Functional Jackknifing:
Rationality and General Asymptotics

by

P.K. Sen

Department of Biostatistics
University of North Carolina at Chapel Hill

Institute of Statistics Mimeo Series No. 1800

March 1980
FUNCTIONAL JACKKNIFING : RATIONALITY AND GENERAL ASYMPTOTICS *

BY PRANAB KUMAR SEN

University of North Carolina, Chapel Hill

Though jackknifing serves the dual purpose of bias reduction and variance estimation, the pseudo variables, it generates, may not generally preserve robustness for general statistical functionals. These pseudo variables are incorporated in a differentiable functional detour of jackknifing, and along with its rationality, the related asymptotic theory is studied systematically. Second order asymptotic distributional representations for the classical jackknifed estimators are also considered.

1. Introduction. The jackknife technique, originally conceived for possible reduction of (smaller order) bias of an estimator, generates pseudo variables which also provide a (strongly) consistent estimator of the asymptotic variance of the jackknifed estimator; for some detailed studies of these properties of jackknifing, we may refer to Miller(1974) and Sen(1977), among others. To filter robustness under jackknifing, one should choose a robust initial estimator; otherwise, the pseudo variables, generated by jackknifing, may lead to a less robust jackknifed version. For example, let \(X_1, \ldots, X_n \) be \(n \) independent and identically distributed random variables (i.i.d.r.v.) with a distribution function (d.f.) \(F \) having finite (but unknown) mean \(\mu \) and variance \(\sigma^2 \). For normal \(F \), the classical estimator of \(\mu \) is the sample mean \(\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \); the corresponding jackknifed version is also \(\bar{X}_n \), and the jackknifed variance estimator agrees with the sample variance \(s_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \). However, none of \(\bar{X}_n \) and \(s_n^2 \) is robust against outliers or gross errors. In such a case (as well as for a general estimable parameter \(\theta(F) \)), one may choose a more robust initial estimator \(T_n = T(X_1, \ldots, X_n) \) of \(\theta \) [viz., the

AMS Subject Classifications : 60P05, 62E20, 62F12

Key Words and Phrases: Asymptotic normality; asymptotic variance; bias reduction; Hadamard derivative; jackknifed variance; perturbations; pseudo variables; robustness; second order representations; statistical functional; two-step jackknifing.

* Work supported by the Office of Naval Research, Contract : N00014-83-K-0387.

Running Head : Asymptotics of Functional Jackknifing.
trimmed mean, median, R- and M-estimators etc.,) and construct the corresponding
jackknifed version \(T_n^* \) (as well as the jackknifed variance estimator \(V_n^* \)) from the
pseudo variables \(T_{n,i}^* \) given by
\[
\begin{align*}
(1.1) & \quad T_{n,i}^* = nT_n - (n-1)T(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n), \quad i=1, \ldots, n; \\
(1.2) & \quad T_n^* = \frac{1}{n} \sum_{i=1}^{n} T_{n,i} \quad \text{and} \quad V_n^* = (n-1)^{-1} \sum_{i=1}^{n} (T_{n,i} - T_n^*)^2.
\end{align*}
\]
In this setup, we may take \(T_n = T(F_n) \), a functional of the empirical d.f. \(F_n \).
Note that if \(G_n^* \) stands for the empirical d.f. of the \(T_{n,i} \) in (1.1), then
\[
(1.3) \quad T_n^* = \frac{1}{n} \sum_{i=1}^{n} T_{n,i} \quad \text{and} \quad V_n^* = n(n-1)^{-1} \left\{ \sum_{i=1}^{n} T_{n,i}^2 - \left(\frac{1}{n} \sum_{i=1}^{n} T_{n,i} \right)^2 \right\}.
\]
For the particular case of \(\bar{X}_n \), \(G_n^* = F_n \), so that \(T_n^* = \bar{X}_n \) and \(V_n^* = \frac{s_n^2}{n} \). However,
for a general statistical functional \(T(F) = \theta \), \(F_n \) and \(G_n^* \) are generally not
equivalent, and moreover, the \(T_{n,i} \) in (1.1) are not independent, so that \(G_n^* \) may
not possess all the properties of \(F_n \). In such a case, the appropriateness of the
linear functional in (1.3) may be justified on the basis of the inherent reverse
martingale structure of the resampling scheme in jackknifing [viz., Sen(1977)],
although, on the ground of robustness, other functionals may appear to be more
appropriate. Indeed, Hinkley and Wang(1980) advocated the use of the trimmed
jackknifing by prescribing the usual trimmed mean on the pseudo variables in (1.1).
Thus, one may raise the issue in favor of a general functional:
\[
(1.4) \quad T_n^* = T^*(G_n^*), \quad \text{for suitable } T^*(\cdot) \text{ on } D[0,1];
\]
we term \(T_n^* \) a functional jackknifed estimator (FJE).

It can be shown that under fairly general regularity conditions [on \(T(\cdot) \) and
\(F \)], there exists a d.f. \(G^* \) (which may depend on \(F \)), such that as \(n \to \infty \),
\[
(1.5) \quad \| G_n^* - G^* \| = \sup_x | G_n^*(x) - G^*(x) | \to 0, \quad \text{almost surely (a.s.).}
\]
Thus, a minimal requirement for the rationality of the FJE \(T_n^* \) in (1.4) is that
\[
(1.6) \quad T^*(G^*) = T(F), \quad \text{for all } F \text{ belonging to a class } \mathcal{F}.
\]
We denote by \(\mathcal{T}_T \) the class of all \(T^*(\cdot) \) for which (1.6) holds (for the given \(T(\cdot) \)).
Then, the consistency of \(T_n^* \) (as an estimator of \(\theta = T(F) \)), in a weaker or stronger
sense, can be established under (1.5) and (1.6), whenever \(T^*(\cdot) \) is continuous in
the metric in (1.5) (i.e., the uniform topology).

For the asymptotic normality (or weak invariance principles) for the FJE, it is clear that (1.5)-(1.6) may not suffice; we may find it convenient to incorporate the weak convergence of

\[n^{1/2} (G_n^* - G^*) \]

along with the usual Hadamard differentiability of \(T^O(\cdot) \) in a conventional proof. However, the pseudo variables in (1.1) are generally not independent, and, moreover, we have a triangular scheme, for which (1.7) may hold (under additional regularity conditions) but \(W_n^* \) may not have a covariance function reducible to that of a Brownian bridge. Thus, even if (1.7) holds, the asymptotic distribution (or the variance) of the FJE may not agree with that of \(T_n^* \) or the classical jackknifed estimator \(T_n^* \). Generally, under adequate regularity conditions on \(T(\cdot) \), for each \(i (=1, \ldots, n) \), \(T_{n,i} \) can be expressed as a smooth function of \(X_i \), perturbed by another stochastic element \(\alpha_{ni} \) which is generally \(O_p(n^{-1}) \). Thus, the usual weak convergence results on the empirical d.f. processes, subject to perturbations [viz., Rao and Sethuraman (1976)] may not be adaptable here. For the trimmed jackknifing, Hinkley and Wang (1980) considered an alternative approach, which may not work out in full generality for a general \(T^O(\cdot) \); indeed, (1.7) plays an important role in this context, and it needs to be exploited more systematically.

