A Note on the Campbell Sampling Theorem

Alan J. Lee

University of Auckland
and
University of North Carolina at Chapel Hill

ABSTRACT. Campbell's 1968 sampling theorem is examined and a more explicit formula for the truncation error is given. The result is shown to apply to random processes bandlimited in a general sense.

§1. INTRODUCTION. Many versions of the Shannon sampling series have been proposed; see e.g. [1] for a recent review. In 1968 Campbell [2] proposed the sampling series

$$f(t) = \sum_{n=-\infty}^{\infty} f(nh) \frac{\sin \pi h^{-1}(t-nh)}{\pi h^{-1}(t-nh)} \hat{\psi}(\beta(t-nh)) \quad -\infty < t < \infty$$

valid for $h^{-1} > 2w$, $\beta < h^{-1}/2 - w$ where $\hat{\psi}$ is the Fourier transform of a C^∞ function ψ supported by $[-1,1]$ with $\int \psi dx = 1$ and f is any function whose Fourier transform (in the distributional sense) is supported by $[-w,w]$.

The series (1) is also valid for stationary random processes. Campbell also gives an expression for the truncation error committed in using $2N + 1$ terms of (1) to evaluate f. In this note we give a more explicit form of the truncation error and show that the sampling theorem is valid for a general type of bandlimited random process, giving an expression for the truncation error in this case also.

The work of this author was partially supported by the Air Force Office of Scientific Research under Contract AFOSR-75-2796.
§2. BANDLIMITED FUNCTIONS. Call a function f bandlimited to w if
\[
\|f\|_{k}^{2} = \int |f(t)|^2 (1+t^2)^{-k} dt < \infty \quad \text{for some } k \geq 0 \quad \text{and if the Fourier transform of } f \text{ is supported by } [-w,w].
\]
The following form of the Paley-Wiener theorem will be useful.

Theorem. For all real t, a function f bandlimited to w satisfying
\[
\|f\|_{k} < \infty \quad \text{satisfies}
\]
\[
|f(t)| \leq C_{k}(w)(1+|t|)^{k}\|f\|_{k}
\]
where $C_{k}(w) \leq 4(W+1)^{K_{k}}$ for constants K_{k} defined below.

Proof. Let ϕ be any C^{∞} function with compact support, i.e. a testfunction. Then if F is the Fourier transform of f,
\[
|F(\phi)| = \left| \int f(u)\hat{\phi}(u)du \right| \leq \left\{ \int |f(u)|^2 (1+u^2)^{-k}du \cdot \int |\hat{\phi}(u)|^2 (1+u^2)^{k}du \right\}^{\frac{1}{2}}
\]
\[
= \|f\|_{k} \left\{ \int |\hat{\phi}(u)|^2 (1+u^2)^{k}du \right\}^{\frac{1}{2}}
\]
Now the distribution F can be extended to a continuous linear functional on the space E of all C^{∞} functions topologized by the usual family of semi norms (see e.g. [3] p 88) and if χ is a testfunction equal to 1 on $[-w,w]$ then for all $\xi \in E \ F(\xi) = F(\xi \chi)$, so in particular, setting
\[
\xi(x) = e^{2\pi i x t}
\]
we obtain
\[
|f(t)| = |F(e^{2\pi i x t})| = |F(e^{2\pi i x t} \chi(x))| \leq \|f\|_{k} \left\{ \int |\hat{\chi}(u-t)|^2 (1+u^2)^{k}du \right\}^{\frac{1}{2}}
\]
Now let $\gamma(x) = \begin{cases} K \exp\left(1/(x^2-1)\right) & |x| \leq 1 \\ 0 & |x| > 1 \end{cases}$
where $K^{-1} = \int \exp\left(1/(x^2-1)\right)dx = 2.2523$; then $\int \gamma(x)dx = 1$
and $\gamma(x)$ is a testfunction supported by $[-1,1]$. Also let for $\delta > 0$
\[I(x) = \begin{cases} 1 & |x| \leq w + \delta, \\ 0 & |x| > w + \delta. \end{cases} \]

