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LIMIT THEOREMS FOR SUMS OF ORDER STATISTICS

SANDOR CSORGO*

This is a brief summary of recent results on the asymptotic distribution
of various ordered portions of sums of independent, identically distributed ran-
dom variables that have been obtained by a direct probabilistic approach based
upon some integral representations of such sums in terms of uniform empirical
distribution functions, following a quantile transformation. Almost all the results
‘discussed here have been obtained jointly with Erich Haeusler and David M. Ma-
son. The survey itself forms a guideline for a series of lectures given as a part of
the Sixth International Summer School.

1. Introduction

Let X1,X5,... be independent, real, non-degenerate random variables with the
common distribution function F(z) = Pr{X < r}, r € R, and introduce the inverse or

quantile function @ of F defined as
Q(s) =inf{z: F(z) > s}, 0< s <1, Q(0) = Q(0+).

Our motivating point of departure is the simple fact that if U}, U, ... are independent
random variables on a probability space (£2, F, P) uniformly distributed in (0,1), then
for each n the distributional equality

n n 1
(1.1) Y2y ew)=n [ Q)iGas)
j=1 j=1 -0

holds, where Gn(s) = n=14#{1 < j < n: U; < s} is the uniform empirical distribution

function on (0,1). In fact, if X; , < --- < X, , are the order statistics based on the
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sample X1,...,X, and Uy, < -+ < U,,, denote the order statistics pertaining to

Ui,..., Uy, then we have
(1.2) {X;n:1<j<n,n>1}2 {QUUjn):1<j<n, n>1}

and hence, introducing the natural centering sequence

1-(k+1)/n
(1.3) paim+1l,n—-(k+1))=n / Q(u+)du,
J(m+1)/n
we have, for example,
n—k n—-k
Z Xjn—pn(m+1,n~(k+1)) 2 Z QUjn) — pa(m+1,n—(k+1))
j=m+1 j=m+1
Um-}-l,n 1
= {Q(Um+l,n) +n / (G (S) - ﬂ) dQ(s )1
(14) J(m+1)/n
1—-(k+1)/n
+n / (s — Gna(s))dQ(s)
J(m+1)/n
1—(k+1)/n n—k—1
+{QUut)+n [ (Gate) - 2521 g
* Un—k—l,n ’

for any integers m,k > 0 such that m+1 < n — k.

Relations (1.1) and (1.4) suggest the feasibility of a probabilistic approach to the
problem of the asymptotic distribution of sums of independent, identically distributed
random variables, or more generally, of the corresponding trimmmed sums, to be based on
some properties of Q) and the asymptotic behaviour of G,, rather than on characteristic
functions or other transforms of F. Naturally enough, the analytic conditions that this
method yields are all expressed in terms of the quantile function Q.

On the technical side, we are completely free to choose the underlying space
(2, F,P). This will be the one described in [3,4]. It carries two independent sequences

{Y; D> 1}, j = 1,2, of independent, exponentially distributed random variables
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with mean 1 and a sequence {B,(s), 0 < s < 1;n > 1} of Brownian bridges with the

properties that we describe now. For each n > 2, let

(1 .

v =Y. =L/
’ Y vi=h/2d+1,..n+1,
and for k=1,...,n+ 1, write

k
Si(n) =) _Yj(n).
Jj=1

Then the ratios Ug,n = Si(n)/Sn+1(n), k = 1,...,n, have the same joint distribution
as the order statistics of n independent uniform (0,1) random variables, and for the

corresponding (left-continuous version of the) empirical distribution function
n .
G(s)=n"1Y I(Ujn<s), 0<s <1,
=1
where I(-) is the indicator function, and the empirical quantile function

Ugn ,(k=1)/n<s<k/n; k=1,...,n,
.l,n ,S=O,

Un(s) = {

we have
[n/2(G,(s) — s) — Ba(s)] .

1.5 — O-(n
02 Lo e el = 0y
for any fixed v € [0,1/4) and

_ [n1/2(s — Un(s)) — Bn(s)] .
1.6 —O-(n
( ) ~ 1/n5§?1)-1/n (s(1— s))l/?—u p( )

for any fixed v € [0,1/2) as n — oc. Moreover, the independent standard Poisson

processes

Nit)=)_I(S’ <t), 0<t< o0, j=1,2,
k=1 .



associated with the two independent jump-point sequences S;cj ) = Yl(j Y4+
Yéj ), j = 1,2, will be close enough for the present purposes to the random functions

nGY)(t/n), j = 1,2, respectively as n — oo, where

n
GP(s)=n"1) I(1-Unpt1-jn<s), 0<s<1,
i=1

is the empirical distribution function obtained by "counting down” from 1.

The quantile-transform method based on (1.2) has long been in use in statistical
theory and scattered applications of it can be found also in probability. Here we don’t
aim at giving any bibliography of this method, a good source for its earlier use is the
book [53]. It is the approximation results in (1.5) and (1.6) in combination with Poisson
approximation techniques for extremes that has made this old method especially feasible
for the handling of problems of the asymptotic distribution of various sums of order
statistics. .

