ON TIME-SEQUENTIAL POINT ESTIMATION OF THE MEAN OF AN EXponential DISTRIBUTION

by

PRANAB KUMAR SEN

Department of Biostatistics
University of North Carolina at Chapel Hill

Institute of Statistics Mimeo Series No. 1207

January 1979
ON TIME-SEQUENTIAL POINT ESTIMATION OF THE MEAN OF AN EXPONENTIAL DISTRIBUTION*

Pranab Kumar Sen
University of North Carolina, Chapel Hill, NC

ABSTRACT

In the context of life testing, an asymptotically risk-efficient time-sequential procedure for estimating the mean of an exponential distribution is considered and its various properties are studied.

AMS Classification No. 62L12

Key Words & Phrases: Asymptotic normality, asymptotic risk-efficiency, loss function, risk function, stopping number, stopping time, time-sequential procedure.

*Work supported by the National Institutes of Health, Contract No. NIH-NHLBI-71-2243 from the National Heart, Lung and Blood Institute.
1. INTRODUCTION

Let \(\{X_i, i \geq 1\} \) be a sequence of independent and identically distributed (i.i.d.) non-negative random variables (r.v.) with the distribution function (d.f.) \(F_\theta(x) = 1 - e^{-x/\theta} \), \(x \in [0, \infty) \), where \(\theta(>0) \) is an unknown parameter. For \(n(\geq 1) \), items under life testing, the failures \(X_{n,1}, \ldots, X_{n,n} \) are the order statistics corresponding to \(X_1, \ldots, X_n \) and, from cost and time considerations, one may curtail experimentation at the \(k^{th} \) failure \(X_{n,k} \) and estimate \(\theta \) by

\[
\hat{\theta}_{nk} = k^{-1} V_{nk}, \quad \text{where} \quad V_{nk} = \sum_{i=1}^{k} X_{n,i} + (n-k)X_{n,k} \quad \text{for} \quad 1 \leq k \leq n.
\]

Note that \(V_{nk} \) is the total life under test up to the \(k^{th} \) failure, \(EV_{nk} = k\theta \) and \(E(V_{nk} - k\theta)^2 = k\theta^2 \), for \(k = 1, \ldots, n \). Thus, if \(a_1(>0) \) and \(a_2(>0) \) be respectively the cost of recruitment (per individual) and of follow-up (per unit of test-life), then one may conceive of the loss incurred in estimating \(\theta \) by \(\hat{\theta}_{nk} \) as

\[
L_{nk} = a_0(\hat{\theta}_{nk} - \theta)^2 + a_1 n + a_2 V_{nk} \quad (1 \leq k \leq n),
\]

where the weights \(a_0(>0), a_1 \) and \(a_2 \) are all known. Thus, the risk in estimating \(\theta \) by \(\hat{\theta}_{nk} \) is

\[
R_{nk}(\alpha, \theta) = EL_{nk} = k^{-1} a_0^2 + a_1 n + a_2 k\theta \quad (\alpha = (a_0, a_1, a_2)'),
\]

and, naturally, one would seek to minimize (1.3) by a proper choice of \(k \). However, as \(\theta \) is unknown, no single value of \(k \) minimizes \(R_{nk}(\alpha, \theta) \) for all \(\theta(>0) \), and hence, a time-sequential procedure for choosing such a value of \(k \) is desirable.

Motivated by the works of Robbins (1959), Starr and Woodroofe (1972) and Ghosh and Mukhopadhyay (1979) [all dealing with the classical
sequential point estimation case], in Section 2, we formulate a time-sequential procedure for our problem and under asymptotic setup (similar to their cases) study its various properties. The derivation of the main results are postponed to concluding section.

2. **TIME-SEQUENTIAL POINT ESTIMATION OF $$\theta$$**

Note that by (1.3),

$$R_{n k}^{(a)}(a, \theta) - R_{n k+1}^{(a)}(a, \theta) \geq 0$$ according as $$k(k+1) \leq \frac{\theta a_0}{a_2}$$.

