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ABSTRACT

It is shown that the usual estimators of numerator and denominator
of standardized risk ratios and etiologic fractions are jointly asymptotically
normal when the data come from prospective studies. Standardization for
a categorical confounding variable with an arbitrary number of categories
is allowed; the number of exposure levels allowed is also arbitrary.
Consequently, Fieller's method can be employed to obtain asymptotically

exact confidence intervals.




I. INTRODUCTION

After much work and many long retrospective and prospective
studies, epidemiologists believe that they now know some of the
major, 'causative'" risk factors associated with some of the more
prevalent chronic diseases. Thus they are now interested in con-
ducting massive programs in an attempt to get people to alter their
habits and living modes so as to reduce risk factor levels and
therefore presumably the prevalence of the disease in question.

In order to help determine, for a given chronic disease, which risk
factors to attack epidemiologists have begun to study a '"population

parameter” they call the etiologic fraction EF. (Quotes have been

used because, although the EF depends on some real parameters of
the target population, it cannot be calculated from compleée statistical know-
ledge of the population— the EF is an abstraction.) By definition
EF = that proportion of the disease
"caused”" by the risk factors €]
in question.
We shall be more precise later. If the EF is large, then a success-
ful intervention program would significantly reduce the prevalence
of the disease. If it is small then probably an intervention pro-
gram woﬁld not be "worthwhile'". The validity of these statements de-
ﬁends upon two assumptions: one for the current generations and one
for future generations. It is assumed that, for the current generations,
a reduction in exposure levels prior to the onset of the disease will

reduce the incidence to something close to the non-exposed group; for

future generations, it is assumed that those who would be exposed, if



no intervention occurred, are not genetlcally different (as a group) '

vis-d-vis the disease in question from those who would not be exposed
anyway. Seemingly, the former assumption is more tenuous.

EF is a ratio and both numerator and denominator must be esti-
mated. Unbiased estimates or at least approximately unbiased

estimates are available. When what are termed confounding wvariables

are considered and various levels of the risk factors are also
considered (thus when a more detailed categorical approach is employed)
a confidence interval (CI) has not been known for prospective studies.
In this paper we present asymptotically exact Ci's for
EF and two other population parameters , the (directly) standardized
risk ratio, SRR, and the (indirectly) standardized mortality (mor-—
bidity) ratio, SMR. We assume that the data have been obtained from
a prospective study in which individuals have been obtained by simple . )
random sampling, or its equivalent, and only the overall sample size
is fixed.
The basic method is due to Fieller [1]. 1In a later paper we
plan to extend the estimation of EF, SRR, SMR to non-categorical
approaches, ie. multiple regression and discriminant analysis.
Many authors have cdntributed to the literature on EF, SRR and
SMR. For a rather. extensive bibliography see Gart [2]; see also Miettinen

[3,4].

IT. NOTATION, DEFINITIONS AND THE STUDY DESIGN

a) Notation

We are concerned with the occurrence, D, or non-occur-—



rence, 5, of some disease. We are also interested in on2 or more
risk factors which, for purposes of analysis, have been categorized
according to "levels of exposure'. By combining levels for each
risk factor we have

K = number of levels of. exposure

to risk factors.

Non-exposure will be denoted by 0, while k, k = 1, =*+ , K,will de-
note a given exposure level. There may also be confounding variables
(categorical) such that

i) the event disease given exposure level

k, D|k, is not independent of the
confounding variables, k = 0, =<+ , K,

and

1i) the joint distribution of the confounding
variables is not the same from
exposure level to exposure level.

Consequently these confounding variables ought to be considered in

any estimation of relative risk or EF. Let

C = total number of confounding
variable categories.

For example, being overweight and ipcreasing one's weight are
believed to be risk factors for normotensives developing hypertension
at a future time. We can dichotomize each: over- or not overweight
and weight change > 10 1bs. or < 10 lbs. for a given nuwmber of years.
Thus K = 3 and not overweight and weight change < 10 lbs. would
constitute non—exposure. But it is true that le is dependent upon



N

age and current diastolic blood pressure, DBP. By dichotomizing age '
and using three levels of normal DBP we get C = 6.

Let p with subscripts be the probability of the event described

by the subscripts: for example,

Dki = event of becoming diseased and
: being at exposure level k and
in confounding category i
and
Diki = event of becoming diseased

given exposure level k and
confounding category i.

A dot, * , in a subscript means that the variable corresponding

to that position has been summed out. Thus

*k|i = event of being at exposure level
k given confounding category i
and
D-Ik = event of becoming diseased given
. exposure level k.,

We assume none of the probabilities are O.
b) Definitions

The three parameters of interest can now be

written . -
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where ¢ is any subset of exposure levels not including non-exposure.

