On Tournaments Having
A Unique Hamiltonian Circuit*

by
Michael R. Shelor

Department of Statistics
University of North Carolina at Chapel Hill
Chapel Hill, North Carolina

*Preparation of this manuscript supported in part by the NSF grant
MPS74-06975 A01

May, 1977
ABSTRACT

A tournament is a directed complete graph. A Hamiltonian circuit is a circuit which passes through each vertex of the graph once and only once. This note examines the family T_n of all nonisomorphic tournaments on n vertices which have a unique Hamiltonian circuit. We let $T_n = |T_n|$. In [1] Douglas gives a graphical characterization of the family T_n, and from this characterization obtains an involved formula for calculating the values T_n. In particular

$$
\begin{array}{cccccccccc}
 n = & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 T_n = & 1 & 1 & 3 & 8 & 21 & 55 & 144 & 377 \\
\end{array}
$$

This note presents a graphical construction of the family T_{n+1} from the family T_n and, using this construction, obtains a proof of the recurrence

$$
T_{n+2} = 3 T_{n+1} - T_n, \quad (n \geq 4).
$$
1. **Preliminaries.**

The *outdegree* of a vertex v is the number of edges incident with v and directed away from it. The *indegree* of v is the number of incident edges directed into it.

THEOREM 1:

(i) If $T \in \mathcal{T}_n$, then T has at least one, and at most two, vertices with maximal outdegree, i.e., with outdegree $n-2$.

(ii) If $T \in \mathcal{T}_n$ has 2 vertices v_1,v_2 of maximal outdegree, then v_1,v_2 are successive vertices of the unique Hamiltonian circuit in T.

PROOF: Since $T \in \mathcal{T}_n$ has a Hamiltonian circuit, we first note that the maximal outdegree of any vertex is $n-2$.

(i) If $T \in \mathcal{T}_n$ then it follows from corollary 3 of Douglas [1] that at least one vertex must have outdegree $n-2$. Furthermore, if v_1,v_2 are vertices of maximal outdegree $n-2$, and v any other vertex, then the indegree of v must be at least 2. Consequently, the outdegree of v is at most $(n-1)-2 = n-3$.

(ii) Let v_1,v_2 be of maximal outdegree $n-2$. Without loss of generality, assume that the edge between v_1 and v_2 is $v_1 \rightarrow v_2$. Then this is the only incoming edge for v_2. Hence it must be an edge of the Hamiltonian circuit.

Thus, we can divide the family \mathcal{T}_n into disjoint families according to whether a tournament $T \in \mathcal{T}_n$ has 1 or 2 vertices of maximal outdegree. We define

$$
A_n = \{T \in \mathcal{T}_n : T \text{ has only 1 vertex of maximal outdegree}\}
$$

$$
B_n = \{T \in \mathcal{T}_n : T \text{ has 2 vertices of maximal outdegree}\}
$$
and

\[A_n = |A_n| , \quad B_n = |B_n| . \]

Then clearly

\[T_n = A_n \cup B_n \]

and

\[T_n = A_n + B_n . \]

2. **Construction.**

For \(n \geq 3 \), if we are given the family \(T_n \) then we may use the following graphical construction to obtain the family \(T_{n+1} \). For each \(T \in T_n \) we will adjoin an \((n+1)\)-st vertex of maximal outdegree (i.e., of outdegree \(n-1 \)), while at the same time maintaining all edge orientations of \(T \), thus obtaining a tournament on \((n+1)\) vertices. This vertex may be adjoined at either 2 or 3 different positions (depending on whether \(T \in A_n \) or \(T \in B_n \)) with the resulting tournaments being nonisomorphic. The resulting tournaments will, of necessity, be in \(T_{n+1} \).

Conversely, we will show that every tournament in \(T_{n+1} \) can be gotten by using this construction. It will follow that \(T_{n+1} \) is precisely the family of all tournaments obtained by applying this construction to \(T_n \).

