ \omega_n(x,\tilde{t}) : t \in K^*, -k \leq x \leq k \} = O_p(n^{-1/2}). \quad (3.16) \]

Therefore, on letting \(t = n^{-1/2}(M_n(\alpha) - \beta) \), we obtain from (1.2), (3.15) and (3.16),
\[n^{-1/2}(M_n(\alpha) - \beta) = (1-2\alpha)^{-1}Q_n^{-1}Z_n(\alpha)(0) + O_p(n^{-1/2}). \quad (3.17) \]

If we define \(F_n(x) = n^{-1} \sum_{i=1}^{n} I(e_i \leq x) \) and let
\[k_n^0 = \frac{F_n^{-1}(1-\alpha) - F_n^{-1}(\alpha)}{2}, \tag{3.18} \]

where \(F_n^{-1}\) is defined as in (2.9), then, noting that \(k_\alpha = F_n^{-1}(1-\alpha)\), we have

by the classical results on sample quantiles that whenever \(f(k_\alpha) > 0\),

\[n^{\frac{1}{2}} |k_n^0 - k_\alpha| = O_p(1). \tag{3.19} \]

Also, if we let

\[S_n^0(x; t) = n^{-1/2} e_{i=1}^n I(e_i \leq x + n^{-1/2} t \zeta_i), \quad x \in \mathbb{R}, \ t \in \mathbb{K}^*, \tag{3.20} \]

then, \(S_n^0(x; 0) = F_n(x)\), and parallel to (3.12), we have

\[\sup \left\{ n^{\frac{1}{2}} |S_n^0(x; t) - S_n^0(x; 0) - f(x)\zeta_i| : x \in [-k, k] \ , t \in \mathbb{K}^* \right\} = O_p(n^{-\frac{1}{2}}). \tag{3.21} \]

Using (2.7) - (2.10), (3.3) and (3.21), we conclude that

\[n^{\frac{1}{2}} |k_n - k_n^0| = O_p(1). \tag{3.22} \]

Thus, by (3.19) and (3.22),

\[n^{\frac{1}{2}} |k_n - k_\alpha| = O_p(1). \tag{3.23} \]

We may virtually repeat the steps in (3.16) and verify that for every \(\epsilon \in (0, \frac{1}{2})\),

\[\sup_{\epsilon < \alpha < 2} \sup_{t \in \mathbb{K}^*} \left\| Z_n(\alpha)(t) - Z_n(\alpha)(0) + Q_n t(1-2\alpha) \right\| = O_p(n^{-\epsilon}). \tag{3.24} \]

Further, if we let for \(u \in [-k, k] \),

\[W_n(u) = n^{\frac{1}{2}} \left(Z_n(\alpha)(0) - Z_n(\alpha+n^{-k}u)(0) \right) \]

\[= \sum_{i=1}^n \zeta_i \left(\psi_{\alpha}(e_i) - \psi_{\alpha+n^{-k}u}(e_i) \right), \tag{3.25} \]

then, by routine computations, we have, for every \(u\),

\[EW_n(u) = 0 \quad \text{and} \quad E(W_n(u)) = u^2 \left\{ f(k_\alpha) \right\}^{-2} + O(n^{-\frac{1}{2}} |u|^3), \tag{3.26} \]

and a similar result holds for \(W_n(u) - W_n(u')\). Thus, visualizing \(W_n\) as a

(multivariate) process on \(C[-k, k]\) and using the Kolmogorov existence theorem,

we conclude that for every \(k(0 < k < \infty)\),

\[\sup \left\{ \left\| W_n(u) \right\| : |u| \leq k \right\} = O_p(1). \tag{3.27} \]

By (3.24), (3.27) and (1.2), we have the following: for every \(k: 0 < k < \infty\),

\[n_n(\alpha, k) = \sup \left\{ \left\| n^{\frac{1}{2}} \left(Z_n(\alpha+n^{-k}u)(0) - Z_n(\alpha)(0) \right) \right\| : |u| \leq k \right\} = O_p(n^{-\frac{1}{2}}). \tag{3.28} \]

As such, we have

\[\sup \left\{ \left\| n^{\frac{1}{2}} \left(M_n(\alpha+n^{-k}u) - \beta \right) - (1-2\alpha)^{-1} Q_n^{-1} Z_n(\alpha)(0) \right\| : |u| \leq k \right\} \]
\[\leq n_n(\alpha,k) + n^{-k}(1-2\alpha)^{-1}(1-2\alpha-2n^{-k})^{-1} \sup \{|Q_n^{-1}Z_n(\alpha+n^{-k}u)(0)| : |u| \leq k\} \\
+ n^{-k}(1-2\alpha)^{-1} \sup \{|Q_n^{-1}W_n(\mu)| : |\mu| \leq k\} \]
\[= O_p(n^{-k}) + O_p(n^{-k}) + O_p(n^{-k}) = O_p(n^{-k}). \quad (3.29) \]

Therefore, by (2.11), (3.23) and (3.29), we conclude that
\[n \psi^*(M_n^{-1}(a) - \beta^{-1}) = (1-2\alpha)^{-1}Q_n^{-1}Z_n(\alpha)(0) + O_p(n^{-k}), \quad (3.30) \]

so that (3.7) follows from (3.17) and (3.30).

4. REMARKS ON GENERAL SCORE FUNCTIONS

In addition to the Huber M-estimator, we may also consider other M-estimators and obtain the corresponding adaptive versions based on the trimmed least squares estimators. For example, if we consider the score function

\[\psi_\alpha(x) = \begin{cases}
F^{-1}(\alpha) - x/f(F^{-1}(\alpha)), & x < F^{-1}(\alpha), \\
x, & F^{-1}(\alpha) \leq x \leq F^{-1}(1-\alpha), \\
F^{-1}(1-\alpha) + \alpha/f(F^{-1}(1-\alpha)), & x > F^{-1}(1-\alpha),
\end{cases} \quad (4.1) \]

then, for the location model, the corresponding M-estimator reduces to the Winsorized mean \[n^{-1}\{ \lfloor n\alpha \rfloor X_{n:[n\alpha]} + \lfloor n\alpha \rfloor X_{n:1-[n\alpha]} + \sum_{i=[n\alpha]+1}^{\lfloor n\alpha \rfloor} X_{n:i} \}, \]
where the \(X_{n:i} \) are the ordered r.v. corresponding to \(X_1, \ldots, X_n \). Estimate of the regression vector \(\beta \) based on the score function in (4.1) can also be considered; its refined relation with the trimmed least squares estimate has also been studied by Jurečková (1983a). We may easily obtain the adaptive version of this M-estimator by replacing in (4.1), \(F^{-1}(\alpha) = -F^{-1}(1-\alpha) \) by \(-k_n \), defined by (2.10). In such a case (3.7) holds under no extra regularity conditions. The adaptive estimator will be scale-equivariant, while, the original M-estimator (based on some assumed value of \(F^{-1}(\alpha) \)) will not be so. In general, for an arbitrary score function having a constant value outside a compact interval, the proposed adaptive version will work out well, and a relation like (3.7) will follow under quite general conditions.
REFERENCES

