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Seokhoon Yun, Extremes and Threshold Exceedances in Higher Order
Markov Chains with Applications to Ground-Level Ozone (Under the di-
rection of Richard L. Smith)

Abstract

Higher order Markov chains are useful tools for modeling local dependence in
time series. In this dissertation, we first deal with extremal behavior of a higher
order (k-th order, k > 1) stationary Markov chain {X,}. Assuming that the joint
distribution of k¥ + 1 consecutive variables belongs to the domain of attraction of
some multivariate extreme value distribution, the limiting distributions of rescaled
stationary transition kernels are characterized. A converse problem, that is, the
possibility of multivariate domain of attraction under the assumption of convergences
of the rescaled stationary transition densities is also considered. As a by-product,
some parametric models for multivariate extreme value distributions are obtained.
The extremal index is known as a key parameter characterizing extremal behavior
of a stationary sequence. Using the limiting transition densities, we define a new
(k — 1)st order Markov chain from which a representation for the extremal index 6f
{X.} is obtained. The representation is then well suited for simulation to calculate
the extremal index. A number of examples with simulation results are presented.

Secondly, the well-known threshold method is extended to consider the joint
distribution of all exceedances over a high threshold. The methodology is based on
both the Markov chain mechanism and the multivariate domain of attraction. As a
result, for a given time series {X;}, the tails of {X;} are modeled by a k-th order
Markov chain. The techniques are then applied to statistical analysis of ground-level
ozone collected in Chicago area for 11 years. In the ozone study, a particular attention
is also given to modeling the short-term annual trend and detecting the long-term

trend.
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

Extreme value theory is perhaps one of the major areas of statistical research recently.
There is too much literature on this subject to review at once. In particular, the
probabilistic side has been well developed, whereas the statistical aspect has received
relatively little attention. Therefore, we would like to concentrate on only those things
which lead to the proposed problems directly, with emphasis on the statistical. Briefly,
the purpose of extreme value theory is to explain the asymptotic random behavior
of the maximum (or minimum) values of a series of observations. There are several
areas where extreme value theory plays an important role such as environmental
problems (air pollution, floods, droughts, etc.), climatology (wind speed, temperature,
precipitation, etc.), hydrology (sea levels, river flow, etc.), reliability, large claims in
insurance, statistics itself (outliers, change point problems, etc.), and so on.
Classical extreme value theory deals with i.i.d. (independent, identically dis-
tributed) observations. Let {X,} be a sequence of i.i.d. random variables with
distribution function F', and suppose that there exist some normalizing constants
an, > 0,b, € R such that
P{ai(Mn—bn) Sx} = F"(apz +b,) = G(z) as n — o0 (1.1)
for some nondegenerate distribution function G, where M, = max{Xy,...,X,} and

~ denotes weak convergence. When this is the case, we say that F belongs to the



domain of attraction of the extreme value distribution G and we write F € D(G).
Moreover, it is well known that G must be of the same type (i.e. G can be obtained
after a linear transformation with positive slope) as one of those three extreme value

distributions:

Type I (Gumbel type) : A(z) = exp(—e~*), z € R;
Type II (Fréchet type) ®,(z) = exp(—z7%), >0 (e > 0); (1.2)
Type III (Weibull type) : ¥,(z) = exp{—(—2)*}, £ <0 (e > 0).

Since these are all absolutely continuous, the convergence of (1.1) is, in fact, every-
where convergence. For statistical purposes, these three types can be combined to

give a single family of three parameters o > 0, i,& € R by defining

G(z;4,0,) = exp Hl  fi)

which is called the generalized extreme value distribution with shape parameter ¢,

-1/¢
] LTER, (1.3)

+

where ¢, = max{z,0}. The case £ = 0 is interpreted as the limit { — 0, which
corresponds to Type I. Types II and III correspond respectively to £ > 0 (£ = a™1)
and £ <0 (¢ = —a™1).