The graphical construction is as follows:

I. Suppose \(T \in A_n \). Let \(a \) be the vertex of maximal outdegree and the Hamiltonian circuit \(H \) be as shown.
(i) Adjoin to T an $(n+1)$-st vertex v of maximal outdegree $n-1$ and whose only incoming edge is from b_0. (All other edges of T are retained with their same orientation.) We thus obtain a tournament T' on $n+1$ vertices containing

We wish to show that $T' \in \mathcal{T}_{n+1}$. Obviously T' has a Hamiltonian circuit; namely, the path (of H) from a to b_0, along with the edges $b_0 \rightarrow v \rightarrow a$. Call this Hamiltonian circuit H'.

Furthermore, H' will be the only Hamiltonian circuit of T'. Indeed any Hamiltonian circuit of T' must contain the edges $b_0 \rightarrow v \rightarrow a$ since v has only one incoming edge, and a has only two incoming edges, one of which is from b_0. Thus any Hamiltonian circuit of T' must look like
But then the path from a to b_0 along with the edge $b_0 \rightarrow a$ would constitute a Hamiltonian circuit of T, and by assumption there is only one such circuit, namely H. Thus the circuit H' is the only Hamiltonian circuit of T', and hence $T' \in T_{n+1}$.

Note that $T' \in A_{n+1}$ since it has only one vertex of maximal outdegree, namely v.

We will denote this particular constructive technique (applied only to members of A_n) as C_1, and we write

$$T' = C_1(T).$$

(ii) Similarly, if we adjoin to T an $(n+1)$-st vertex v of maximal outdegree and whose only incoming edge is from a
then we will obtain another tournament \(T' \) in \(\mathcal{T}_{n+1} \). Note that in this case \(T' \in \mathcal{B}_{n+1} \) since \(a \) and \(v \) both have maximal outdegree \(n-1 \).

We denote this constructive technique (applied only to members of \(A_n \)) as \(C_2 \) and write

\[
T' = C_2(T).
\]

II. Suppose \(T \in \mathcal{B}_n \). Let \(a_0, a_1 \) be the vertices of maximal outdegree and the Hamiltonian circuit as shown.

\[
\begin{array}{c}
\text{II} \\
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{H}
\end{array}
\end{array}
\]

(i) Adjoin an \((n+1)\)-st vertex \(v \) of maximal outdegree whose only incoming edge is from \(b_0 \). We obtain a tournament \(T' \) on \(n+1 \) vertices containing

Again the fact that \(T' \) will have one and only one Hamiltonian circuit follows from the fact that the same property holds for \(T \). Since \(v \) will be the only vertex of maximal degree, then \(T \in \mathcal{A}_{n+1} \). We call this procedure \(C_3 \) and let \(T' = C_3(T) \).
(ii) Adjoin a vertex \(v \) of maximal outdegree \(n-1 \) whose only incoming edge is from \(a_0 \). The resulting tournament \(T' \) on \(n+1 \) vertices contains

![Diagram]

As before, \(T' \) has one and only one Hamiltonian circuit. Further, \(T' \in \mathcal{B}_{n+1} \) since \(v \) and \(a_0 \) have maximal outdegree. This technique we call \(C_4 \) and we write

\[T' = C_4(T) \]

in this case.

(iii) Adjoin a vertex \(v \) of maximal outdegree whose only incoming edge is from \(a_1 \). This tournament \(T' \) contains

![Diagram]

Again, \(T' \in \mathcal{T}_{n+1} \) and in fact, \(T' \in \mathcal{B}_{n+1} \) since \(v \) and \(a_1 \) both have maximal outdegree.
This technique we denote as C_5 and thus

$$T' = C_5(T) \in B_{n+1} \text{ for every } T \in B_{n}.$$

This completes the graphical construction procedure.

Notation: In the following, we let

$$C_i(T_n) = \{C_i(T): T \in A_{n}\} \text{ for } i = 1, 2$$

$$C_i(T_n) = \{C_i(T): T \in B_{n}\} \text{ for } i = 3, 4, 5$$

and

$$C = \bigcup_{i=1}^{5} C_i(T_n). \quad (1)$$

In other words C is the family of all tournaments which can be constructed from members of T_n.

3. **Distinctness of Elements of C.**

We wish to show that all members of C are nonisomorphic. Specifically, we will show that each element of T_{n+1} can be constructed from one and only one member of T_n, and this must be done using a uniquely determined procedure C_i. Since each member of C is in T_{n+1}, and no two members of T_{n+1} are isomorphic, this will mean that no two different members of C (i.e., constructed by different procedures C_i or from different members of T_n) can be isomorphic.