In words,

SRRk = ratio of the probability of
' becoming diseased given exposure
level k if the confounding -
distribution were that in the
non-exposed group to the probability
of becoming diseased given non-
exposure,

and

SMRk = ratio of the probability of becoming
diseased given exposure level k
to the probability of becoming
diseased given non-exposure if the
confounding variable distribution
among the non-exposed group were
that of the group at exposure
level k.



€ is the set of exposure levels towards which an intervention

campaign is contemplated, while

= probability of becoming diseased »
and being in the group at
exposure levels in ¢ if they
were non-exposed.

o
Ppe.-

Thus we arrive at the "definition" given in (1).

c¢) Study Design .

As mentioned we are concerned with a prospective study
in which participants have been randomly selected. All participants -
are disease-free at initiation of this study. Let n = overall sample

size. Subscripts on n will have the same meaning as before. Thus

at study completion we will have C¢ 2 x (K+1) tables:

Confounding Category i

Risk Level Totals
¢] 1 2 e K
Diseased poi "pii  pai “pri Ppeg
Not Diseased  nj; "b1i %21 "Bk "pei
Totals n-Oi n‘1i n'21 n-ki m"i

Various real life problems, such as change of exposure level and loss to
the study, will be ignored. Because of the study design, all entries in
in the table are random variables. We ignore the fact that the sample .

space 1s finite.



IIT. JOINT ASYMPTOTIC DISTRIBUTION OF ESTIMATORS OF NUMERATORS

AND DEXNOMINATORS

In this section we prove that the usual, obvious estimators of
numerator and denominator of SRRk, SMRk and EFe are jointly
asymptotically normal. We give the means and variances and covariances.

Since only n is fixed, there is a non-zero probability that
an estimator presented below will be 0/0. We define such a ratio

as 1. This means that, for example,

/nDOi fi > Bog = O
Eta I Po0i] T n >0
\ .01 Pploi * ".01
n_ .. {b n_.. =0
var| 22 [ mg ) s Y- Va owoh,
.01 ' Pploi*" ~ Pploiy Pe0i? Peoi T O

Because the writing of the remainder of the paper will be easier and

more concise if we just ignore complications caused by events whose

probability goes to 0 as n —> = we shall, for example, write
n_ ..
E nDOl? ~ Pploi
<01 .
instead of

“poi
01

= Pploz P(n gq > 0 + 2(a g = 0) — Ppyg; -



Thus we shall refer to estimators as being unbiased when in fact
they are only, but rapidly, asymptotically unbiased.
Definitions
".0i “pki E s .
(=1 nn,s, 121 01 "D|ki
nH R - -
n A
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where

It is of course clear that

(5)

(6)

)




Ppa- ~ Ppa-

1
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where A is any subset of {0, 1, --- , K}. We, in particular, refer

to A={k}, k=0, *=+ , K, A=¢ and A= {0, 1, -+« , R}.

Lemma 1

Pplxi 7 Pplki N ﬁ(o, 5.

=

\/Pii leki(l B pD[ki)/n

Proof

Let
bt -
¢ o ki Pk P.ps)
n -
(P
and
% = Pplii 7 Pplii
n ~
U(pDki)

where

2A
o (Ppyy) = Ppsd - pDki)//n'
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Then Yn = y is equivalent to

> as ag —> =

-1 R - ’
"/“-u = Pis SPpyd ¥ H p-ii = a(/a)y + b
for fixed y. Thus

"Dt

2L N
Bt ofud xalpy, )

P(xnf_xIYn-y)-P - al/m)y + b, )

<
- 1T - 1 | Bexd
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xﬁ (- p..,)
> Pl 2< Dki Dki
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where Z ~ N(O, 1). Thus Xn is independent of Yd and

~

1

-1
\/;-ki Pplit - Pp ki)

X —> N| O,
- )
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and consequently
. [ 4
P -p '
plki ~ Fplki . NGO, 1),

-1 I
J Pt Pplitt = Pplws)/™

QED.
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wvhere A is bset of 10,... 5 =
a subset of {0, ,K}, k*A and P.ag n.Ai/n .

Proof

From Lemma 1 we have

Pplri 7 Pplii > N0, 1)
, 1).
: .

-1
J;-ki Pl ~ pDIki)/n

Y
n

Now Yn = y is equivalent to

Ppki ~ "pki /n-ki = oMyl gy

2 -1
~ where ¢ (Y) = Pt leki(l - pDIki)° Thus

>P|. /pglkiZ-i-ayf_‘.x

B(X <x Y =y

where Z ~ N(0O, 1) and

.= Pplki \/p.-Ai (1 - pnlki) |

[t
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Therefore

oo ®

leki

.p(x <x)"f P(X <x | L =y)dF (y) ——~>j f ¢(U)¢(y)dudy=f ¢(z)dz
n — . .,

The last equality is obtained by making the transformation

y=yvy
/ 3
= pDIki u + ay

and intergrating out y. QED.

N
!