The main purpose of this study is to focus on the basic regularity conditions on \(T(\cdot) \) and \(T^O(\cdot) \) and on their fruitful incorporation in the study of the asymptotic theory of FJE. This enables us to study the general robustness of \(T_n^{O*} \) and also the second order asymptotic distributional representations (SOADR) for the classical jackknifed estimators. For (functional) jackknifing, one usually needs the second order Hadamard differentiability of \(T(\cdot) \) [and \(T^O(\cdot) \)], and in Section 2, along with the preliminary notions, SOADR results for \(T_n^* \) are considered. The principal asymptotic results on FJE are presented in Section 3. In the light of these, convergence properties of \(V_n^* \) and some allied variance estimators are studied in Section 4. The
concluding section is devoted to some general discussions and statistical implications of the results obtained in earlier sections.

2. **FJE: Preliminary notions.** Let \(L(A,B) \) be the set of continuous linear transformations from a topological vector space \(A \) to another \(B \), and let \(C \) be a class of compact subsets of \(A \), such that every subset consisting of a single point belongs to \(C \). Also, let \(A^O \) be an open subset of \(A \). A function \(T: A^O \to B \) is said to be **Hadamard (or compact) differentiable at** \(F \in A \), if there exists a \(T'_F \in L(A,B) \), such that for any \(K \in C \),

\[
\lim_{t \to 0} \{ t^{-1} [T(F+tJ) - T(F) - T'_F(tJ)] \} = 0,
\]

uniformly for \(J \in K; T'_F \) is called the **compact derivative of** \(T \) at \(F \). We may refer to Fernholz(1983) for a detailed account of such differentiability conditions. In the context of jackknifing, usually, we need the second order compact-differentiability of \(T \) (at \(F \)), that is, we assume that for any \(K \in C \),

\[
T(F + (G-F)) = T(F) + \int \frac{1}{t} T_1(F;x) d[G(x)-F(x)] + \frac{1}{2} \int \frac{1}{t} T_2(F;x,y) d[G(x)-F(x)] d[G(y)-F(y)] + R_2(F;G-F),
\]

where

\[
|R_2(F;G-F)| = o\left(\frac{1}{t}\right), \text{ uniformly in } G \in K.
\]

The functions \(T_1(.) \) and \(T_2(.) \) are called the first- and second-order compact derivatives of \(T(.) \), and we can always normalize them in such a way that

\[
\int T_1(F;x) dF(x) = 0, \quad T_2(F;x,y) = T_2(F;y,x),
\]

\[
\int T_2(F;x,y) dF(y) = 0 \equiv \int T_2(F;x,y) dF(x).
\]

We assume that the d.f. \(F \) is defined on \(R = (-\infty,\infty) \), and denote by

\[
F_n(x) = n^{-1} \sum_{i=1}^{n} 1(X_i \leq x), \quad x \in R;
\]

\[
F^{(i)}_{n-1}(x) = (n-1)^{-1} \sum_{j=1}^{n} 1(X_j \leq x), \quad x \in R; \quad i = 1, \ldots, n.
\]

Then, from (1.1) and (2.6)-(2.7), we obtain that

\[
T_{n,i} = T(F_n) + (n-1) \{ T(F_n) - T(F^{(i)}_{n-1}) \} , \text{ for } i = 1, \ldots, n.
\]

Note that \(F_n(x) = n^{-1} \sum_{i=1}^{n} F_{n-1}^{(i)}(x) \), \(x \in R \), and further,

\[
\max_{1 \leq i \leq n} \sup_x | F_{n-1}^{(i)}(x) - F_n(x) | = n^{-1}, \text{ for every } n \geq 1.
\]
Therefore, by (2.2), (2.3), (2.4), (2.5), (2.8) and (2.9), we have

\(T_{n,i} = T_n + (n-1) \{ \int T_1(F_n;x)d[F_n(x)-F_{n-1}(x)] - \\
\frac{1}{2} \int T_2(F_n;x,y)d[F_n(x)-F_{n-1}(x)]d[F_n(y)-F_{n-1}(y)] + o(n^{-1}) \}

= T_n + \int T_1(F_n;x)d[I(X_i < x) - F_n(x)]

- (2(n-1))^{-1} \int T_2(F_n;x,y)d[I(X_i < x) - F_n(x)]d[I(X_j < y) - F_n(y)] + o(n^{-1})

= T_n + T_1(F_n;X_i) - (2(n-1))^{-1} T_2(F_n;X_i,X_j) + o(n^{-1}), \quad i=1, \ldots, n.

As a result, by (1.2), (2.4) and (2.10), we obtain that

\(T_n^* = T_n - (2(n-1))^{-1} \int T_2(F_n;x,x)dF_n(x) + o(n^{-1}). \)

Thus, we have the second order representation of the classical jackknifed estimator:

\(F_n^* = n(T_n^* - T_n) = -n(2(n-1))^{-1} \int T_2(F_n;x,x)dF_n(x) + o(1)

= -(2(n-1))^{-1} \sum_{i=1}^n T_2(F_n;X_i,X_i) + o(1). \)

Thus, the key role is played by the second order von Mises' functional

\(\bar{T}_{2n} = n^{-1} \sum_{i=1}^n T_2(F_n;X_i,X_i) = \int T_2(F_n;x,x)dF_n(x), \)

and, we have

\((n-1)(T_n^* - T_n) + \frac{1}{2} \bar{T}_{2n} \to 0 \text{ as } n \to \infty. \)

In fact, by (2.2) through (2.5) and the fact that \(|F_n-F| = o_p(n^{-1}) \), we have

\(T_n = T(F) + \int T_1(F;x)d[F_n(x)-F(x)] + \\
\frac{1}{2} \int T_2(F;x,x)d[F_n(x)-F(x)]d[F_n(y)-F(y)] + o_p(n^{-1}) \)

\(= T(F) + \sum_{i=1}^n T_1(F;X_i) + (2n^2)^{-1} \sum_{i=1}^n T_2(F;X_i,X_i) + \\
(2n^2)^{-1} \sum_{1 \leq i < j \leq n} T_2(F;X_i,X_j) + o_p(n^{-1}) \)

\(= T(F) + T_{ln} + (2n)^{-1} \bar{T}_{2n} + ((n-1)/2n) U_n^{(2)} + o_p(n^{-1}), \)

where

\(T_{ln} = \sum_{i=1}^n T_1(F;X_i) \) and \(\bar{T}_{2n} = n^{-1} \sum_{i=1}^n T_2(F;X_i,X_i) \)

are averages over i.i.d.r.v.'s, while

\(U_n^{(2)} = (n/2)^{-1} \sum_{1 \leq i < j \leq n} T_2(F;X_i,X_j) \)

is a Hoeffding (1948) U-statistic with mean zero [by (2.5)] and is stationary of order 1 (i.e., whenever \(\mathbb{E}_F T^2 < \infty \), \(\mathbb{E}(U_n^{(2)})^2 = o(n^{-2}) \)). Thus, from (2.14) through (2.17), we obtain that as \(n \to \infty \),
(2.18) \((n-1)\{ T^*_{ln} - T(F) - \bar{T}_{ln} \} + \frac{1}{2} \{ T^*_{2n} - \frac{n-1}{n} T_{2n} \} - (\frac{n-1}{n})^2 U^{(2)}_n \geq 0.\)