Then choose for \(\chi \) the function \(\chi(x) = \frac{1}{\delta} \int_{-\infty}^{w+\delta} I(v) \gamma(\frac{x-v}{\delta}) dv \)

then \(\chi(x) \) is 1 on \([-w,w]\) and is supported by \((-w-\delta, w+\delta)\), and is \(C^\infty \). Then denoting the Fourier transform of a function \(\lambda \) by

\[\hat{\lambda}(u) = \int_{-\infty}^{\infty} e^{-2\pi iux} \lambda(x) dx \]

we have

\[\chi(u) = \gamma(\delta) \frac{\sin 2\pi (w+\delta) u}{\pi u} \]

and so

\[|f(t)| \leq \|f\|_k \int_{-\infty}^{\infty} \left| \hat{\gamma}(u) \right|^2 \left(\frac{\sin 2\pi (u) (u-t)}{\pi (u-t)} \right)^2 (1+u^2)^k du \]

\[= \|f\|_k \int_{-\infty}^{\infty} \left| \hat{\gamma}(u) \right|^2 \left(\frac{\sin 2\pi (u) u}{\pi u} \right)^2 (1+(u+t)^2)^k du \]

\[\leq \|f\|_k (1+|t|)^k \left\{ \int \left| \hat{\gamma}(u) \right|^2 \frac{\sin^2(2\pi (u) u)}{(\pi u)^2} (1+|u|^2)^k du \right\}^{1/2} \]

using the inequality \((1+(u-t)^2)^k \leq (1+|t|)^2 (1+|u|^2)^k \).

Then (2) is true with \(C_k^2(w) = \inf_{\delta>0} \int \left| \hat{\gamma}(u) \right|^2 \frac{\sin^2(2\pi (w+\delta) u)}{(\pi u)^2} (1+|u|^2)^k du \).

For an upper bound on \(C_k^2(w) \), consider setting \(\delta = 1 \), then since

\[\left| \frac{\sin x}{x} \right| \leq \frac{2}{1+|x|} \]

\[C_k^2(w) \leq 16(w+1)^2 \int \left| \hat{\gamma}(u) \right|^2 (1+2\pi (w+1) |u|)^{-2} (1+|u|^2)^k du \]

\[\leq 16(w+1)^2 \int \left| \hat{\gamma}(u) \right|^2 (1+u^2)^{k-1} du \]

\[= 16(w+1)^2 \kappa_k^2 \]

say, and hence

(3) \[|f(t)| \leq 4K_k (w+1) (1+|t|)^k \|f\|_k. \]
The constant K_k can be calculated from

$$K_k^2 = \int |\hat{\gamma}(u)|^2 (1+u^2)^{k-1} du = \sum_{j=0}^{k-1} \binom{k-1}{j} \int |\hat{\gamma}(u)|^2 u^{2j} du$$

$$= \sum_{j=0}^{k-1} \binom{k-1}{j} \int \left| \frac{\gamma^{(j)}(x)}{(2\pi)^{3/2}} \right|^2 dx.$$

The derivatives of γ can be generated by a simple recursive scheme described in [2], a numerical integration then allows the calculation of the K_k, given below in Table 1 for $k = 1, 2, 3, 4, 5$.

Table 1. Values of K_k to 4 significant figures.

<table>
<thead>
<tr>
<th>k</th>
<th>K_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.217×10^{-1}</td>
</tr>
<tr>
<td>2</td>
<td>1.003×10^0</td>
</tr>
<tr>
<td>3</td>
<td>1.649×10^0</td>
</tr>
<tr>
<td>4</td>
<td>8.446×10^0</td>
</tr>
<tr>
<td>5</td>
<td>1.252×10^2</td>
</tr>
</tbody>
</table>

We note in passing that for $k = 0$, the inequality takes the simple form

$$|f(t)| = \left\{ \int_{-W}^W e^{2\pi i t x} \hat{f}(x) dx \right\} \leq \left\{ \int_{-W}^W dx \int_{-\infty}^{\infty} |\hat{f}(x)|^2 dx \right\}^{1/2}$$

$$= (2W)^{1/2} \| f \|_0$$

so (2) is valid for $k = 0$ with $C_0(w) = (2w)^{1/2}$.