The following lemma is presented without proof since a proof

is just a straight forward application of conditional expectations. . .

Lemma 3

c ) ) - T2
- - 1 /e 2 R | _ _

¢

. - . 1

Cov (121 P.ot Pplks’ Ppo- | T o ?L Pp]1Poos ~ P-0iPpo.)

1/ 2 v 2 -1 _ o 2
11) Var z ?~ki D[Oi a E pDIOi Py + i Pory Popy pD]Oi(l leOi) \E P ?DIOi)
1=1

/¢ ] . \ 1

Cov 121 Pext Pploy’ pDk'/ E{ PooiPoxt ~ Pet Poxs)
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. . 1 2 2
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-
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The last requirement before application of Fieller's method is
the joint asymptotic normality of the appropriate random variables,

for example, {?'Oi ﬁlei’ i=1, <o, é} . We shall not write out

the proofs here. A proof would be accomplished by showing that the variables ar
asymptotically jointly normal given Yni = yi, where the Yni are defined

as in the proof of Lemma 2. This conditional distribution will have the

proper mean and covariance structure so that upon integrating out the

~

condition we arrive at joint normality.

IV. ASYMPTOTIC CONFIDENCE INTERVALS

Now suppose X and Y are jointly normal with means ux and My and

covariance matrix (cij). Then
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Upon squaring and rearranging we have

-

P (0 < (zza22 - Y2)72 + 2(XYy - zzclz)y + (7.2011 - Xza - P (-'0'<AY2 *BYy +C) =1 -q

where z = za/Z' Then, as long as A < 0 and the zeros of the quadratic
are real and distinct, they constitute the lower and upper endpoints
of a (1 - a) confidence interval (CI). This procedure is due to
Fieller.

Using Lemma 3, construction of CI's for SRRk, SMRk and EFQ is

straight forward. The CI's are given in Theorem 1 without further

proof. We note however, that as n —> =, in each CI presented, . -

A<0, B <>O, € > 0 and the zeros are real and distinct.

Theorem 1

Let

Then (§, i) constitute asymptotic (1 - a) CI for

1) SRRk where
A= 2'a Ppo- " 5;0_

-}
f

A2 -~ -~ 2/\ -~ s -~
= 2 {Ppg. E P.o1 Pp|ki ~ % Cov (pno-’ ]Z[ P.ot leki) o



~ 2/‘\ ? ~ ~ ~ A
C = 2z Var(z p inlej>— 2 P.Oi pD e 2
1

ii) SMRk where

A2 ~a Y 2
A=z (a\r@ p-kipDIOi) § P.xiPp|oz

ﬁ - 2 -~ A ~ _ ~ A ~
Ppie LPups Ppjog = 2 Cov(pnk ’ § Pooi lek1)

~ 2/\ ~ A2

C =z Var Ppi pDk- .

iii) EFQ where

2/N\ . )
A = zVar pD._— pD._
B n . _ 0 2 /\ -
B-2{5p (p De- pne) z Cov (PD > Ppe. pDe)
~ 2 /\ ~ /\ A A0 /\ ~0 A A 2
= -2 + - - p°
€=z | Var Ppp. = 2Cov (pne-’ pne-) Var Pp,. (p De.- pne-)

The estimators of the variances and covariances need to be asym-~
totically consistent. This is satisfied if the probabilities in these
quantities are.replaced by their (consistent) estimates.

We note that the estimators and CI for SRRk and SMRk may be con-

sidered conditioned on n k=0, *++ , K, being fixed. Asymptotically

oke?
the results are identical to the unconditioned situation. The expected

valués of numerator and denominator of EFe, given the n .. are functions

of these ny. and will only be asymptotically unbiased since
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n.k_/n —_— Py.- Therefore there seems to be no reason to consider ‘

conditional estimators and CI's.

V. STRATIFIED SAMPLING STUDY DESIGN

If stratified random sampling is employed, so that LI k=20, - , K,

.

are pre-determined, then an argument similar to that in the preceding
section leads toCI'sforSRRk and SMRk. It is necessary to have n_k./n.o.
converge to a limit. If that limit is p-k°/p-0i then the stratified
design is asymptotically equivalent to the simple random samplé design,
as stated above.

EF presents a different problem. 1In order to use a stratified

design we must have prior knowledge of the strata relative sizes: the

P..+ If the .. » k=0, ..., K, are chosen so that

>
ke Poy.

]

n

then stratification is asymptotically more efficient. Specifically,
with y = EFQ and X and Y estimators of numerator and denominator,

.

c
-1 2 2 -1 2
Var /o (X - yY) - Var /a (X - yT)  —> kZe Pog- (pDk'(l Y- 121 Pot pnlo:n) ty k{e P Ppog. 7 0

The specific formulas for the CI are given in Sobel, Part II, [5].

We do not have any specific results concerning optimal allocation.
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