Though \(E_{n}^{(2)} = 0, \ n = E_{n} T_2(F;X_1,X_1)\) may not be equal to 0. However, note that

\[(2.19) \ T^*_{2n} - \bar{T}_{2n} = f \int T_2(F;F;F) - T_2(F;F;F) dF_n(x),\]

so that if the functional in (2.13) is continuous in the metric \(||F_n - F||\) and \(v\)
is finite, by using the fact that \(||F_n - F||\to 0 \ a.s.,\) as \(n \to \infty,\) we claim that

\[(2.20) \ T^*_{2n} - \bar{T}_{2n} \to 0 \ a.s. \ and \ T^*_{2n} + v \ a.s., \ as \ n \to \infty.\]

Consequently, on letting \(R^{**}_n = (n-1)(T^*_{n} - T(F) - \bar{T}_{ln})\), we have

\[(2.21) \ (n-1)(T^*_{n} - T_{n}) + v/2 \to 0 \ a.s., \ as \ n \to \infty;\]

\[(2.22) \ R^{**}_n - \frac{1}{2} (n U^{(2)}_n) \to 0, \ as \ n \to \infty.\]

At this stage, we note that whenever \(0 < \sigma^2_1 = E_{F} T^2_{1}(F;X_1) < \infty,\)

\[(2.23) \ n^{\frac{1}{2}} \bar{T}_{ln} \to \mathcal{N}(0, \sigma^2_1),\]

while, under \(E_{F} T^2_{2}(F;X_1,X_2) < \infty,\) it follows from Gregory (1977) that there exist a set of (finite or infinite collection of) eigenvalues of \(T_2(\cdot)\) corresponding to orthonormal eigen-functions \(\{ \tau_k(\cdot), k \geq 0 \},\) such that

\[(2.24) \ f T_2(F;x,y) \tau_k(x) dF(x) = \lambda_k \tau_k(y) \ a.e. (F), \ \forall \ k \geq 0,\]

\[(2.25) \ f \tau_k(x) \tau_q(x) dF(x) = \delta_{kq}, \ \forall \ k, q \geq 0,\]

where \(\delta_{kq}\) is the usual Kronecker delta. Note that the \(\tau_k(\cdot)\) and \(\lambda_k\) may as well depend on \(F.\) Then, as \(n \to \infty,\)

\[(2.26) \ P_{F} \{ n U^{(2)}_n \leq x \} \to P \{ \Sigma_{k \geq 0} \lambda_k (z^2_k - 1) \leq x \}, \ x \in \mathbb{R}; \lambda_0 = 0,\]

where the \(z_k\) are i.i.d.r.v.'s having the standard normal distribution. [An extension of this result for the joint asymptotic d.f. of \(n^{\frac{1}{2}} \bar{T}_{ln}\) and \(n U^{(2)}_n\) is due to Hall (1979).] Thus, we arrive at the following:

Theorem 2.1. Under the assumed regularity conditions, as \(n \to \infty,\)

\[(2.27) \ R^*_n + v/2 \to 0, \ a.s.,\]

\[(2.28) \ 2R^{**}_n \to \Sigma_{k \geq 0} \lambda_k (z^2_k - 1),\]

where the \(\lambda_k\) and \(z_k\) are defined as in (2.24)-(2.26).

Now, (2.27) is an improvement over (3.20) of Sen (1977). It not only provides a sharper result on \(R^*_n,\) but also yields the even stronger result that for \(v = 0, R^*_n \to 0 \ a.s.,\) as \(n \to \infty.\) Also, (2.28) provides the SOADR result for the classical
jackknifed estimator under second order hadamard differentiability conditions. This result is different from the parallel SOADR results for M-estimators, studied recently by Jurečková (1985) and Jurečková and Sen (1986), among others. (2.27) also suggests that jackknifing (in the classical sense) essentially amounts to a second order bias adjustment (i.e., $n^{-1}v/2$) without making any other functional change in T_n. The positive effect of this feature is that if T_n is any robust estimator, T_n^* also remains so, while the negative effect is that the classical jackknifing while reducing the bias (to a smaller order) shares the same lack of robustness property with the initial estimator T_n when the later is not so robust. This negative feature generally calls for the choice of more robust initial estimators and/or the use of functional jackknifing to induce robustness.

Looking at (1.1) and (2.10), we gather that the FJE T_n^{O*} in (1.4) can generally be interpreted as a measure of location of the $T_{n,i}$. In this respect, for any d.f. G, defined on R, we define $G(x;a) = G(x-a)$, for $x,a \in R$. Then, a statistical functional $\tau(G)$ is termed translation-equivariant if for every $a \in R$ and $G \in \mathcal{G}$,

$$\tau(G(x;a)) = a + \tau(G(x;0)).$$

It is clear that the functional for T_n^* in (1.3) is translation-equivariant. Similarly, for the trimmed jackknifing, considered by Hinkley and Wang (1980), the corresponding functional is also translation-equivariant. We assume that $T_n^{O}()$ satisfies (2.29).

For notational simplicity, we let

$$T_{n,i}^* = T_{n,i} - T_n,$$

for $i=1,...,n$;

$$G_{n}^{**}(x) = n^{-1} \sum_{i=1}^{n} I(T_{n,i}^* \leq x), x \in R.$$

Then, by (1.4) and (2.31), for translation-equivariant $T_n^{O}()$, we have

$$T_n^{O*} = T_n^{O}(G_{n}^{*}) = T_n + T_n^{O}(G_{n}^{**}).$$

Looking at (2.10), we also define

$$G_{n}^{*}(x) = n^{-1} \sum_{i=1}^{n} I(T_{1}(F;X_{1}) \leq x), x \in R;$$

$$G_{F}^{*}(x) = P_F\{ T_{1}(F;X_{1}) \leq x \}, x \in R.$$

Note that by (2.4), $E_F T_{1}(F;X_{1}) = 0$. Thus, identifying G^* as the d.f. of $T(F) + T_{1}(F, X_{1})$, we may replace (1.6) by the following:
(2.35) \(T^0(.) \) is translation-equivariant with \(T^0(G^0_F) = 0 \).

For the trimmed jackknifing, Hinkley and Wang (1980) assumed that \(T_1(F;X_i) \) has a d.f. symmetric about 0, and this ensures (2.35), while, for the classical jackknifing, \(E_F T_1(F;X_i) = 0 \) ensures (2.35). Other conditions on \(T(.) \) and \(T^0(.) \) will be introduced as and when they are needed.