The approach touched upon above was first used in [3] and [4] to obtain probabilistic
proofs of the sufficiency parts of the normal and stable convergence criteria, respectively,
for whole sums 2}‘:1 X;. The effect on the asymptotic distribution of trimming off a
fixed number m of the smallest and and a fixed number & of the largest summands. i.e.
the investigation of the lightly trimmed sums T,(m,k) = Z;’;’; +1 Xj.n, was already
considered in {4] under the (quantile equivalent of the) classical stable convergence crite-
rion. This line of research goes back to Darling {19] and Arov and Bobrov (1], with later
contributions by Hall [36], Teugels [55], Maller [43], Mori [49], Egorov [21] and Vino-
gradov and Godovan’'chuk [56]. (Again, we don’t intend to compile full bibliographies
of the problems considered.) The earlier literature is concentrated almost exclusively on
trimmed sums where summands with largest absolute values are discarded. We shall re-
fer to this kind of trimming as modulus or magnitude trimming in the sequel, as opposed
to our natural-order, or simply natural, trimming described above.

The paper [13] has initiated the study of two problems. One was the problem of

the asymptotic distribution of moderately trimmed sums T, (ky, kn), where k, — oc as
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n — oc such that k,/n — 0, the other one was the same problem for the corresponding
extreme sums Tn(0,n—k,) and T,,(n — k,,0). The first problem was looked at under the
restrictive initial assumption that F belonged to the domain of attraction of a normal
or a non-normal stable distribution, while the second one only in the ﬁon-normal stable
domain. Later, the second problem concerning extreme sums was solved in [15] for all
F with regularly varying tails and, extending a result in [14], Lo [40] determined the
asymptotic distribution of extreme sums for all F which are in the domain of attraction
of a Gumbel distribution in the sense of extreme value theory. All these papers use the
probabilistic method.

The method itself has been perfected in the three papers [9,10,11], where a general
pattern of necessity proofs has also been worked out, which together constitute a general
unified theory of the asymptotic distribution of sums of order statistics. The next three
sections are devoted to a very brief sketch of this theory according to [10], [9] and [11],
respectively. Some related matters are faken up even more briefly in Section 5.

In these lectures we shall only deal with problems in probability. The same method
has already been used to tackle some problems in asymptotic statistics. Some of these
applications, where the mathematics is most closely related to things discussed here, can
be found in [5), [8], {17] and [18].

An earlier and much shorter survey of the method is in [16]. In comparison, the

present survey may be looked upon as a progress report covering the last two years.
2. Full and lightly trimmed sums [10]

The aim is to determine all possible limiting distributions of the suitably centered
and normalized sequence
n—k
T‘n(m’ k) = Z ‘Yj.,na
j=m+l
where m > 0 and k > 0 are fixed, along subsequences of {n} under the broadest possible

conditions.



Choose the integers ! and r such that m <l <r<n—-r<n-1<n-Fk, and write

, @
Z Xjn—pn(m+1,141)
=m+1

Tn(mvk) “ﬂn(m+ 1,n- (k + 1)) = {

{ \,n—lln(l+la7'+l)}
+{ Y Y.n—un(r+1,n—(r+1))}

Xjn—ttn(n—=(r+1),n-(I+ 1))}

) n—k
+{ Z J\_,,,,-—,un(n—(l+1),"“(k+1))}
j=n—l41

= ”g)(l» n)+6;(l,r,n)+ ﬁ(rb, n)+
+ &(1,r,n) + P (1, n).

Now if we introduce

e ALQ(% ) , 0< s <n—nany,
(s)= 1
TQ(l_a")+ , M —na, <s<oc,

(2)()_{ A,. (1——) ,0<s< n-nay,,
P +Q(an) , M —Nap < 8§ < 00,

where A, > 0 is some potential normalizing sequence and a, — 0 as n — oc such that

na, — 0 (so that P{a, < Uy n < Upn<1-a,}—1asn— ), and also

Z(J) — {an,n ’ J = 17
qn Tl(l - Un+1_q’n) 3 J = 2,

then, using (1.2) and integration by parts, for

V,f”(l,n): o ln), h=mk; j=1, 2,

n
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we can write
( ) D . ZH-l,n . S .
ViV (l,n) = (-1)y*! / . (s - nGY) (;)) do{P(s)

+1.n .
+ (s = (h+1))dp{(s)
Jr41

+ '51')) (Zh{{zl,n)

141 ‘
+ [ =@+ 0)A)

l+1,n
~o (2t}

If we now assume that there exists a subsequence {n'} of the positive integers such that

for two non-decreasing, right-continuous functions w1 and o we have
(2.1) 995;7;)(3) — @;(s), asn’ — oo, at every éontinuity point s € (0,0¢) of ;. j =1.2,

then it turns out that the right-side of the last distributional limit converges in proba-
bility to a limit as n’ — oc for each fixed I, and these limits converge, if we let | — x,
in probability to

()
s,

V,f”:(—l)j“{/m (s-Nj(s))dw(s)+/ " sdy;(s)

LS 1
_ h+1
+ (1) = hyp; (S,(f:l) + /1 (,'Jj(S)dS¥,
h = m,k; j =1,2. These limits are well-defined random variables because condition
(2.1) implies that

x
(2.2) / @3}(s)ds <oc forany £>0, j=1,2.
Te

Also, it turns out that the terms §;(I,r,n'), j = 1,2, above only play the role of

”sanitary cordons” in the sense that under (2.1), i(l,r,n’) /A, converge to some limits
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in probability as n’ — oo, j = 1,2, and if we let I — oo (forcing r — oo) then both

of these limit sequences converge to zero in probability. This fact shows that these two
strips do not contribute to the limit and they only separate Vi) and VP from a possibly
vanishing normal component of the limit coming from the middle term

M(r,n') = ——m(r,n'),

n'

which component by later appropriate choices of | = [,,; and r = r,» and by an applica-
tion of a result of Rossberg [52] will be independent of the vector (V,ﬁﬁ), Véz)), the two
components of the latter being independent by construction.