Thus, if $$n(n-1) < \frac{\theta a_0}{a_2}$$, then $$R_{n k}(a, \theta)$$ is \(\downarrow\) in $$k(1 \leq k \leq n)$$, and hence, $$k = n$$ is an optimal choice. On the other hand, if $$n(n-1) \geq \frac{\theta a_0}{a_2}$$, then there exists an optimal $$k_n = k_n(a, \theta)$$ for which $$k_n < n$$ and $$R_{n k}(a, \theta)$$ is minimized for $$k = k_n$$. Since $$\hat{\theta}_{n k} = k^{-1}V_{n k}$$ is an unbiased estimator of $$\theta$$, motivated by the above, we consider the following stopping number

$$N_n = N_n(a) = \begin{cases} \text{smallest } k(1 \leq k \leq n-1) \text{ for which } V_{n k} \leq k^2(k+1)a_2/a_0, \\ n \text{ if } V_{n k} > k^2(k+1)a_2/a_0, \text{ for every } 1 \leq k \leq n - 1. \end{cases}$$

The corresponding stopping time is $$X_{n N_n}$$ and the point estimator of $$\theta$$ is $$\hat{\theta}_{n N_n}$$. Then, the risk corresponding to $$\hat{\theta}_{n N_n}$$ is

$$R_n(a, \theta) = a_0 E(\hat{\theta}_{n N_n} - \theta)^2 + a_1 n + a_2 E V_{n N_n}.$$

We may recall that by definition,

$$k_n = k_n(a, \theta) = \begin{cases} \text{smallest } k(1 \leq k \leq n-1) \text{ for which } k(k+1) \leq \frac{\theta a_0}{a_2}, \\ n \text{ if } n(n-1) < \frac{\theta a_0}{a_2}. \end{cases}$$

Let then

$$R_n^{0}(a, \theta) = R_{n k_n}(a, \theta).$$

Our primary interest centers around the behavior of $$(a) N_n/k_n$$ and
(b) $R^*_n(\theta, \theta)/R^0_n(\theta, \theta)$ when we impose some asymptotic considerations on θ and n.

In the classical sequential point estimation theory [c.f. Robbins (1959) and others], $a_2 = 0$, $L_n = a_0(\hat{\theta}_{nn} - \theta)^2 + a_1 n$ and the problem is to choose n in such a way that the corresponding risk is minimized. In this context, one lets $a_1 \to 0$ and, in this asymptotic sense, one obtains some optimal results. In our case, however, for a given n, the stopping number N_n depends on a_0 and a_2, but not on a_1, and we let $a_2/a_0 \to 0$ or, simply, $a_2 \to 0$, keeping a_0 fixed. Note that our main interest lies in the case where k_n in (2.4) is $< n$ and in this case, $a_2^2 a_2 n(1 - a_2^2) \geq 0a_0 > 0$. We assume that the sample size $n = n(a_2)$ depends on a_2 in such a way that

$$\lim_{a_2 \to 0} a_2[n(a_2)]^2 = a^*; \quad 0 < a^* < \infty.$$

(2.6)

We may note that by (1.3), $R_n^{(k)}(\theta, \theta) = R_n^{(k)}(\theta, \theta) + a_1(n' - n) \geq R_n(\theta, \theta), \forall n' > n$, and hence, there is no point in increasing $n(a_2)$ indefinitely even when we allow $a_2 \to 0$, so that the restriction that a^* in (2.6) is $< \infty$ is of no loss of generality. Secondly, we note that for $\{n\}$ satisfying (2.6), by (2.4),

$$\lim_{n \to \infty} k_n/n = \gamma = (\theta a_0/a_2)^{1/2}$$

(2.7)
and we assume that $0 < \gamma < 1$.

In terms of (2.6), (2.7) demands that $a^* > \theta a_0$. Finally, as in the classical sequential point estimation case, we assume that $a_1 \to 0$.

More explicitly, we let

$$a_1 = \rho a_2,$$

(2.8)
where $\rho > 0$, and allow $a_2 \to 0$.