Lemma 1: Let $T \in T_{n+1}$. Then there exists a unique $S \in T_n$ and a uniquely determined procedure C_i such that
\[T = C_1(S) . \]

PROOF: If \(T \in A_{n+1} \), then \(T \) has only one vertex \(v \) of maximal outdegree, so \(v \) must have been the vertex added in the constructive process. Therefore, the member of \(T_n \) from which \(T \) was constructed must have been the subgraph \(S \) of \(T \) gotten by deleting the vertex \(v \). If \(S \in A_n \), then the constructive procedure must have been \(C_1 \). If \(S \in B_n \), it must have been \(C_3 \).

If \(T \in B_{n+1} \) then let \(v_1, v_2 \) be the vertices of maximal outdegree. By Theorem 1 (ii), \(v_1 \) and \(v_2 \) must be adjacent so, without loss of generality, assume that the edge \(v_1 \rightarrow v_2 \) is in \(T \). From the description of the construction (and specifically procedures \(C_2, C_4, C_5 \)) we see that \(v_2 \) must have been the vertex which was added. Thus, again, the member of \(T_n \) from which \(T \) was constructed must have been the subgraph \(S \) of \(T \) gotten by deleting \(v_2 \). If \(S \in A_n \) then the constructive procedure must have been \(C_2 \). If \(S \in B_n \) and its vertices of maximal outdegree \(v_1, v_3 \) are joined by the edge \(v_1 \rightarrow v_3 \) then the procedure had to be \(C_4 \); if they are joined by \(v_3 \rightarrow v_1 \) then the procedure had to be \(C_5 \).

THEOREM 2: The members of \(C \) are nonisomorphic.

PROOF: Follows from lemma 1, since each member of \(C \) is also a member of \(T_{n+1} \).

4. **Equivalence of \(C \) and \(T_{n+1} \).**

Each object we construct from \(T_n \) is an element of \(T_{n+1} \). Since the constructed objects are nonisomorphic, then

\[C \subseteq T_{n+1} . \]
We wish to show now that each member of T_{n+1} may be gotten by applying the construction to some member of T_n.

Theorem 3: $T_{n+1} \subseteq C$.

Proof: Let $T \in T_{n+1}$.

Case I: If $T \in B_{n+1}$ with vertices v_1, v_2 of maximal outdegree and Hamiltonian circuit H, then T contains the following structure,

![Diagram](image)

Consider the subgraph S gotten by deleting vertex v_2 and all its incident edges. Then S is a tournament with at least one Hamiltonian circuit, namely

$$C = a, v_1, b, \ldots, a.$$

If we can show that C is the only Hamiltonian circuit of S, then it follows immediately that $S \in T_n$ and that T can be constructed from S.

Suppose S has a second Hamiltonian circuit C_0 different from C.

![Diagram](image)
Then, for some vertex w, w \(\neq v_1 \), in S we must have the edge \(v_1 \to w \) in \(C_0 \). Now let \(C'_0 \) be the circuit in T which is obtained by replacing the edge \(v_1 \to w \) in \(C_0 \) by the two edges \(v_1 \to v_2 \to w \). (Recall that the edge between \(v_2 \) and w must be directed towards w.) Further, it is clear that \(C'_0 \) differing from \(C \) (in S) implies that \(C'_0 \) will differ from \(H \) (in T). But this is not possible since \(H \) is unique. Thus our supposition that S has two Hamiltonian circuits must be false and the desired results follow.

Case II: Let \(T \in A_{n+1} \) with \(v \) the vertex of maximum outdegree and \(H \) the unique Hamiltonian circuit.

Consider the subgraph S gotten by deleting \(v \) from T. Again S is a tournament. We must show that \(S \in T' \). Observe that if we knew that the edge \(a \to b \) were in T then we would obviously have a Hamiltonian circuit in S; namely, the circuit gotten by replacing the edges \(a \to v \to b \) in \(H \) by the edge \(a \to b \).