3. FJE: General asymptotics. Note that by virtue of (2.4)-(2.5), the Hadamard derivative of \(T_1(F;x) \) is given by

\[
T_{1,1}(F;x,y) = T_2(F;x,y) - T_1(F;y).
\]

Thus, for every \(i = 1, \ldots, n \), we have

\[
T_1(F_n;X_i) = T_1(F;X_i) + \sum_{j=1}^n (T_1(F;X_i, X_j) - T_1(F;X_j)) + o_p(n^{-1/2}).
\]

(3.1)

where \(T_{1,1} \), defined by (2.16), is \(O_p(n^{-1/2}) \), while under \(E_F T_2^2(.) < \infty \), by (2.4)-(2.5), \(E F T_2^2(X_i) = O(n^{-1}) \), so that \(T_{2n}(X_i) = O_p(n^{-1/2}) \). This shows that \(T_1(F_n;X_i) \) can be expressed as \(T_1(F;X_i) \) perturbed by stochastic factors \([O_p(n^{-1/2})] \) which may play a dominant role in the weak convergence of the related empirical processes. As such, we study first these weak convergence results and incorporate them subsequently in the study of the main results on the FJE. By (2.10), (2.15) and (3.2), we have

\[
T_{n,i} = T(F) + T_1(F;X_i) + T_{2n}(X_i) + o_p(n^{-1/2}), \text{ for every } i = 1, \ldots, n.
\]

Thus, if we define the empirical d.f. \(\hat{G}^*_n \) by letting

\[
\hat{G}^*_n(x) = \frac{1}{n} \sum_{i=1}^n I(T_1(F;X_i) + T_{2n}(X_i) \leq x), \quad x \in \mathbb{R},
\]

(3.3)

then, noting that \(G^*_n \) is the empirical d.f. of the \(T_{n,i} \), we obtain by using (3.3) and some standard steps that

\[
n^{1/2} \left| |G^*_n(x) - \hat{G}^*_n(x - T(F))| \right| \overset{p}{\to} 0, \text{ as } n \to \infty.
\]

(3.5)

As such, first, we consider the weak convergence of the empirical process related to \(G^*_n \). We define then a process \(\omega_n = \{ \omega_n(t), t \in [0,1] \} \), by letting

\[
\omega_n(t) = \frac{1}{n} \sum_{j=1}^n T_2(F;F^{-1}(t), X_j), \quad t \in [0,1].
\]

(3.6)

Then, by (2.4)-(2.5), \(E_F \omega_n(t) = 0, \forall t \in [0,1] \), and under \(E_F T_2^2 < \infty \), for every
\[0 \leq s \leq t \leq 1, \]
\[(3.7) \quad E [\omega_n(t) - \omega_n(s)]^2 = \int_{-\infty}^{\infty} \{ T_2(F;F^{-1}(t),y) - T_2(F;F^{-1}(s),y) \}^2 dF(y) \quad (< \infty). \]

We assume that there exist some finite and positive numbers \(k, \gamma \) and \(\beta \), such that
\[(3.8) \quad E | \omega_n(t) - \omega_n(s) |^{\gamma} \leq K |t - s|^{1+\beta}, \quad 0 \leq s \leq t \leq 1. \]

Note that whenever \(T_2(\cdot) \) satisfies a local Lipschitz condition, (3.7) ensures (3.8) with \(\gamma = 2 \) and \(\beta = 1 \). Also, we may note that (3.8) ensures the tightness of \(\omega_n(\cdot) \), while the convergence of the finite dimensional distributions (f.d.d.) of \(\omega_n(\cdot) \) to those of a Gaussian function \(\omega = \{ \omega(t), t \in [0,1] \} \) follows directly by a routine use of the standard central limit theorem for i.i.d.r.v.'s. Thus, we conclude that
\[(3.9) \quad \sup \{ | \omega_n(t) | : t \in [0,1] \} = O_p(1), \]
and, for every \(\varepsilon > 0 \) and \(n > 0 \), there exist a positive \(\delta_0 (< 1) \) and an integer \(n_0 \), such that for every \(n \geq n_0 \) and \(\delta : 0 < \delta < \delta_0 \),
\[(3.10) \quad P \{ \sup \{ | \omega_n(t) - \omega_n(s) | : 0 < s < t < s + \delta < 1 \} > \varepsilon \} < n. \]

Then, defining \(G_n^\star \) as in (2.33), we have the following.

Lemma 3.1. Whenever \(\omega_n \) converges weakly to \(\omega \), i.e., (3.9) and (3.10) hold, as \(n \to \infty \),
\[(3.11) \quad \sup_{x} \left\{ n^{\frac{3}{2}} \right\} \left\{ G^\star_n(x) - G^\star_n(x - n^{-\frac{1}{2}} \omega_n(F^{-1}(t_x))) \right\} \to 0, \]
where \(x = T_1(F;F^{-1}(t_x)), x \in \mathbb{R} \).

Proof. By (3.9), for every \(\varepsilon > 0 \), there exists a positive \(K (= K_\varepsilon) \), such that
\[(3.12) \quad P \{ \sup_{0 \leq t \leq 1} | \omega_n(t) | > K \} < \varepsilon, \quad \forall n \geq n_0. \]

Note that by definition [in (3.2)], \(\bar{T}_{2n}(X_i) = n^{-\frac{1}{2}} \omega_n(F(X_i)) \), so that by (3.12),
\[\max \{ | \omega_n(F(X_i)) | : 1 \leq i \leq n \} \leq K, \]
with a probability \(\geq 1 - \varepsilon \), \(\forall n \geq n_0 \). Consider a partition of \(\mathbb{R} \) into \((-\infty, x-2n^{-\frac{1}{2}}K), [x-2n^{-\frac{1}{2}}K, x+2n^{-\frac{1}{2}}K], (x+2n^{-\frac{1}{2}}K, \infty) \), for a given \(x \).

For all \(i : T_1(F;X_i) < x - 2n^{-\frac{1}{2}}K \), by (3.12), \(T_1(F;X_i) + \bar{T}_{2n}(X_i) = T_1(F;X_i) + n^{-\frac{1}{2}} \omega_n(F(X_i)) \leq x - n^{-\frac{1}{2}}K \leq \omega_n(F^{-1}(t_X)), \)
with a probability \(\geq 1 - \varepsilon \); similarly,
for all \(i : T_1(F;X_i) > x + 2n^{-\frac{1}{2}}K \), \(T_1(F;X_i) + \bar{T}_{2n}(X_i) > x + n^{-\frac{1}{2}} \omega_n(F^{-1}(t_X)), \)
with a probability \(\geq 1 - \varepsilon \). Finally, by (3.10), for all \(i : x - 2n^{-\frac{1}{2}}K \leq T_1(F;X_i) \leq x + 2n^{-\frac{1}{2}}K \), we have
\[(3.13) \quad T_1(F;X_i) + \bar{T}_{2n}(X_i) = T_1(F;X_i) + n^{-\frac{1}{2}} \omega_n(F^{-1}(t_X)) + O_p(n^{-\frac{1}{2}}), \quad \forall n \geq n_0. \]