Then, we have the following
Theorem 1. Under (2.6) and (2.7),

\[(2.9) \quad \frac{N_n}{k_n} \to 1 \text{ almost surely (a.s.) as } a_2 \to 0.\]

Moreover, for every real \(x (-\infty < x < \infty)\), under (2.6) and (2.7),

\[(2.10) \quad \lim_{n \to \infty} \Pr(2(N_n - k_n)/((n\gamma)^{1/2}) \leq x) = (2\pi)^{-1/2} \int_{-\infty}^{x} e^{-t^2/2} dt.\]

Theorem 2. Under (2.6), (2.7) and (2.8),

\[(2.11) \quad \lim_{a_2 \to 0} \frac{R_n^*(g, \theta)}{R_n^0(g, \theta)} = 1.\]

We may remark that by (2.2), \(N_n = N_n(g)\) is \(\downarrow\) in \(a_2\) and for any given \(n\), there exists an \(a_2(n)(>0)\), such that \(N_n = n, \forall 0 < a_2 \leq a_2(n)\). Also, \(N_n \leq n\), with probability 1, so that (2.7) and (2.9) insure that \(EN_n/k_n \to 1\) as \(n \to \infty\). Further, (2.11) holds even when in (2.8), \(\rho = 0\). If \(a_1/a_2 \to \infty\) as \(a_2 \to 0\), then \(R_n^*\) or \(R_n^0\) are both dominated by \(a_1n\), and hence, (2.11) holds trivially.

3. PROOFS OF THEOREMS 1 AND 2

Let us denote by \(V_{n0} = 0\) and

\[(3.1) \quad Z_{nk} = V_{nk} - V_{nk-1} = (n-k+1)(X_{n,k} - X_{n,k-1}), \quad 1 \leq k \leq n\]

(where \(X_{n,0} = 0\)). Then \(Z_{n1}, \ldots, Z_{nn}\) are i.i.d.r.v. each having the d.f. \(F_\theta(x) = 1 - e^{-x/\theta}\). Also, note that for every \(n(\geq 1),\)

\[(3.2) \quad V_{nk} \text{ is } \downarrow \text{ in } k: 0 \leq k \leq n.\]

Further, note that for every \(\eta > 0,\)

\[(3.3) \quad \Pr(X_{m,1} < m^{-1-\eta}, \text{ for some } m \geq n) \leq \sum_{k=0}^{\infty} \Pr(X_{m,1} < (n2^{k+j})^{-1-\eta}, \text{ for some } 0 \leq j \leq n2^k) \leq \sum_{k=0}^{\infty} \Pr(X_{m,1} < (2^{kn})^{-1-\eta}) = \sum_{k=0}^{\infty} \Pr(1 - e^{-2(2^k n)^{-\eta}}) \leq \sum_{k=0}^{\infty} (2(n2^k)^{-\eta}) = 2n^{-\eta}(1 - 2^{-\eta})^{-1} \to 0 \text{ as } n \to \infty.\]
Thus, by (3.1) and (3.3), for every \(\eta > 0 \),
\[
V_{n1} > \eta^{-n} \quad \text{a.s., as } n \to \infty.
\]
Let us now choose a positive number \(\lambda \) such that
\[
\frac{1}{2} < \lambda < \frac{2}{3}, \quad \text{i.e., } \xi = \frac{2}{3} - \lambda > 0.
\]
Then, under (2.6) and (2.7), by using (2.4) and (3.2),
\[
P\{N_m \leq m^\lambda \quad \text{for some } m \geq n\}
\leq P\{ U \sum_{m \geq n} [V_{mk} \leq k^2(k+1)a_2/a_0, \text{ for some } k \leq m^\lambda] \}
\leq P\{ U \sum_{m \geq n} [V_{m1} \leq (a_2m^2/a_0)(m^2(m^\lambda + 1)/m^2)] \},
\]
where \(a_2m^2/a_0 \to a^*/a_0 (> 0) \) while by (3.5), \(m^2(m^\lambda + 1)/m^2 \sim m^{-\xi} \), so that by (3.4), the right-hand side (rhs) of (3.6) converges to 0 as \(n \to \infty \). Let us now denote by
\[
k_n^{(1)} = \max\{k: k(k+1) \leq (1-\varepsilon)k_n(k_n+1)\}, \quad 0 < \varepsilon < 1,
\]
where \(k_n \) is defined by (2.4). Also, we choose \(n \) so large that \(n^\lambda \leq k_n^{(1)} \). Then
\[
P\{N_m \leq k_n^{(1)} \quad \text{for some } m \geq n\}
\leq P\{N_m \leq m^\lambda \quad \text{for some } m \geq n\} +
P\{ U \sum_{m \geq n} [V_{mk} \leq k^2(k+1)a_2/a_0, \text{ for some } k: m^\lambda \leq k \leq k_m^{(1)}] \}.
\]
By (3.6) the first term on the rhs of (3.3) converges to 0 as \(n \to \infty \), while by (3.7), the second term is bounded by
\[
\sum_{m \geq n} P\{(V_{nk} - k\theta)/\theta < -\eta, \text{ for some } k: m^\lambda \leq k \leq k_m^{(1)}\},
\]
where \(\eta(> 0) \) depends on \(\varepsilon(> 0) \) in (3.7). By (3.1), for every \(n(\varepsilon > 1) \), \(\{(V_{nk} - k\theta)/\theta, \ 0 \leq k \leq n\} \) is a martingale, so that \(\{(V_{nk} - k\theta)^4/\theta^4, \ 0 \leq k \leq n\} \)
is a sub-martingale, and hence, by the Chow (1961) extension of the H"{a}jek-R"{e}nyi inequality,