For convenience, and following [2] we propose to take for ψ in the series (1) the function γ defined above. A version of (2) appropriate for $\hat{\gamma}$ is obtained simply by integrating the f.t. of $\gamma^{(\nu)} \left\{ \begin{array}{c} d^\nu \gamma \\ \partial x^\nu \end{array} \right\}$ by parts, obtaining
\[(2\pi i u)^v \gamma(u) = \int e^{-2\pi i u x} \gamma^{(v)}(x) dx \leq \int |\gamma^{(v)}(x)| dx\]

and so for \(u \neq 0\) we obtain

\[(4) \quad |\hat{\gamma}(u)| \leq \frac{1}{(2\pi)^v} \int |\gamma^{(v)}(x)| dx |u|^{-v} \]

\[= c_v |u|^{-v}, \text{ say, for any integer } v \geq 0.\]

Again the constants \(c_v\) may be calculated simply by numerical quadrature. An upper bound for the \(c_v\) may be obtained by the methods of [2]. Table 2 below gives the first few values of \(c_v\):

<table>
<thead>
<tr>
<th>(v)</th>
<th>(c_v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000</td>
</tr>
<tr>
<td>1</td>
<td>0.2637</td>
</tr>
<tr>
<td>2</td>
<td>0.1822</td>
</tr>
<tr>
<td>3</td>
<td>0.3237</td>
</tr>
<tr>
<td>4</td>
<td>1.5550</td>
</tr>
<tr>
<td>5</td>
<td>13.6874</td>
</tr>
</tbody>
</table>

By means of (3) and (4) we can obtain a precise inequality on the truncation error of (1) in terms of the norm \(\|f\|_k\) of \(f\), using the method of [2]:

Theorem. Let \(f\) be a function bandlimited to \(w\) and satisfying \(\|f\|_k < \infty\). Then if \(\gamma\) is the function defined in the proof of theorem 1 and if \(\rho_N(t)\) denotes the truncation error using the function \(\gamma\) in (1) i.e. if

\[\rho_N(t) = f(t) - \sum_{|n| \leq N} f(nh) \frac{\sin \pi h^{-1}(t-nh)}{\pi h^{-1}(t-nh)} \gamma^{(b_t-nh)}(t-nh)\]
then for \(v > k \) \[
\rho_N(t) \leq \frac{2C_k(w)C_v \|f\|_k \sin \pi h^{-1}t (1+Nh)^k}{\beta^v \pi |Nh - |t||^v}
\]

\[
\leq \frac{8(w+1)K_kC_v \|f\|_k \sin \pi h^{-1}t |(1+nh)^k}{\beta^v \pi |Nh - |t||^v}
\]

for \(|t| < Nh \), \(\beta < h^{-1/2} - w \) and \(h^{-1/2} > w \).

Proof. Similar to §4 of [2].

§3. BANDLIMITED PROCESSES. Consider a zero mean second order process \(x(t) \), and let \(R(t,s) = E(x(t)x(s)) \) be the covariance function of \(x(t) \). Such a process will be termed band-limited to \(w \), if for some non negative integer \(k \), \(\int R(t,t)(1+t^2)^{-k}dt < \infty \) and the Fourier transform of \(R(t,s) \) is a distribution in the plane supported by \([-w,w] \times [-w,w] \).

For the properties of such processes see [4].