The rest of the proof follows by some standard arguments, and hence, is omitted.
We define \(G^O_F \) as in (2.34) and assume that it has a continuous density function \(g_F \) a.e. Then, on using (3.9), we obtain that as \(n \to \infty \),
\[
\sup_x |n^{\frac{1}{2}} \{ G^O_F(x) - g_F(x) \} - n^{-\frac{1}{2}} G^O_F(x) | \overset{p}{\to} 0.
\]
(3.14)
Thus, by (3.5), (3.9), (3.11), (3.14) and the fact that by the classical Kolmogorov-Smirnov result, \(|| G^O_n - G^O_F || = o_p(n^{-\frac{1}{2}}) \), we obtain that
\[
n^{\frac{1}{2}} || G^O_n(x) - G^O_F(x - T(F)) || = o_p(1).
\]
Similarly, defining \(D^* \) as in (2.31), we have
\[
n^{\frac{1}{2}} || D^*_n(x) - D^O_F(x) || = o_p(1).
\]
(3.16)
Thus, by (2.4), (2.32), (2.35), (3.2) and (3.16), we have
\[
n^{\frac{1}{2}} (T^O_n - T_n) = n^{\frac{1}{2}} T^O(D^*_n)
\]
\[
= n^{\frac{1}{2}} \int_{1} T^O_G(x) d[G^*_n(x) - G^O_F(x)] + o_p(1)
\]
\[
= n^{\frac{1}{2}} \int_{1} T^O_G(x) d[G^*_n(x) + o_p(1)
\]
\[
= n^{\frac{1}{2}} \sum_{i=1}^{n} T^O_G(x) + o_p(1).
\]
Thus, using the first order remainder term \(R^O_n \) by the left hand side of
\[
(3.17),
\]
we obtain that
\[
R^O_n = o_p(1) \text{ when } n^{\frac{1}{2}} \sum_{i=1}^{n} T^O_G(x) + o_p(1).
\]
(3.18)
Note that (3.18) holds for the particular functional \(T^O_G = \int x dG \) (i.e., for the classical jackknifing), but not, in general, for the FJE (as may easily be verified with the case of the trimmed jackknifing, treated in Hinkley and Wang (1980)). Hence for FJE, \(T^O_n \) and \(T_n \) (or \(T^*_n \)) are not asymptotically equivalent (upto the order \(n^{-\frac{1}{2}} \)), so that stronger results (such as in Theorem 2.1) may not be generally true for the FJE. Thus, for the FJE, there remains the issue of a representation for the first order remainder term \(R^O_n \) (in terms of independent summands) as well as for the normalized form \(n^{\frac{1}{2}} (T^O_n - T(F)) \). These will be studied here.

Note that if \(T^O_2(.) \) is regular in the sense that
\[
E_F(T^O_2(F; X_1, X_1) - T^O_2(F; X_1, X_1))^2 \to 0, \text{ as } n \to \infty,
\]
(3.19)
we have
(3.20) \[n^{-1} \left[\max_{1 \leq i \leq n} | T_2(F_n; X_i, X_i) - T_2(F; X_i, X_i) |^2 \right] \]
\[\leq n^{-1} \sum_{i=1}^{n} \left[T_2(F_n; X_i, X_i) - T_2(F; X_i, X_i) \right]^2 \]
\[= \int \left[T_2(F_n; x, x) - T_2(F; x, x) \right]^2 dF_n(x) \quad \xrightarrow{p} \quad 0 \quad \text{as } n \to \infty. \]

Hence, from (2.10), (2.15)-(2.18), (2.30) and (3.2), we have

(3.21) \[\max_{1 \leq i \leq n} | T_{n,i} - T_1(F; X_i) - \bar{T}_{1n} - \bar{T}_{2n}(X_i) | = o_p(n^{-\frac{1}{2}}). \]

Thus, by the translation-equivariance of \(T^O(\cdot) \) and (3.21), we obtain that

(3.22) \[T_n^O = T_n - \bar{T}_{1n} + T^O(G_n^*) + o_p(n^{-\frac{1}{2}}). \]

Hence, parallel to (3.17), we have

(3.23) \[R_n^O = n^{\frac{1}{2}}(T_n^O - T_n) = n^{\frac{1}{2}} \left[T^O(G_n^*) - \bar{T}_{1n} \right] + o_p(1) \]
\[= n^{-\frac{1}{2}} \sum_{i=1}^{n} \left\{ T_1(G_n^*; F_i) + \bar{T}_{2n}(X_i) - T_1(F; X_i) \right\} + o_p(1). \]

Hence, if we assume that \(T_1(\cdot) \) admits the following expansion:

(3.24) \[T_1(G_n^*; T_1(F; x)) + n^{-\frac{1}{2}}t \]
\[= T_1(G_n^*; T_1(F; X_i)) + n^{-\frac{1}{2}} \sum_{i=1}^{n} T_1(G_n^*; T_1(F; X_i)) + o_p(n^{-\frac{1}{2}}), \quad \forall \ |t| \leq T < \infty, \]
and denote by

(3.25) \[T_1(G_n^*; T_1(F; x)) - T_1(F; x) = \psi_F(x), \quad x \in \mathbb{R}, \]

then, from (3.23) through (3.35), we obtain that

(3.26) \[R_n^O = n^{\frac{1}{2}} \sum_{i=1}^{n} \psi_F(X_i) + n^{-\frac{1}{2}} \sum_{i=1}^{n} \bar{T}_{2n}(X_i) T_{11}(G_n^*; T_1(F; X_i)) + o_p(1). \]

Next, we note that

(3.27) \[n^{-\frac{1}{2}} \sum_{i=1}^{n} \bar{T}_{2n}(X_i) T_{11}(G_n^*; T_1(F; X_i)) \]
\[= n^{-\frac{1}{2}} \sum_{i=1}^{n} \bar{T}_{2n}(F_i; X_i) T_{11}(G_n^*; T_1(F; X_i)) \]
\[= n^{-\frac{1}{2}} \sum_{i=1}^{n} T_2(F; X_i, X_i) T_{11}(G_n^*; T_1(F; X_i)) + n^{-\frac{1}{2}} \sum_{i<j} T_2(F; X_i, X_j) T_{11}(G_n^*; T_1(F; X_i)) \]
\[= \mathcal{O}(n(1)) + \mathcal{O}(n(2)), \quad \text{say}. \]

Note that if we assume that

(3.28) \[u(F) = E_F | T_2(F; X_i, X_i) T_{11}(G_n^*; T_1(F; X_i)) | \text{ exists and is finite}, \]
then, by the Chebyshev inequality, we obtain that

(3.29) \[\mathcal{O}_n(1) = o_p(n^{-\frac{1}{2}}). \]

Similarly, we may write
(3.30) \(\bar{u}_n(2) = n^{\frac{1}{2}}(1 - n^{-1})\{ \binom{n}{2}^{-1} \sum_{1 \leq i < j \leq n} \phi_F(x_i, x_j) \}, \)

where \(\phi_F(x, y) = \frac{1}{2} \left[T_2(F; x, y)T_{11}^O(G_F^O; T_1(F; x)) + T_2(F; x, y)T_{11}^O(G_F^O; T_1(F; y)) \right] \) is a symmetric kernel of degree 2. Note that by (2.4)-(2.5), \(E_F \phi_F(x_i, x_j) = 0, \) but \(E_F \phi_F(x_i, x_j) \) need not be equal to 0 (a.e.), so that \(\bar{u}_n(2) \) will generally have asymptotically normal distribution. Thus, if we assume that