\begin{equation}
(3.10) \quad P\{ (V_{mk} - k\theta) / k\theta < -\eta, \text{ for some } m^\lambda \leq k \leq m_c \} \\
\leq P\{ (V_{mk} - k\theta)^4 / k^4 \theta^4 > \eta^4 \text{ for some } k: m^\lambda \leq k \leq m_c \} \\
\leq \sum_{k = [m^\lambda]}^{m_c} \eta^{-4} E(V_{mk} - k\theta)^4 / \theta^4 \left\{ k^{-4} - (k + 1)^{-4} \right\} \\
\leq \eta^{-4} \sum_{k \geq [m^\lambda]} \lfloor 0(k^{-4}) \rfloor = \eta^{-4} \cdot (m^{-2\lambda}),
\end{equation}

so that by (3.5) and (3.10), the second term on the rhs of (3.8) converges to 0 as $n \to \infty$. Thus, for every $\varepsilon > 0$,

\begin{equation}
(3.11) \quad N_n / k_n > 1 - \varepsilon \text{ a.s., as } n \to \infty.
\end{equation}

In a similar way, it follows that for every $\varepsilon > 0$,

\begin{equation}
(3.12) \quad N_n / k_n < 1 + \varepsilon \text{ a.s., as } n \to \infty,
\end{equation}

and (2.9) follows from (3.11) and (3.12).

To prove (2.10), we note that for every (fixed) $u \in (-\infty, \infty)$,

\begin{equation}
(3.13) \quad P\{ N_n \geq k_n + uv_n \} = P\{ V_{nk} > k^2(k+1)a_2/a_0, \forall k \leq k_n + uv_n \},
\end{equation}

and we choose n so large that $k_n + uv_n > k_{n\varepsilon}$, where $k_{n\varepsilon}$ is defined by (3.7) and k_n by (2.4). Then, by using (3.11), the rhs of (3.13) can be written as

\begin{equation}
(3.14) \quad P\{ V_{nk} > k^2(k+1)a_2/a_0, \forall k_{n\varepsilon} \leq k \leq k_n + uv_n \} + o(1)
\end{equation}

\[= P\left\{ \frac{V_{nk} - k\theta}{\theta\sqrt{n}} > \frac{k}{\sqrt{n}} \left[\frac{k(k+1)}{k_n(k_n+1)} - 1 \right], \forall k_{n\varepsilon} \leq k \leq k_n + uv_n \right\} + o(1). \]

Let us now consider a sequence $\{ W_n(t), t \in [0,1] \}$ of stochastic processes, where we let $W_n(t) = W_n(k_n(t))$, for $\frac{k}{n} \leq t < \frac{k+1}{n}$, $0 \leq k \leq n-1$ and $W_n(k/n) = (V_{nk} - k\theta) / \theta\sqrt{n}$, $k = 0, 1, \ldots, n$. Then by virtue of (3.1), the classical Donsker Theorem applies and we have

\begin{equation}
(3.15) \quad W_n \overset{D}{\to} W = \{ W(t), t \in [0,1] \},
\end{equation}
where \(W \) is a standard Wiener process on \([0, 1]\). As a corollary to (3.15), we have that for every \(\varepsilon' > 0 \) and \(\eta > 0 \) there exist a \(\delta : 0 < \delta < 1 \) and an \(n_0 \) such that

\[
(3.16) \quad P\{\sup\{|W_n(t) - W_n(s)| : 0 \leq s < t \leq s + \delta \leq 1\} > \varepsilon'\} < \eta, \quad \forall \ n \geq n_0.
\]