In fact, we will prove that the edge \(a \to b \) must be in T. Suppose otherwise, i.e., suppose that \(b \to a \) is an edge of T.
Let \(a_0 \) be the first vertex preceding \(a \) (in the Hamiltonian circuit \(H \)) for which the edge between \(a_0 \) and \(b \) is directed towards \(b \). Thus if \(a_0 \rightarrow a_1 \) is an edge in \(H \) then the edge between \(a_1 \) and \(b \) must be directed towards \(a_1 \). Also if \(b \rightarrow b_0 \) is an edge of \(H \) then the edge between \(v \) and \(b_0 \) is directed toward \(b_0 \) since \(v \) has maximal outdegree. Therefore the circuit

\[
a_0 \rightarrow b \rightarrow a_1 \rightarrow \ldots \rightarrow a \rightarrow v \rightarrow b_0 \rightarrow \ldots \rightarrow a_0
\]

(where the dots indicate we follow the circuit \(H \)) will be another Hamiltonian circuit in \(T \), different from \(H \). This is not possible, so we conclude that the edge \(b \rightarrow a \) cannot be in \(T \).

Thus, \(S \) has at least one Hamiltonian circuit:

\[C: \ a \rightarrow b \rightarrow b_0 \rightarrow \ldots \rightarrow a \ . \]

Suppose \(S \) has a second Hamiltonian circuit \(C_0 \), different from \(C \).

Let \(a \rightarrow b_1 \) be the edge of \(C_0 \) which is directed away from \(a \) (\(b_1 \) may equal \(b \)).

If, in \(C_0 \), we replace \(a \rightarrow b_1 \) by the edges \(a \rightarrow v \rightarrow b_1 \) then we will have a Hamiltonian circuit in \(T \) which is different from \(H \). This is impossible, so we conclude that we cannot have a second Hamiltonian circuit in \(S \), i.e.,
Thus if \(T \in A_{n+1} \) then \(T \) can be gotten by applying the construction to \(S \in T_n \).

THEOREM 4: \(C = T_{n+1} \).

In words, by applying the construction of section 2 to \(T_n \), we obtain \(T_{n+1} \) and each member of \(T_{n+1} \) is constructed in a uniquely determined fashion.

PROOF: Follows from (1), Lemma 1, and Theorem 3.

5. **Recurrence.**

From the description of the construction we see that

\[
A_{n+1} = C_1(T_n) \cup C_3(T_n)
\]
\[
B_{n+1} = C_2(T_n) \cup C_4(T_n) \cup C_5(T_n)
\]

where the unions are disjoint, and by Theorem 2

\[
A_{n+1} = |A_{n+1}| = |C_1(T_n)| + |C_3(T_n)|
\]
\[
= |A_n| + |B_n|
\]
\[
= A_n + B_n
\]

and
\[B_{n+1} = |\mathcal{B}_{n+1}| = |C_2(T_n)| + |C_4(T_n)| + |C_5(T_n)| \]
\[= |A_n| + |B_n| + |B_n| \]
\[= A_n + 2B_n \]
\[= A_{n+1} + B_n \] (3)

where the least equality follows by applying (2).

THEOREM 5: The sequences \(\{A_n\} \) and \(\{B_n\} \) both satisfy the recurrence

\[x_{n+2} = 3x_{n+1} - x_n, \quad (n \geq 4). \]

PROOF: From (2) and (4),

\[A_{n+2} - A_{n+1} = B_{n+1} \]
\[= A_{n+1} + B_n \]
\[= A_{n+1} + (A_{n+1} - A_n) \]
\[= 2A_{n+1} - A_n \]

so that

\[A_{n+2} = 3A_{n+1} - A_n. \]

Also from (3) and (4)

\[B_{n+2} = A_{n+1} + 2B_{n+1} \]
\[= (B_{n+1} - B_n) + 2B_{n+1} \]
\[= 3B_{n+1} - B_n. \]
THEOREM 6: The sequence \(\{T_n\} \) which counts the number of nonisomorphic tournaments on \(n \) vertices, which have a unique Hamiltonian circuit, satisfies

\[
T_{n+2} = 3T_{n+1} - T_n \quad (n \geq 4).
\]

PROOF: Follows from Theorem 5 since \(T_n = A_n + B_n \) for every \(n \).
Bibliography

For S