(3.31) \(E_F \phi_F^2(x_i, x_j) < \infty, \)

and denote by

(3.32) \(\phi_{F,1}(x) = E_F \phi_F(x, x_1), \) \(x \in \mathbb{R} \) and \(\zeta_1(F) = E_F \phi_{F,1}^2(x_1), \)

then, by the classical results of Hoeffding (1948) [on U-statistics], we have

(3.33) \(\bar{u}_n(2) = 2n^{-\frac{1}{2}} \sum_{i=1}^n \phi_{F,1}(x_i) \xrightarrow{p} 0; \)

(3.34) \(2n^{-\frac{1}{2}} \sum_{i=1}^n \phi_{F,1}(x_i) \sim \mathcal{N}(0, 4\zeta_1(F)). \)

We may recall, at this stage, that by (2.5)

(3.35) \(2\phi_{F,1}(x) = \int T_2(F; x, y)T_{11}^O(G_F^O; T_1(F; y))dy \) a.e.,

so that from (3.26), (3.27), (3.29), (3.30), (3.33), (3.34) and (3.35), we arrive at the following.

THEOREM 3.1. Under the regularity conditions assumed above,

(3.36) \(R_n^{O*} = n^{-\frac{1}{2}} \sum_{i=1}^n \left(\psi_F(x_i) + 2 \phi_{F,1}(x_i) \right) + o_p(1), \)

where \(\psi_F \) and \(\phi_1 \) are defined by (3.25) and (3.35), respectively. Thus,

(3.37) \(R_n^{O*} \sim \mathcal{N}(0, \gamma^{O*2}); \gamma^{O*2} = E_F[\psi_F(x_1)+2\phi_{F,1}(x_1)]^2. \)

Therefore, the FJE \(T_n^{O*} \) and \(T_n \) are asymptotically (first order) equivalent when

(3.38) \(T_1(G_F^O; T_1(F; x)) - T_1(F; x) + \int T_2(F; x, y)T_{11}^O(G_F^O; T_1(F; y))dy = 0 \) (a.e. F).

It is easy to verify that (3.38) may not generally hold for the FJE, although for the classical jackknifed estimator, it holds trivially. Also, by (2.15) and

(3.22), we have

(3.39) \(n^{\frac{1}{2}} (T_n^{O*} - T(F)) = n^{\frac{1}{2}} T_n^{O*} - T(F)) + o_p(1) \)

= \(n^{-\frac{1}{2}} \sum_{i=1}^n \left(T_1(G_F^O; T_1(F; x_i)) + 2 \phi_{F,1}(x_i) \right) + o_p(1) \)

= \(n^{-\frac{1}{2}} \sum_{i=1}^n \left(T_1(G_F^O; T_1(F; x_i)) + \eta T_2(F; x_i, y)T_{11}^O(G_F^O; T_1(F; y))dy \right) + o_p(1) \).

(3.40) \(= n^{\frac{1}{2}} \sum_{i=1}^n (T_1, F; x_i) + o_p(1), \) say.
In this setup, \(T_1^*(T,F;x) \) may be identified as the influence function of the functional \(T^0(.) \) at the point \(F \); it depends also on the functional \(T(.) \) through the \(T_{n,i} \). We denote by

\[
\sigma_0^2 = \int \left[T_1^{0*}(T,F;x) \right]^2 dF(x) = E_F[T_1^{0*}(T,F;X_1)]^2.
\]

Theorem 3.2. Under the assumed regularity conditions, for the FJE,

\[
n^{-1/2} \sum_{i=1}^{n} T_1^{0*}(T,F;X_i) + o_p(1) \sim \mathcal{N}(0, \sigma_0^2).
\]

It may be noted that for the classical jackknifed estimator \(T_n^* \), the influence function reduces to \(T_1(F;x) \), so that in (3.41), \(\sigma_0^2 \) reduces to \(\sigma_1^2 \), defined in (2.23). However, for a general FJE, the two influence functions, \(T_1^{0*}(T,F;x) \) and \(T_1(F;x) \), are not the same, and this makes it possible to choose \(T^0(.) \) skillfully, so that the corresponding influence function reflects robustness in a generally interpretable manner (viz., Huber (1981)). This is perhaps the main point in favor of using a FJE instead of the classical jackknifing. However, we may note that whereas the asymptotic variance of the original and the classical jackknifed estimators are the same, for a general FJE, \(\sigma_0^2 \) in (3.40) may not be equal to \(\sigma_1^2 \) in (2.23). In fact, if \(T_n \) is an asymptotically optimal estimator of \(T(F) \), then \(\sigma_0^2 \) is \(\geq \sigma_1^2 \), so that while advocating more robustness, the FJE may lead to some loss of efficiency. On the other hand, if \(T_n \) is not an asymptotically efficient estimator of \(T(F) \), then it may be possible to choose an appropriate FJE (i.e., \(T^0(.) \)), such that we may have simultaneously more robust and more efficient estimator of \(T(F) \). However, for \(T(F) \), under fairly general regularity conditions, \(T_n = T(F_n) \) is an asymptotically optimal (nonparametric) estimator, and hence, the last point generally does not merit serious considerations, although such a consideration may arise in a parametric setup. Since robustness in a local sense is mostly confined to parametric models, FJE may find a better case in the parametrics than in the nonparametrics. We shall make more comments on it in the concluding section.
4. FJE: Estimation of asymptotic variance. We may note that by (1.3), (3.3), (3.9)
and the usual law of large numbers for the i.i.d. $T_1(F;X_1)$,

$$V_n^* \to \sigma_1^2, \text{ in probability, as } n \to \infty.$$ \hspace{1cm} (4.1)

In fact, if we assume that for each $r = 0,1,2$,

$$\int T_1^r(G;x)T_2^{2-r}(G;x,x) \, dG(x) \text{ is a continuous functional of } G$$

in some neighbourhood of F (with respect to the norm $||G-F||$), in the Hadamard-sense,

then, by using (2.10) along with the a.s. convergence of $||F_n - F||$ to 0 and the
Khintchine strong law of large numbers on the $T_1(F;X_1)$ (and $T_2(F;X_1,X_1)$), we obtain

that under (4.2),

$$V_n^* \to \sigma_1^2 \text{ a.s., as } n \to \infty.$$ \hspace{1cm} (4.3)

Thus, in the classical jackknifing, V_n^*, based on the pseudo variables in (1.1),
serves a useful role in the estimation of the asymptotic variance σ_1^2.