To make use of (3.15) and (3.16) in (3.14), we note that for \(k = k_n + [u\sqrt{n}] \)

\[n^{k}k(k+1)/n_k(k_n + 1) - 1] \sim 2u \text{.}
\]

Thus, the rhs of (3.14) can be expressed as

\[
(3.17) \quad P\left\{ \frac{V_{nk - k\theta}}{\sqrt{n} \theta} > \frac{k}{\sqrt{n} \theta} \left[\frac{k(k+1)}{k_n(k_n + 1) - 1} \right] , \forall \ k \in \mathbb{N}, \ W_n(\gamma) > \frac{2u - \varepsilon}{\theta} \right\} + \]

\[
P\left\{ \frac{V_{nk - k\theta}}{\sqrt{n} \theta} > \frac{k}{\sqrt{n} \theta} \left[\frac{k(k+1)}{k_n(k_n + 1) - 1} \right] , \forall \ k \in \mathbb{N}, \ W_n(\gamma) = \frac{2u - \varepsilon}{\theta} \right\} + o(1),
\]

where \(\varepsilon > 0 \). The second term is bounded by

\[P\{W_n(n^{-1}k_n + un^{-1/2}) - W_n(\gamma) > \varepsilon/0\}\]

and, by (3.16), it converges to 0 as \(n \to \infty \) (or \(a_2 \to 0 \)). Similarly,

the first term is convergent-equivalent to

\[
(3.18) \quad P\{W_n(\gamma) > (2u - \varepsilon)/\theta\} = P\{W(\gamma) > (2u - \varepsilon)/\theta\}
\]

\[= P\{W(1) > (2u - \varepsilon)/\theta \sqrt{n}\} = \left(2\pi\right)^{-1/2} \int_{(2u - \varepsilon)/\theta \sqrt{n}}^{\infty} \exp\left(-\frac{1}{2} t^2\right) dt.
\]

Thus, (2.10) follows from (3.13), (3.14), (3.17) and (3.18) by letting

\[u = \theta \sqrt{n}/2 \quad \text{and} \quad \varepsilon \to 0 .
\]

This completes the proof of Theorem 1.

To prove Theorem 2, we first note that under (2.6), (2.7) and (2.8),

\[
(3.19) \quad \left(a_n^* / a_2 \right)^{k^0_n} \sim \theta_n^0(a_2, \theta), \quad \gamma^{a_n^0} / \gamma + pa_* + a_*^\gamma \theta
\]

Also, recalling that \(n^{-1}N_n \leq 1 \), with probability 1, we have by (2.9),

\[
(3.20) \quad \lim_{n \to \infty} \text{E}(n^{-1}N_n)^m = \gamma^m(< 1), \quad \forall \ m = 1, 2, \ldots
\]

Further, by (2.2), (3.1), and the fact that \(Z_n \) is \(\geq 0 \), \(\forall \ k \geq 1 \), we have

\[
(3.21) \quad N_n(N_n - 1)^2 a_2 / a_0 < V_n N_n^{-1} < V_{n, n} \leq N_n^2(N_n + 1) a_0 a_2 I(n < n) + V_{n, n} I(n = n).
\]
Note that by (2.6) and (2.7),

\begin{equation}
(3.22) \quad P\{N_n = n\} = P\{V_{nk} > k^2 (k+1)a_2 / a_0, \quad \forall \; 1 \leq k \leq n - 1\}
\end{equation}

\begin{equation}
\leq P\{V_{nn-1} > (n-1)^2 a_2 / a_0\} = P\{V_{nn-1} - (n-1)\theta > (n-1)[n(n-1)a_2 / a_0 - \theta]\}
\end{equation}

\begin{equation}
\leq \theta^2 / (n-1) [n(n-1)a_2 / a_0 - \theta]^2 \sim \theta^2 / [(n-1)[a^*/a_0 - \theta]^2] = o(n^{-1}).
\end{equation}

Also, \(E(V_{nn}^2) = n(n+1)\theta^2\), so that by the Schwarz inequality and (3.22),

\begin{equation}
(3.23) \quad \left| E\{V_{nn} I(N_n = n)\} \right| \leq \theta^2 \sqrt{n(n+1)} \{o(n^{-\frac{1}{2}})\} = o(n^{\frac{1}{2}}) = o(a_2^{-\frac{1}{2}}), \quad \text{by (2.6)}.
\end{equation}

Further, by (3.21)

\begin{equation}
(3.24) \quad a_2 |V_{nn} - a_0^{-1} a_2 N_n^3| \leq \frac{a_2}{a_0} 2N_n^2 \{I(N_n < n) + a_2 |V_{nn} - a_0^{-1} a_2 N_n^3| I(N_n = n)\},
\end{equation}

where by (2.6), \(a_0^{-1} a_2 N_n^3 \to a_0^{-1} \sqrt{a_2}(a^*)^{\frac{3}{2}}\), while \(a_2^2 N_n^2 I(N_n < n) \leq a_2 n^2 \to a_2 a^*\).