A key property is the following. Consider the Hilbert space \(H_k \) consisting of all functions \(f \) satisfying \(\int |f|^2(1+t^2)^{-k}dt \). Then the operator \(R \) defined by

\[
Rf(s) = \int R(t,s)f(t)(1+t^2)^{-k}dt
\]

is a trace-class operator from \(H_k \) to \(H_k \). Let \(\lambda_j, f_j, j = 1,2,3, \cdots \) be the eigenvalues and eigenvectors of this operator. Then the following results are true (details may be found in [4] and [5]):

1. There exist random variables \(e_j \) satisfying \(E(e_j e_j^*) = \delta_{jj} \lambda_j \) such that

\[
x(t) = \sum_{j=1}^{\infty} f_j(t) e_j
\]

the convergence of (5) being in mean square;
2. Each function f_j satisfies $\|f_j\|_k = 1$ and is bandlimited to w;

3. For each t, s, $R(t,s) = \sum_{j=1}^{\infty} \lambda_j f_j(t) \overline{f_j(s)}$, the series converging absolutely.

Using these we may prove the following

Theorem 3. Let $x(t)$ be a zero mean process whose covariance function R satisfies $\int R(t,t)(1+t^2)^{-k}dt < \infty$ and that is bandlimited to w.

Then $x(t)$ satisfies the sampling expansion (1) and the root mean square truncation error

$$\left\{ E \left| x(t) - \sum_{|n| \leq N} x(nh) \frac{\sin \pi h^{-1}(t-nh)}{\pi h^{-1}(t-nh)} \hat{\gamma}(p(t-nh)) \right| \right\}^{1/2}$$

is bound by $\left(\int R(t,t)(1+t^2)^{-k}dt \right)^{1/2} \frac{8(w+1)K_v C_v}{\beta^v \pi (Nh - |t|)^v} |\sin \pi h^{-1} t | (1+Nh)^k$ for $k < v, \beta < h^{-1/2} - w, h^{-1/2} > w$, and $|t| < Nh$.

Proof. Using (5) above,

$$E \left| x(t) - \sum_{|n| \leq N} x(nh) \frac{\sin \pi h^{-1}(t-nh)}{\pi h^{-1}(t-nh)} \hat{\gamma}(\beta(t-nh)) \right|^2$$

$$\leq E \left| \sum_{j=1}^{\infty} f_j(t) - \sum_{|n| \leq N} f(nh) \frac{\sin \pi h^{-1}(t-nh)}{\pi h^{-1}(t-nh)} \hat{\gamma}(\beta(t-nh)) e_j \right|^2$$

$$= \sum_{j=1}^{\infty} \lambda_j \left| f_j(t) - \sum_{|n| \leq n} f_j(nh) \frac{\sin \pi h^{-1}(t-nh)}{\pi h^{-1}(t-nh)} \hat{\gamma}(\beta(t-nh)) \right|^2$$

$$\leq \sum_{j=1}^{\infty} \frac{8(w+1)K_v C_v}{\beta^v \pi (Nh - |t|)^v} \left| \frac{\sin \pi h^{-1} t | (1+Nh)^k}{\beta^v \pi (Nh - |t|)^v} \right|^2$$
Now consider \(R(t,t) = \sum_{j=1}^{\infty} \lambda_j |f_j(t)|^2 \). Integrating term by term with respect to \((1+t^2)^{-k} \) \(dt \) we obtain

\[
\int R(t,t)(1+t')^{-k} dt = \sum_{j=1}^{\infty} \lambda_j \int |f_j(t)|^2 (1+t^2)^{-k} dt \\
= \sum_{j=1}^{\infty} \lambda_j \|f_j\|^2_k \\
= \sum_{j} \lambda_j j^2 \]

For \(k < \nu \), we see that the truncation error converges to zero as \(N \to \infty \), thus proving the theorem.

The series (1) converges in mean square for a bandlimited process \(x(t) \); since the sample paths of \(x(t) \) are bandlimited to \(W \) with probability 1, (see [4]); it follows that \(x(t) \) satisfies the series (1) with probability 1.

REFERENCES

Title: A Note on the Campbell Sampling Theorem

Author: Alan J. Lee

Performing Organization: Air Force Office of Scientific Research, Bolling AFB, DC 20332

Contract: AFOSR-75-2796

Report Date: September 1979

Number of Pages: 8

DISTRIBUTION STATEMENT: Approved for public release - distribution unlimited.

Keywords: sampling theorem, distributions, bandlimited processes

Abstract: Campbell's 1968 sampling theorem is examined and a more explicit formula for the truncation error is given. The result is shown to apply to random processes bandlimited in a general sense.