Finally, using (1.2) and the representation (1.4) with m = k = r, and (1.5), it can

be shown that for any sequence r,» — oo, r,//n’ — 0, we have

M(rw,n') & F0w Nor(0,1) + 0p(1),

as n’ — oo, where ’
o((ra + 1)/71,) <1

o(1/n’) - . '

and a, = vVn'o(1/n’), where for 0 < s < 1,

0S0n1=

1-s l—s
)= [ [ min) - wd@wiQw)

and where
1—(rp+1)/n’

Nu(o,1)= [ Bu(s1Q(s) [ ol(ras + 1)/

J(rar+1)/n?
is a standard nermal (N(0, 1)) random variable for each n'.
This is the way we arrive at the direct half (i) of the following result which comprises

the essential elements of Theorems 1-5 in [10].
RESULT. (i) Assume (2.1) and that

(23) an'/An: —06< 00,
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where 6 is some non-negative constant. If § = 0, then

n'—k
Ai > ,XJ,,,-pn,m+1n—(l.+1)) v 4 y®
" \i=m+1

as n' — oo, where, necessarily, pij(s) = 0if s > 1j = 1,2. If 6 > 0, then for any

subsequence {n"} of {n'} for which op,n — o as n” — oo, where 0 < o < 1, we have

n'' -k
Al D Xjmn = pan(m+1,0" = (k+1)) § 25 VD 4 66N(0,1) + VI
nt j=m+l

as n” — oo, where the three terms in the limit are independent. In both cases V{V is
non-degenerate if ; # 0 and Vk(z) is non-degenerate if o, % 0.
(ii) If there exist two sequences of constants A, > 0 and C,, and a sequence {n'} of

positive integers such that

n' -k
1 Z -
(2'4) A , ‘\j,n' - Cn'
n j=m+1

converges in distribution to a non-degenerate limit, then there exist a subsequence {n"}
of {n'} and non-decreasing, non-positive, right-continuous functions ¢, and ¢, defined
on (0, 00) satisfying (2.2) and a constant 0 < § < oc such that (2.1) and (2.3) hold true
for Ann along {n"}. The limiting random variable of the sequence in (2.4) is necessarily

of the form V) + 6 ’(0,1) + ngz) + d with independent terms, where

(25) d= hm dpm = lim {,_an(rn +1, n' —(k + 1)) - Cnm}/anm

nit— n—

for some subsequence {n""} of {n"}. If § > 0 then either ¢ > 0 or at least one of (», and
2 is not identically zero. If § = 0 then p; = 0 on [1,00), j = 1,2, but at least one of

them is not identically zero.

In the proof of the converse half (ii), the case when

(2.6) lim sup—lgo(J)(s)I <o, 0<s<oo; j=1,2,

n'—ao



is trivial, for then by Helly-Bray selection and the convergence of types theorem there
exist a subsequence {n"’} such that (2.1), (2.3) and (2.4) all hold along it and § > 0 in
(2.3), and we can apply the direct half with ¢ > 0.

When, contrary to (2.6), there exists {n”} C {n’} such that

(2.7) lim —

for some s > 0, for which one can show that necessarily s < 1, then the sequence in (2.4)

is equal in distribution to
(2.8) {R‘” + W + R(z)} +d

where RY), W, and R result from dividing by a,+ the three terms on the right- side
of (1.4), respectively. Then again Rossberg’s [52] result implies that the two sequences
IR,(,,I)I and |R£,2)l are asymptotically independent, and we can show that

lim liminf P{|RP|< M} >0, j=1,2,

M—oc n—
which is somewhat less than the stochastic boundedness of the sequences of R, J=
1,2. However, it can be shown that these two facts and the stochastic boundedness of
the sequence in (2.8) (which holds since by assymption it has a limiting distribution)
already imply that both sequences | '
fo;) = H,,:IRSIJ;)I = an:IRglj,)V max(an, Anr),

(2.9)
J = 1,2, are stochastically bounded.

However, on the event {U,,41,,» < s/n”} with positiv limiting probability of P{Sm41 <
s}, where s is as in (2.7), we have

n" (1)(3)

nll

Df‘l,,) >|Q ( ) |/ max(an,n, Apn) = Hun
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because the integral term in RS’ is non-positive for large enough n and Q(s/n") is non-
positive for large enough n” (otherwise (2.7) could not happen). This fact, (2.7) and

(2.9) imply that a,n/A4,» — 0 as n” — oo and that

lim sup|<,9£ll,,)(s)| <, 0<s<oc.

n’—oo

By repeating this proof if necessary one can choose a further subsubsequence {n"'} C

n"} to arrive at
{

lim sup Igoflz,?,(s)l <, 0<s< oo,

n" — oo
and hence by a final application of a Helly-Bray selection we are done again.
Noting that the integral term in R{? is non-negative for large enough n, the subcase

when (2.6) fails for j = 2 is entirelly analogous.