Hence, by (3.22), (3.23) and (3.24), we have

\begin{equation}
(3.25) \quad (a^*/a_2)^{\frac{1}{2}} E\{a_2 |V_{nn} - a_0^{-1} a_2 N_n^3|\} = o(a_2^{\frac{1}{2}}) \to 0 \quad \text{as} \quad a_2 \to 0.
\end{equation}

On the other hand, by (3.20) and (2.4) - (2.7),

\begin{equation}
(3.26) \quad (a^*/a_2)^{\frac{1}{2}} E(a_2^2 N_n^3) / a_0 \to \gamma a^* \quad \text{as} \quad a_2 \to 0.
\end{equation}

Also, by (2.8),

\begin{equation}
(3.27) \quad (a^*/a_2)^{\frac{1}{2}} a_1 n \to \rho a^*, \quad \text{as} \quad a_2 \to 0.
\end{equation}

Hence, by (2.3), (3.19), (3.26) and (3.27), for (2.11), it suffices to show that

\begin{equation}
(3.28) \quad \lim_{a_2 \to 0} (a^*/a_2)^{\frac{1}{2}} E(N_n^{-1} V_{nn} - \theta)^2 = \theta^2 / \gamma.
\end{equation}

Note that

\begin{equation}
(3.29) \quad (a^*/a_2)^{\frac{1}{2}} E(N_n^{-1} V_{nn} - \theta)^2 = (a^*/a_2)^{\frac{1}{2}} k_n^{-2} E(V_{nn} - \theta N_n^2)^2 +
\end{equation}

\begin{equation}
(a^*/a_2)^{\frac{1}{2}} k_n^{-2} E\{V_{nn} - \theta N_n^2\}^2 (k_n / N_n)^2 - 1\}.
\end{equation}

Now, for every \(n(\geq 1), \{V_{nk} - k\theta = \sum_{j=1}^{k} (Z_{nj} - \theta), \; 1 \leq k \leq n\} \) is a martingale,
\[E(z_{nj} - \theta)^2 = \theta^2 \] and \(\frac{\text{EN}}{n} < \infty \). Hence, by the Wald second lemma [viz. Theorem 2 of Chow, Robbins and Teicher (1965)], we have \(E(V_{nN_n} - \Theta_{n})^2 = \theta^2 \frac{\text{EN}}{n} \), so that by (2.6), (2.7) and (3.20), the first term on the rhs of (3.29) is equal to

\[(a^*/a_2) \frac{k}{n^2} \theta^2 \frac{\text{EN}}{n} \theta^2 / \gamma \quad \text{as} \quad a_2 \to 0. \]

Thus, we need to show that the second term on the rhs of (3.29) converges to 0 as \(a_2 \to 0 \). Now, by the same technique as in (3.24) - (3.25), it follows that

\[(a^*/a_2) \frac{k}{n^2} E\{ |V_{nN_n} - a_0^{-1} a_1 N_n^{-1/2} | (k_n/N_n)^2 - 1 | \}
= 0(n^{-1}) = 0(\sqrt{a_2}) \to 0 \quad \text{as} \quad a_2 \to 0. \]

On the other hand, by (2.4), (2.6) and (2.7),

\[(a^*/a_2) \frac{k}{n^2} E\{ |a_0^{-1} a_2 N_n^{-1} - N_n \theta | (k_n/N_n)^2 - 1 | \}
= \sqrt{a^*} a_2^{3/2} \frac{k}{n^2} E\{ (N_n^2 - \theta a_0/a_2)^2 | 1 - (N_n/k_n)^2 | \}
= \sqrt{a^*} a_2^{3/2} \frac{k}{n^2} E\{ (N_n^2 - k_n^2)^2 | 1 - (N_n/k_n)^2 | \} + O(\sqrt{a_2})
= \sqrt{a^*} a_2^{3/2} \frac{k}{n^2} E\{ N_n^2 - k_n^2 | 1 - k_n^2 |^3 \} + O(\sqrt{a_2})
\leq \sqrt{a^*} a_2^{3/2} 8n^{-2} k_n^{-2} E|N_n - k_n|^3 + O(\sqrt{a_2}) . \]