In view of Theorems 3.1 and 3.2, we may note that for the FJE, in general, V_n^*
may not consistently estimate σ_2^2, the asymptotic variance of $n^{-1}(T_n^o - T(F))$. In
some specific cases, such as the trimmed jackknifing treated in Hinkley and Wang
(1980), it may be possible to introduce some sample statistics $h_{ni} = h_n(F;F_i)$,

$$i = 1, \ldots, n,$$ \hspace{1cm} (4.4)

such that

$$\max_{1 \leq i \leq n} | h_{ni} - T_1^O(T,F;X_1) | \to 0, \text{ as } n \to \infty,$$

(in probability or a.s.), where the $T_1^O(T,F;X_1)$ are defined in (3.39), so that

defining $V_n^O = (n-1)^{-1} \sum_{i=1}^{n} (h_{ni} - \bar{h}_n)^2; \bar{h}_n = n^{-1} \sum_{i=1}^{n} h_{ni}$, we have

$$V_n^O \to \sigma_2^2, \text{ as } n \to \infty.$$ \hspace{1cm} (4.5)

(in probability or a.s.). For a general FJE, a natural way to choose these h_{ni} is
to employ the so called two-step jackknifing. Toward this, we notice that $T_n^O = T^O(G_n^*)$, where G_n^* is the empirical d.f. of the $T_{n,i}$, defined in (1.1). Let $T_{n-1}^{(i)}$ (and $T_{n-2}^{(ij)}$) be the statistic T_n computed from a sample of size $n-1$ (and $n-2$)
deleting X_i (and X_i,X_j) from the given sample of size n, for $i \neq j = 1, \ldots, n$. For
each $i (=1, \ldots, n)$, let us then define

$$T_{n,i;j} = (n-1)T_{n-1}^{(i)} - (n-2)T_{n-2}^{(ij)}, \text{ for } j = 1, \ldots, n (j \neq i).$$ \hspace{1cm} (4.6)
If we denote the empirical d.f.'s for the sample observations in the sample of sizes n-1 and n-2 (resulting from the deletion of X_i and (X_i, X_j) from the complete sample of size n) by $F_{n-1}^{(i)}$ and $F_{n-2}^{(ij)}$, respectively, then, using the same expansions as in earlier sections, we have the following:

\[
T_{n,i,j} = (n-1)T(F_{n-1}^{(i)}) - (n-2)T(F_{n-2}^{(ij)}) \\
= T(F_{n-1}^{(i)}) - (n-2)[T(F_{n-2}^{(ij)}) - T(F_{n-1}^{(i)})] \\
= T(F_{n}) + [T(F_{n-1}^{(i)}) - T(F_{n}^{(i)})] - (n-2)[T(F_{n-2}^{(ij)}) - T(F_{n-1}^{(i)})] \\
= T(F_{n}) + T_1(F_{n}^{(i)}; X_i) - (2(n-2))^{-1}[2T_2(F_{n}^{(i)}; X_i, X_j) + T_2(F_{n}^{(i)}; X_i, X_j)] \\
+ r_{n,i,j},
\]

where

\[
\max_{1 \leq i \neq j \leq n} \{ |r_{n,i,j}| \} \rightarrow 0 \text{ a.s., as } n \to \infty.
\]

As such, using (2.10) along with (4.7) and (4.8), we have

\[
\max_{1 \leq i \neq j \leq n} |T_{n,i,j} - T_{n,j} + n^{-1}T_2(F_{n}^{(i)}; X_i, X_j)| = o(n^{-1}) \text{ a.s., as } n \to \infty.
\]

For the $T_{n,i,j}$, $j=1,\ldots, n (\neq i)$, we denote the empirical d.f. by $G_{n-1}^{* (i)}$, for $i=1, \ldots, n$, while, as in Section 1, G_n^* stands for the empirical d.f. of the $T_{n,i}$, $i=1,\ldots, n$.

Then, using (4.9) and a technique very similar to that in Lemma 3.1, it follows that

\[
\max_{1 \leq i \leq n} \sup_{x} \{ n^{1/2} |G_{n-1}^{* (i)}(x) - G_{n}^{* (i)}(x)| \} \overset{p}{\to} 0, \text{ as } n \to \infty.
\]

At the second step of jackknife, we identify that the FJE based on the $T_{n,i,j}$ (for $j=1,\ldots, n; j \neq i$) is noting but $T_n^0(G_{n-1}^{* (i)})$, for $i=1,\ldots, n$. Thus, the pseudo variables generated by these FJE are given by

\[
\max_{1 \leq i \leq n} \sup_{x} \{ n^{1/2} |G_{n-1}^{* (i)}(x) - G_{n}^{* (i)}(x)| \} \overset{p}{\to} 0, \text{ as } n \to \infty.
\]

Using (4.9), (4.10) and (4.11), we obtain that for $T_n^0(\cdot)$, satisfying (2.2),

\[
Q_{n,i} = T_n^0(G_{n}^{*}) - (n-1)T_n^0(G_{n-1}^{* (i)}) - (n-1)[T_n^0(G_{n-1}^{* (i)}) - T_n^0(G_{n}^{*})] \\
= T_n^0(G_{n}^{*}) - (n-1)/\int T_n^0(G_{n}^{*}; x)d[G_{n-1}^{* (i)}(x) - G_{n}^{* (i)}(x)] + O(n||G_{n-1}^{* (i)} - G_{n}^{* (i)}||^2) \\
= T_n^0(G_{n}^{*}) - (n-1)/\int T_n^0(G_{n}^{*}; x)d[G_{n-1}^{* (i)}(x) - G_{n}^{* (i)}(x)] + O_p(1) \\
= T_n^0(G_{n}^{*}) - \sum_{j=1}^{n} (j \neq i) T_n^0(G_{n}^{*}; T_{n,i,j}) + O_p(1) \\
= T_n^{*} - \sum_{j=1}^{n} (j \neq i) \{ T_n^{*}(G_{n}^{*}; T_{n,i,j}) - n^{-1}T_2(F_{n}^{(i)}; X_i, X_j)T_n^0(G_{n}^{*}; T_{n,i,j}) \} + O_p(1)
\]
\[
T_n^* - n \int T_n^0(G_n^*(x))dG_n^*(x) + T_n^0(G_n^*;T_n,i) + n^{-1} \sum_{j=1}^n T_2(F_n^*;X_i^j)T_n^0(G_n^*;T_n,j) - n^{-1} \sum_{j=1}^n T_2(F_n^*;X_i^j)T_n^0(G_n^*;T_n,j) + o_p(1),
\]

where in the penultimate step, we have made use of (3.20) and similar inequalities on the \(T_n^1(G_n^*;T_n,i)\). Thus, making use of (2.4)-(2.5) [on \(T_n^0(.)\) and \(T_2(.)\)], we obtain from (4.12) that

\[
\bar{Q}_n = n^{-1} \sum_{i=1}^n Q_{n,i} = T_n^* + 0 + o_p(1) = T_n^* + o_p(1),
\]

so that as \(n \to \infty\),

\[
\max_{1 \leq i \leq n} \{Q_{n,i} - \bar{Q}_n\} - \{T_n^0(G_n^*;T_n,i) + n^{-1} \sum_{j=1}^n T_2(F_n^*;X_i^j)T_n^0(G_n^*;T_n,j)\} \to 0.
\]

Note that by definition,

\[
n^{-1} \sum_{i=1}^n \{T_n^0(G_i^*;T_n)\}_i^2 = \int \{T_1^0(G_n^*;x)\}_n^2 dG_n^*(x),
\]

where, in Section 3, we have shown that \(||G_n^* - G_P^*|| \to 0\), as \(n \to \infty\); \(G_P^*\) being the true d.f. of \(T_1^0(G_P^*;T_1(F,X_1))\). Thus, if we assume that \(T_n^0(.)\) is square integrable and the functional on the right hand side of (4.15) is continuous in the hadamard sense, then, the left hand side of (4.15) converges in probability to

\[
\int \{T_1^0(G_P^*;x)\}_P^2 dG_P^*(x) = \int \{T_1^0(G_P^*;T(F;x))\}_P^2 dF(x).
\]

A very similar treatment applies to the other two terms in the expansion of

\[
n^{-1} \sum_{i=1}^n (Q_{n,i} - \bar{Q}_n)^2,
\]

using only the leading terms in (4.14). Thus, if we define

\[
V_n^{**} = (n-1)^{-1} \sum_{i=1}^n (Q_{n,i} - \bar{Q}_n)^2,
\]

we arrive at the following.