The special case m = k = 0 of the result above gives an equivalent version of the
classical theory of the asymptotic distribution of independent, identically distributed
random variables (see, e.g. [25]) with a condition formulated in terms of the quantile
function. In this case, the limiting random variable in the direct half (i) is in general

Voo = Vo(l) +pN(0,1) + Vo(z), where p = 60'2 0 and

Sg‘i)
sdyj(s) + 991(1)1

Vg? = (=1)*! {./S:(s — Nj(s))dso;(s) + /1
= (-1yH {/loo(s — Nj(s))dpj(s) — '/01 Nj(s)dpj(s) + %’(1)} ;

for j = 1,2. This is an infinitely divisible random variable with characteristic function

EeitVe.0 — exp (it’y _ lpf_)t:_) n /0 (eitz —-1- itx )dL(:r)
2 J_x 1+ 22

A i g itz )dR \
+./o (e b= 1y ) 4R

11
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t € R, where v = v, + 72 with

J = ©;(s) > gis) L
(- 1)J+1{/ 1+J‘p1(s /1 -1+_J%2(—85c14,1—1,2,

and L(z) = inf{s > 0: p;(s) > 2}, —00 < 2 <0, and R(z) = inf{s < 0 : —p2(—5) >
z}, 0 < £ < 00, and any infinitely divisible random variable can be represented as 15 o
plus a constant (Theorem 3 in [10]) by reversing the definitions of the inverse functions
if a pair (L, R) of left and right Lévy measures is given. (See Section 5.3 below.) So the
result above shows rather directly how these measures arise, while the sketched proof
indicates which portions of the whole sum contribute these extreme parts of the limiting
infinitely divisible law.

The direct and converse halfs of the result above are used in [10] to derive necessary
and sufficient conditions for full or lightly trimmed sums to be in the domain of attraction
of a normal law (the normal convergence criterion) or to be in the domain of partial
attraction of a normal law, for full sums to be in the domain of attraction of a non-normal
stable law (the stable convergence criterion; stable laws of exponent 0 < a < 2 arise with
the functions p;(s) = —cjs‘l/", 0<s<oc, j=1,2, where ¢;,c2 2> 0 are constants
such that ¢; +¢2 > 0) or to be in the domain of partial attraction of a non-normal stable
law. The domains of normal attraction of these laws are also characterized. Analogous
characterization results are derived for the domain of partial attraction of some infinitely
divisible law or its lightly trimmed version V7, . =  fA pN(0,1)+ V,fz), and necessary
and sufficient conditions are derived for the stochastic compactness and subsequential
compactness of lightly trimmed or full sums, together with a Pruitt-type [50] quantile
description of the arising subsequential limiting laws in the compact case. AHN these
results are deduced from (i) and (ii) above, independently of the existing literature. all
the obtained necessary and sufficient conditions are expressed in terms of the quantile
function and hence are of independent interest, and most of the results are effectively

new as far as light trimming is concerned.
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3. Moderately and heavily trimmed sums [9]

We call the sum A

Tn = Tn(7nn’kn) = Z Xj,n

j=ma+1

moderately trimmed if the integers m,, and k, are such that, as n — ob,
(3.1) my, — 00, kn — 00, m,/n— 0, k,/n — 0.

Now, fixing these two sequences {m,} and {k,}, with

1-kp/n
pn = tn(masn=ka)=n [ QUo)ds

S, [n

the equality (1.4) simplifies to |

Z].:{Tn — pn} 2 Ain./umm (G,,(_s) - %) dQ(s)

m,/n

1=k, /n
1 / (s = Gn(5))dQ(s)
‘ (32) An . m.,./n

+ = /H"/n (Gn(s> - 1Z "") dQ(s)

‘471 - Un—kn.n n
= Rl,n +Y,+ Rf.’.n’

where A, > 0 is some potential norming sequence, and Ry , <0, Ry, > 0.

First, using (1.5) it turns out that
e an
Yo, = A—n(Z,, + 0,(1)),

where now a, is defined to be a, = /no(m,/n,1—k,/n), where for 0 < s <t < 1.

t pt
(3.3) o?(s,t) = / / (min(u, v) — ur)dQ(u)dQ(v),
and where
1 1-kn/n .
Zn = _a(mn/n,l — k,/n) _/m"/n B"’.(s) Qs)
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is a standard normal variable for each n.