Thus, it suffices to show (by virtue of (2.6) - (2.7)) that

\[\lim_{n \to \infty} \frac{k}{n^2} E|N_n - k_n|^3 = 0 \quad \text{as} \quad a_2^{3/2} n^3 \to (a^*)^{3/2} . \]

Define \(\lambda \) as in (3.5). Then

\[k_n^{-2} E|N_n - k_n|^3 = k_n^{-2} E(|N_n - k_n|^3 I_{|N_n - k_n| \leq \lambda}) + k_n^{-2} E(|N_n - k_n|^3 I_{|N_n - k_n| > \lambda}), \]

where by (2.7), the first term on the rhs of (3.34) converges to 0 as \(n \to \infty \). On the other hand, the second term is bounded by

\[n^3 k_n^{-2} P(|N_n - k_n| > \lambda) . \]
Let $b_1 = 1/3 - \epsilon, \epsilon > 0$. Then

$$
(3.36) \quad P(N_n \leq b_1) = P(V_{nk} \leq k^2(k+1)a_2/a_0 \text{ for some } k \leq b_1)
\leq P(V_{n1} \leq \frac{a_2}{a_0} \cdot \frac{2b_1}{b_1} \cdot (n_1+1)) = P(V_{n1} \leq 0(n^{-2+3b_1}))
= 0(n^{-2+3b_1}) = 0(n^{-1-3\epsilon}).
$$

Also, let $k_{n\epsilon}$ be defined as in (3.7). Then proceeding as in (3.10) but using the 8th order moment of $(V_{nk} - k\theta)$, we obtain that

$$
(3.37) \quad P(n_1 \leq N_n < k_{n\epsilon}) = 0([n_1]^{-4}) = 0(n^{-4/3-4\epsilon}).
$$

Finally, let $k^* = k_n - n^\lambda$ and assume n so large that $k^* > k_{n\epsilon}$. Then

$$
(3.38) \quad P\{k_{n\epsilon} < N_n \leq k^*\} \leq \frac{k^*}{k_{n\epsilon}} P\{\frac{1}{k} (V_{nk} - k\theta) < 0(k(k+1) - 1)\}
\leq \frac{k^*}{k_{n\epsilon}} \sum_{k=k_{n\epsilon}}^{k^*} k^{-2r} E(V_{nk} - k\theta)^{2r} / 0^{2r} [k(k+1) - 1]^{2r},
$$

for any $r > 0$. Now,

$$
(3.39) \quad E(V_{nk} - k\theta)^{2r} = 0(k^r), \text{ for every } r = 2, 3, 4, \ldots.
$$

Also, for $k_{n\epsilon} \leq k \leq k^*$,

$$
(3.40) \quad |k(k+1)/k_n (k_n + 1) - 1| = 0(\frac{k_n - k}{k_n}),
$$

so that the rhs of (3.38) is

$$
(3.41) \quad 0(\sum_{k=k_{n\epsilon}}^{k^*} k^{-r} k_n^{-2r} (k_n - k)^{-2r})
= 0(n^r) \sum_{k=k_{n\epsilon}}^{k^*} (k_n - k)^{-2r}
= 0(n^r) \cdot 0(n^{-\lambda(2r-1)}) = 0(n^{-(2\lambda-1)r+\lambda}).
$$

Since (3.38) and (3.39) hold for every positive integer r and $\lambda > \frac{1}{2}$, we may choose r so large that $(2\lambda - 1)r - \lambda > 1$, and this leads to the rhs of (3.41) as $0(n^{-1-\eta})$, for some $\eta > 0$. A similar treatment holds for the case of $N_n \geq k_n + n^\lambda$. Thus, $P\{|N_n - k_n| > n^\lambda\} = 0(n^{-1-\eta})$ for some $\eta > 0$, and this proves that (3.35) converges to 0 as $n \to \infty$. Q.E.D.
REFERENCES