Theorem 4.1. If the functionals \(T\) and \(T_n^0\) are both second order hadamard differentiable and their Hadamard derivatives satisfy the continuity and integrability conditions discussed before, then defining \(\sigma_o^2\) as in (3.40), we have

\[
V_n^{**} + o(1) \to 0, \text{ in probability, as } n \to \infty.
\]

In passing, we may remark that (4.10) may be improved to an a.s. convergence (under no extra regularity conditions), and hence, in (4.12), (4.13) and (4.15), we may also replace \(o_p(1)\) by \(o(1)\) a.s., as \(n \to \infty\), so that (4.18) holds a.s., as \(n \to \infty\). Note that the construction of \(V_n^{**}\) is based on the FJE at the first step and
the classical jackknifing at the second stage. Thus, V_{n}^{**} may be regarded as a two-step jackknifed variance estimator. This two-step jackknifing avoids the arbitrariness in the choice of the h_{ni} in (4.4) and provides natural estimates of the $T_{1}^{O}(T;F;X_{i})$.

5. Some general discussions. In Section 3, we have mainly stressed on the asymptotic normality of the FJE and on the representation of the first order remainder term. It is possible to extend the asymptotic normality result to a weak invariance principle for the partial sequence $\{n^{-\frac{1}{2}}k(T_{k}^{O*} - T(F)) ; k \leq n\}$, as $n \to \infty$. A key to this weak invariance principle is provided by the following well known result on the empirical d.f. F_{n}^{s}:

$$(5.1) \quad \max_{1 \leq k \leq n} \sup_{x} \{n^{-\frac{1}{2}}k | F_{k}(x) - F(x) | \} = O_{P}(1).$$

As such, in (3.5), Lemma 3.1 and elsewhere, we may replace the G_{n}^{s} and G_{n}^{O*} by G_{k}^{s} and G_{k}^{O*}, and take a maximum of the resulting quantities over $k \leq n$, and obtain the same convergence results. Thus, (3.39) may be extended to

$$(5.2) \quad \max_{k \leq n} \{n^{-\frac{1}{2}}k(T_{k}^{O*} - T(F)) - \sum_{i=1}^{k} T_{1}^{O}(T;F;X_{i})| \} = O_{P}(1), \text{ as } n \to \infty.$$

Since the weak invariance principle holds for the partial sums $\{n^{-\frac{1}{2}}\sum_{i=1}^{k} T_{1}^{O}(T;F;X_{i}) , k \leq n\}$ (under the usual square integrability condition), by (5.2), the same result holds for $\{n^{-\frac{1}{2}}k(T_{k}^{O*} - T(F)), k \leq n\}$. This extends Theorems 3.3.1 and 3.3.2 of Sen (1981) to FJE.

We may recall that in Section 3, we have stressed the utility of the FJE from the basic consideration of robustness. However, we may note that whereas in the classical jackknifing, under the usual second order Hadamard differentiability of $T(.)$, we are able to reduce the bias of T_{n}^{*} to $o(n^{-1})$, such a stronger result on T_{n}^{O*} may need extra regularity conditions on the $T(.)$ and $T^{O}(.)$. However, in the asymptotic case, as we have shown that the bias of the FJE is $o(n^{-\frac{1}{2}})$, this refinement may not be really of much importance. Although, the FJE may not thus serve the primary function of bias reduction to the extent the classical jackknifing does. Further, in the FJE, we may need extra manipulations (as in Section 4) to serve the dual role of
variance estimation. Thus, in advocating for the use of a general FJE, we should take into account the increased robustness aspects of the FJE which need to be sufficient to counterbalance the deficiency in the other two aspects.

We have confined ourselves, so far, to univariate d.f.'s. There is no problem in considering multivariate d.f.'s (for the X_i); the concepts of compact-differentiability remains in tact for this general case too, and the manipulations can be made on parallel lines. Further, we can also consider a vector of statistical functionals and employ FJE in the same manner as in Sections 1 and 2. Because of the coordinate wise representation, the parallel results for the vector case follow on similar lines. Use of multi-sample statistical functionals for FJE also poses no problem. For example, for a two-sample statistics T_{n_1,n_2}, the pseudo variables in (1.1) should be taken as $n_1 n_2 T_{n_1,n_2} = (n_1-1) n_2 T_{n_1-1,n_2} - n_1 (n_2-1) T_{n_1,n_2-1} + (n_1-1)(n_2-1) T_{n_1-1,n_2-1}$, and the results in Sections 2, 3 and 4 can be extended in a natural fashion.

Finally, we may comment on the choice of the functional $T^O(.)$ on which to base the FJE. For the classical jackknifing, the reverse martingale structure of the conditional expectation of T_{n-1} given the non-increasing tail sigma-field $\mathcal{F}_n; n \geq 1$, viz., Sen (1977), provides the desired tools for the asymptotic study. For a general FJE, such a stronger justification has to be found out. Since robustness consideration dominates the choice of a FJE, it has to be done so judiciously that the possible increase in the asymptotic variance σ_0^2 (over σ_1^2) and other negative features with the bias reduction and variance estimation can be justified rationally. Note that (2.35) is not needed for the classical jackknifing, but sans (2.35), the FJE may be undesirable, so that in the robustness picture, the effect of possible departures from (2.35) needs to be studied too. For the trimmed jackknifing, Hinkley and Wang (1980) assumed the symmetry of the d.f. of the $T_1(F;X_1)$ which ensures (2.35). It appears that any departure from this symmetry may affect the trimmed jackknifing, while the classical jackknifing is not affected by this deviation. In parametric models, for local robustness aspects, of course, suitable $T^O(.)$ can be constructed.
to meet these requirements. However, judged from the nonparametric (global) robustness aspects, such a $\text{T}^0(\cdot)$ may not work out well. Recently, Fernholz (1983) has worked out neatly the von Mises' Calculus for statistical functionals covering the parametric as well as nonparametric cases. This treatment allows us to have a broader choice of T^0 satisfying the regularity conditions assumed in the earlier sections. In particular, choice of M-functionals or L-functionals may preserve the global robustness on a more general framework, and may be advocated on general considerations.

REFERENCES