Concerning R ,, it is easy to see from (1.6) that
n mp -v
—5 (Umm,, - —-) + Zy o = 0,(m>")
mp

for any 0 < v < 1/4, where Z; , = (n/m,)'/2B,(m,/n). Using this in conjunction with
(1.5), it can be shown that R; , behaves asymptotically as

1/2

(ma—-ml 27, a)/n
n 1/2 my
I / {Bate) +01 (s - Z2) }aq)
(mn m}l/"\ 2 (m,, l (mn m}l/2\
"Zl.n 1/2 1/0
ST
Jo my, n n

which in turn behaves asymptotically as

nl/2 [~Z1.a

—Zl,n - 0
[ @t nad@= [ @@,
Jo . J-z,.
provided the sequence of functions
N (—'—"-éfi) ,—oo <z < -1,
V@) = 2 {Q (2 +2m0) - Q(2)} L lel <
n
(1) my/? my/?
(=) oo

is at least bounded. Similarly, it can be shown that Rs, behaves asymptotically as

0 ~2,,
[ (@atoa@@= [ v,
J=2Z2.n 1o
where Z; , = (n/k,)/2B,(1 — k,/n) and
v (- k”’) ,—o0 <z < Ay,

.1/ L1/ . 1/2
W@ = {o(1-b+etl) —Qu- )} el B

® (1) B acn
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For each n, (Z1,n,2Zn,2Z5,) is a trivariate normal vector with covariance matrix

I
Ti,n 1 T2.n
. \1/2 )
(mnzk ) / 7'2’" 1— I\_ﬂzL
where
(1M = (Mn - n g_FnY
(l - ) <Tin ( - ) -/m,./n (1 - s)dQ(s) 2 ,1 — < 0
and

k 1/2 (k )1/2 1—kp/n / (m k )
- - _ |l . n ~-n) <.
(1-5)" <r., =) [ sdqus) [0 (Zn1-En) <o

JYmg,[n

If we brake up Z, as

1 1/2
S ey oy ey /m 1 B (8)Q(8)
1-kp/n

=
o(mp/n,1—ky/n) . 1/2
= I'Vl,n + I/V2,n,

7 kn
W =ota=et (23) /o (G- ).

1 kn my kn
EWE, = ofn =02 (31— 22) /7 (Bea-22),

where 0, + 03, =1 for each n, and it can be shown that if EX2 = oo then the three

covariances Cov(Zy,n, Wa 5), Cov(W; ,,Ws ,) and Cov(Za.n, W} ,) all converge to zero

B, (s)dQ(s)

then

as n — oo.
This is the way we arrive at the direct half (i) of the following main result of [9],

where this result is formulated somewhat differently. The proof of the converse half (ii)
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goes along the same line as that of the proof of the converse half in the preceding section,

the last step being technically different but the same in spirit.

RESULT. (i) Assume that there exists a subsequence {n'} of the positive integers

such that for two non-decreasing, left-continuous functions vy and v, satisfying ¢*j(0) <
0, ¥;(0+) 20, j =1,2 we have

(3.4) z,bi;’,)(:r) — y;(x), at every continuity point x € R of ¢;, j =1,2,
and that

(35) an:/An; — 6 < 00,

where a, = n'/26(m,/n,1 — k,/n) and § is some non-negative constant. If § = 0, then

necessarily 1 (z) = ¢2(—z) = 0 for all z > 0, and, with p, = pp(m,,n — k,) given

above
1 ‘n'—k"r

=3 2 Vie —hw g V41,
nl

where
0

Vi = Vi(¢;) = (-1)'*! /Z yi(z)dr, j=1,2,

where Z, and Z, are independent standard normal random variables. If § > 0, then for
any subsequence {n"} of {n'} for which r; ,n — rj, j = 1,2, where =1 < ry,r2 < 0. we

necessarily have 1, (r) < —ry and yo(x) > 7o for all x € R, and

n''=k,n
1 - D 1 r
I E Xjnn — pnr p — V1 +6Z + 1%,
nt .
j=m_n+1

where, with Z, and Z, figuring in V} and Vs, (Z,Z, Z,) is s trivariate normal random

vector with zero mean and covariance matrix

1 r 0
rn 1 r
0 Ta 1
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Moreover, if Var(X) = oo and, if necessary, {n"'} is a further subsequence of {n"} such

that for some positive constants o, and o3 with o} +0% = 1. 0 m — oj, j=1,2, then

e
n "kulll

Z JYj’nNI — Upn 2—-) Vl 4+ 6(”'1 + 'n/’z) + "/’2’

J+m m+1

1
AnHI

where (Z1,W,, W5, Z) is a quadrivariate normal vector with mean zero and covariance

matrix
1 ™ 0 0
rn o 0 0
0 O g g T2
0 0 Tro 1

(ii) If there exist two sequences of constants A, > 0 and C,, and a sequence {n'} of

positive integers such that

' »
n —k"l

1 i
(3.6) " Y Xjw —Cu

Jj=m i +1

converges in distribution to a non-degenerate limit, then there exist a subsequence {n" }
of {n'} and non-decreasing, left-continuous functions 1", and Lo satisfying ¢';(0) < 0 and
¥j(0+) 20, j =1,2, and a constant 0 < § < oc such that (3.4) and (3.5) hold true for
Apn along {n"}, where at least one of y"; and (', is not identically zero if § = 0, in which
case ¥1(z) = yo(—z) = 0 for all z > 0. The limiting random variable of the sequence
in (3.6) is necessarily of the form Vy + 6Z + V3 + d, with V7. Z and V3 described above,
where
d= Lm (ppm — Cpm)[Agm

n'—oc

for some subsequence {n"" }c {n"}.

This result implies as a corollary (by showing that the possible limits can only be
normal if ¥; = 0 = 4/3) that the sequence in (3.6) converges in distribution to a standard

normal random variable if and only if 4,9511;)(1:) —0,asn’ — x,foralz € R, j=1,2
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In this case A, can be chosen to be a,; and C, to be yi,,». Here {n'} is arbitrary and
can of course be {n}.

For a discussion of the conditions (3.4) and (3.5) we refer to the original paper [9]
and [31]. Subsequent to [9], Griffin and Pruitt [27] used the more classical éharacteristic
function methodology to prove mathematically equivalent versions of the above results
and showed that all possible subsequential limits indeed arise. In another paper, [26],
they deal with the analogous problem of moderately trimmed sums when k,(k, —
00, kn/n — 0) of the summands largest in absolute value are discarded at each step
(see also [51]), assuming that the underlying distribution is symmetric about zero. (As
a demonstration of the present approach, a part of their results is rederived in [12].) A
comparison of the two sets of results shows that (perhaps contrary to intuition) even
if we assume symmetry and m; = k, above, the two trimming problems are wholly
different. For further results on various interesting versions of moderate trimming see
Kuelbs and Ledoux [38], Hahn, Kuelbs and Samur [33], Hahn and Kuelbs [32], Hahn,
Kuelbs and Weiner [34,35] and Maller [44].

Finally, we turn to heavy trimming assuming instead of (3.1) that
(3.7 m, =[na}] and k,=n-[3n],0<a<fB<L1l

This is the case of the classical trimmed sum. for which Stigler [34] completely solved
the problem of asymptotic distribution. Suppose that o(a,3) > 0, where o(:,-) is as
in (3.3). The proof sketched above produces the following version of Stigler's theorem
(Theorem 5 in [9]), where a,, and y, are defined in terms of the present m, and k,: For

any underlying distribution,

[n4]
1

=1 > Xin—Hn 2o Vi(¥) + Z + Va(¥),
"\ j=lna)+1

as n — 00, where
0 , <0,

i) = { 7Z5(Q(a+) - Q(a)) ,z>0,

18




and

| {0 , ©<0,
SO fFeen-ae L oo

so that
Vi) = X%5(Q(a+) - Q(a)min(0,21)
and
vi=3
(o) = - (0. —
Va(y2) = Yo (QUB+) - Q(B) max(0, - Zo),
where (21, Z, Z;) is a trivariate normal random vector with mean zero and covariance
matrix
-« r1 (a(l - B))1/2
Ty 1 T2 ’
(a1 =B))H? B
where

B ‘ B
rn =-va / (1-5)dQ(s) and ro = —/1 -7 / sdQ(s).

This version puts Stigler’s theorem (giving asymptotic normality if and only if Q is
continuous both at o and 3) into a broader picture. Substituting o and 3 for m, /n and

1~ k,/n in the arguments of ¥V

and z,/»slz), the proof also works for more general m,
and k, sequences, provided \/n(m,/n —a) — 0 and /n(1 — k,/n — 3) — 0 as n — oc.

For rates of convergence in Stigler's theorem in the case when the limit is normal,
see Egorov and Nevzorov [22], who in [23] also investigate the related problem in the

case of magnitude trimming.

4. Extreme sums [11]

Here we are interested in the sums of extreme values

kn n
E, = En(kn) = ZXn+1-;j,n = Z XJ',"-,
Jj=1 j=n—-k,+1
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where k, — oo and either k,/n — 0 as n — oc, or k, = [na] with 0 < o < 1. (We shall
refer to the first case when k,/n — 0 as the case a = 0.) It is more convenient to work ‘
with the function

H(s)=-Q((1-5s)-), 0<s <1,

instead of @ itself, for which we have
(Xtmye s Xnn) 2 (~HUn )., —H(Uy.))

instead of (1.2). The natural centering sequence now turns out to be

kn/n

H(s)ds—H(l) ,

n

Pn = pa(kn) = —n /

J1/n

and with a potential normalizing sequence A, > 0 the role of (1.4) or (3.2) is taken over

by the decomposition

.AL{En - lln} 2 A(nl)(mn) + A(,f)(m,,,ln) + A(n3)(l,,, kn),

where 1 <m, <, <k,, A, >0, and

Asll)(mn)= /m,. (nGn (E)—u) dH(u/n)—H(l/n)

" nUl,n n An

1 -
n (u— 1)dH(u/n)A— H(/n) H(nUl,n/:;) H(l/n)’

° nUl,n n - n

ln B
AP (m,,1,) = / (nG,, (%) _u) dH(ll/n)4 H(l/n),
and |
k"/n Uk,,,n
As-?)(ln, I\’n) = / n(Gn(U) - u)d-‘Hﬂ + / n(Gn(U) _ U)dH-:U)-
Sl /n Ay Skafn An

The numbers m,, and I, (not necessarily integers) will be appropriately chosen such that

1) .
my, — 00, ln/m, — oo and k,/l, — o0 as n — oo, and we see that the term AD is
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very similar to Vb(l)(l, n) in Section 2, while the term A% presents a ”trimmed-sum
problem” considered in Section 4 with only one R,-like term. Therefore, we need both

©n and ', type functions, which are presently defined as

99(8)={1{H() %} , 0 < s <n—nay,
" S {HQl-ax)-H(L)} n-na,<s<oo,

where o, is as in Section 2, and

N k]/2 k1/2
@’n(—"z ,—OO<.’L'<'-"""2'—,
_ kl/2 k k1/2 ke . kll?
Yalr) = 42 {H (2 +o0) - m (4)} )< 82,
1/2 L1/2
d’n(%) , i < 2 < o

Again, the middle term A turns out to be a "sanitary cordon” converging to zero in

probability, and redefining
t gt
o?(s,t) = / / (min(u,v) — uv)dH(u)dH(v), 0< s <t<1,
and

ap = { nl/2g(1/n, kn/n) ,if 6(1/n,kp/n) >0

n! , otherwise,

and introducing

'n /0 /2
n l_kn/n /l\n/ ( kn)l
0<rn (kn) o(la/n,kn/n) Iy, 0 sdH(s) < n

and

Nity=> ISV <1). 0< t < ox,
k=1 .

the right-continuous version of the Poisson process N;(-) in Sections 1 and 2, the proof
of the following main result (Theorems 1 and 2 in [11]) is obtained by an involved

combination of the techniques of [9] and [10]. i.e., those of the preceding two sections.
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RESULT. (i) Assume that there exist a subsequence {n'} of the positive integers, a
left-continuous, non-decreasing function ¢ defined on (0, 00) with (1) < 0 and p(1+) >
0, a left- continuous, non-decreasing function ¢ defined on (—oc, 0c) with v'(0) <0 and

¥(04+) > 0, and a constant 0 < § < oc such that, as n’ — oc,

(4.1) ©n'(8) = @(s) at every continuity point s € (0,00) of ¢,
(4.2) VY (z) — Y(z) at every continuity point r € R of 9,
(4.3) ant[Anr — 6.

Then, necessarily, ¢(s) < é for all s € (0, ),
(4.4) / (o(s) — p())%ds < oo for all &> 0,

and there exist a subsequence {n”} C {n'} and a sequence of positive num-
bers l,n satisfying l,n» — oo and lpnf/k,n — 0, as n” — oo, such that either
o(ln/n", k,n/n") > 0 for all n”, in which case for some 0 < b < & and 0 <r<
(=) 2, Vn"o(lan /0" kyn [0") [ Apn — b, Pn — 1, 0r oL /0", kn[n") =0 for all

n

n , in which case we put b=r =0, and

knn
1 Z" - LRI
A { ‘Xn"+1—j.n” - I—ln”} — ¥ (‘197 y, b7 r, a)
nt ;

=1

asn" — oo, where a is zero or positive according to the two cases, 1 necessarily satisfies
(4.5) Y(z) 2 -ér/(1 -a), -0 <z < o0,
and

Ve, ,b,r0) = / (N(t) - t)do(t) + / t)dp(t) + b2, + / y(zr)dz.

Z(r,a)
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where Z(r,a) = —rZ+(1—a—12)/2Z,, where Z, and Z, are standard normal random
variables such that Zy,Z; and N(-) are independent. Moreover, if ¢ = 0 then b = §,
while if 6 = 0 then ¢(s) =0 for all s > 1.

(ii) If there exist a subsequence {n'} of the positive integers and two sequences

An > 0 and Cp along it such that

k

1 N
(4.6) i {an,ﬂ_m, - cn,}

J=1

converges in distribution to a non-degenerate limit, then there exists a subsequence
{n"} C {n'} such that conditions (4.1), (4.2) and (4.3) hold along the sequence {n"}
for Apn in (4.6) and for appropriate functions ¢ and y with the properties listed above
(4.1) and for some constant 0 < § < oo, with ¢ satisfying (4.4) and ¢ satisfying (4.5)
with an r € (0,(1 — a)!/2) arising along a possible further subsequence. The limiting
random variable of the sequence in (4.6) is necessarily of the form V(p,¢¥,b,r,0)+d for
appropriate constants 0 < b< 6, 0 < r < (1 - a)'/? and
d=_lm (sum = o)/ Aun,

n'—

for some subsequence {n"'} C {n"}. Moreover, either ¢ 0 or ¢y Z 0 or b > 0.

Just as in the case of full sums in Section 2, it is possible to see the effect on the
limiting distribution of deleting a finite number & > 0 of the largest summands from the

extreme sums E,(k,). Replacing E,(k,) by Z""‘_kd_l Xjnytn by

in(k) = —n [k"/n H(u)du - H (“ 1) ,

J(k+1)/n n

and the first two integrals in V(p, 9, b,r,a) by

oo ng, . k+1
Lo @)= 1100 = [ tdott) + (st - [ et
k+l -
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the result above remains true word for word.

The result can be formulated for the sum of lower extremes 3°7" X, where
m, — oo and m,/n — 0 or m, = [n3] with 0 < 3 < 1. The limiting random variable
is of the form —V(p, ¢, b, r, 3) with appropriate ingredients. In fact, if at least one of o
and 3 is zero then the two convergence statements hold jointly with the limiting random
variables being independent.

One corollary of the result above is that the sequence in (4.6) converges in distribu-
tion to a non-degenerate normal variable if and only if (4.1) and (4.2) are satisfied with
A =apn, o =0 and ¢ =0, in which case, choosing A,' = a,» and Cp/ = py in (4.6)
the limit is standard normal.

Another exhaustive corollary is the convergence in distribution of (E, — pn)/an,
along the whole sequence {n}, when the underlying distribution is in the domain of one
of the three possible limiting extremal distributions in the sense of extreme value theory.
The details are contained in Corollary 2 in [11]. being a cominon generalization of results

from [13], [15] and [40] mentioned in the introduction.
5. Related results

Here we mention some closely related developments obtained by the same proba-
bilistic approach. References are given only if they are directly relevant to this approach,

further references can be found in the cited papers.

5.1 A generalization: L-statistics. Mason and Shorack [46,47,48] consider linear

combinations of order statistics of the form

n—ky n—kn
D
Z CinXjn = Z cinQUj,n),
J=ma+1 j=mp+1
or more generally
n—kn
T::= Z cjrzg(trfj,n)s

J=ma+l
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where g is some function and

iln

Cin =1 / J(t)dt, 1< j<n,
J(i=1)/n

with some function J regularly varying at 0 and 1. In the moderate trimming case they

use a reduction principle showing that the asymptotic distribution problem for T?* is the

same as that for
n—ky

Ta= Y. K(Uja),

j=ma+1
where K, as a measure, is defined by d K’ = Jdg. Thus, under certain conditions on g
and J, in [48] they obtain results parallel to those in [9] sketched in Section 3 above.
Even for fixed (light) trimming (or no trimming), in [46,47] they still obtain a theory
paralle] to that in [10], sketched in Section 2 above.

5.2. Extreme and self-normalized sums in the domain of attraction of a
stable law. The paper [6] gives a unified theory of such sums based on the preliminary
results in [4]. (A somewhat incomplete such theory was given earlier by LePage, Wor-
droofe and Zinn [39].) The idea is that properly centered whole sums > i1 Q(U;) and
the individual extrems QUin)s s QUm )y QUn—pony ..., QU ) converge jointly
with the same normalizing factor. This is trivial in our approach, where convergence is
in fact in probability. Paralleling a result of Hall [36], an approximation of an arbitrary
stable law by suitably centered sums being the asymptotic representations of the sum
of a finite number of extremes is given. (For a generalization, see the next subsection.)
The self-normalized sums are those considered by Logan, Mallows, Rice and Shepp [41]:
La(p) = (=1 Xi)/(X2}=; |X;j|P)}/P. The emphasis in [6] concerning this is the investi-
gation of the properties of the limiting distribution using a representation arising out of
our approach. The extremes have a definite role in these properties. In [16], we used our
quantile approach to prove half of a conjec;ture in [41] stating that if F' is in the domain

of attraction of a normal law and EX = 0, then L,(2) 2, N(0,1). This was proved
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earlier by Maller [42]. The converse half of the conjecture is still open. For further

results see [35].

5.3. An "extreme-sum” approximation of infinitely divisible laws without
a normal component. Given an infinitely divisible distribution by its characteristic
function of the form of the right-side of (2.10) with 7 replaced by a general constant

0, where L and R are left- and right-continuous Lévy measures, respectively, so that

L(—00) =0 = R(o©) and
0 €
/ z2dL(z) + / 2’dR(z) < 0o for any ¢ >0,
J—e Jo

we see that forming ¢;(s) = inf{z < 0: L(z) > s}, 0 < s < 00 and g2(s) = inf{r < 0:
—R(-z) > s}, 0 < s < o0, so that (2.2) is satisfied, the random variable 150 + 6 — v
has the given infinitely divisible distribution. From now on suppose that p = 0, and
let Fo(-) = Fo(p1,¢2,0;-) be the distribution function of Voo + 6 — 7. The approach

sketched in Section 2 implies that under the said conditions

m

:41_ S Xi—pa@Ln=1 1,3 Xjnt+ Y. Xin
n j=1

ij=1 j=n—k+1

converges in distribution along some subsequence to

m k
Voo, ) ¢1(S50) - > 2(S5)
i=1 i=1

So the second component here represents the asymptotic contribution of the extrems in
the limiting infinitely divisible law of the full sum. Hence it is conceivable that a suitably
centered form of this second component can approximate now Vg ¢ if m,k — oc.

Let L,, x be the Lévy distance between Fy and the distribution function of

m k m k
S ents) = S ets?) - [ [ utrts - [atons) 40
j=1 : : ‘

i=1
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Then it is shown in [7] that L., — 0 as m, k — oo, and, depending on how fast 1(8)
and ©2(s) converge up to zero as s — oo, rates of this conv ergence are also provided
which rates are sometimes amazingly fast. In the special case of a stable distribution
with exponent 0 < o < 2, given by 9i(s) = —cjs7H* 5>0, ¢1,¢0 > 0, ¢c; +¢ >0,

when L, i can be replaced by the supremum distance K0, 1, we obtain
Knr=o0 (max (clm‘e(ﬁ'%),qk'f(&'%))) asm,k — oo,
where 0 < € < 1 is as close to 1 as we wish.

5.4. Almost sure behaviour: stability and the law of the iterated loga-
rithm. Since this topic is so broad that it could be reviewed only in a separate survey,
here we restrict ourselves to mention that Haeusler and Mason [29,30,31], Einmahl,
Haeusler and Mason [24] and Haeusler [28] use the quantile transform - empirical pro-
cess method to investigate the almost sure behaviour of sums considered in [13] and [15],
and when the underlying distribution has a slowly varying tail. Here the basic approach
should be combined with techniques which go back to Kiefer [37] and Cséki [2] and some
further strong developments such as Deheuvels [20]. The same method is used to prove

a universal liminf law by Mason [45].
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