Several questions may arise when extremal data are dealt with: how to fit a.
model?; how to estimate the parameters?; how to perform statistical testing prob-
lems?; how to estimate percentiles such as 100-year return levels? There has been
a growing development of methods answering these questions during the last few
decades. Among these, the standard ones are perhaps the method of maximum like-
lihood and the method of moments (e.g. see Hosking [13] and Hosking, Wallis and
Wood [15]). Smith [48] gave a comprehensive account of this subject. The maxi-
mum likelihood estimators have classical asymptotic properties such as consistency,
asymptotic efficiency and asymptotic normality, provided £ > —0.5. When £ < —0.5,
several other methods are known (see Smith [44]). In spite of these nice properties, it
is also true that these methods are wasteful of data, by considering only the extremal
data regardless of the remaining nonextremal data. One alternative to compensate
for this is a method based on the asymptotic joint distribution of a fixed number of
extreme order statistics instead of a single extreme value per base interval (or period)
of fixed size (e.g. see Weissman [61] and Smith [45]). But the underlying basic idea

of this method is again to adopt the method of maximum likelihood.



Another entirely different approach to this is based on exceedances over a high
threshold, which is so-called the threshold method (e.g. see Pickands [36] and Davison
and Smith [8]). Much current statistical methodology follows this idea. The context
is to adopt the generalized Pareto distribution as the model of exceedances over a
high threshold, which is due to Pickands [36]. Specifically, the assumption F € D(G)
implies that the exceedances over a high threshold are approximately independent
and that every excess X; — u, if it is known that X; exceeds a high threshold wu,
approximately follows the generalized Pareto distribution. This is more thoroughly
surveyed in Section 1.2.

So far, t.i.d. observations have been dealt with. However, it is a general phe-
nomenon that real time series data may include serial dependence together with
seasonality. For the treatment of seasonality, Smith [47] and Davison and Smith [§]
recommended a technique in which the base period is broken up into independent
seasons, with a separate generalized Pareto distribution fitted to each season. For
more complicated cases, more ad hoc methods may be required.

The treatment of serial dependence has been influenced by the modern prob-
abilistic theory of extremes, which concentrates mainly on dependent sequences of
random variables, continuous time stochastic processes and multivariate extremes.
In particular, Leadbetter, Lindgren and Rootzén [26] gave an abundant account of
extreme value theory for (strictly) stationary processes in both discrete and continu-
ous time at a rigorous mathematical level. As they developed extreme value theory for
stationary sequences of random variables, they used several mixing conditions which
restrict dependence at long ranges for the processes. The mixing conditions together
with additional regularity conditions ensure that high-level exceedances form asymp-
totically independent clusters. In fact, this comes from the result that the exceedance
point process converges in distribution to a compound (or clustered) Poisson process
under the above conditions as the number of observations tends to infinity (e.g. see
Hsing [16] and Hsing, Hiisler and Leadbetter [18)).

Related to this, another important result is that typically

P(M, <u,) ~ F®(u,) (1.4)

for all sufficiently large n, where {X,} is a stationary sequence of random variables
with marginal distribution function F, u, any high threshold such that n(1 — F(u,))

converges to a positive number as n — oo, and § a fixed number in [0,1]. Obviously,

3



if Xi, ..., X, are independent, then § = 1 (not vice versa); if X3, ..., X, are very highly
dependent, then 6 = 0 (not vice versa). Therefore, the quantity 8 is a kind of measure
of dependence for the stationary sequence, and is called the extremal index of {X,}.
This concept was developed by several people including Newell [31], Loynes [28],
O’Brien [33] and Leadbetter [23]. The precise definition of 6 is given in Section 1.3.
Also, it turns out that #~! is approximately the mean cluster size.

From (1.1) and (1.4) with u, = a,z + by, it can be easily seen that
P(M, <a,z+b,) 5 G%z)asn— oo (1.5)

for the stationary sequence {X,} satisfying a suitable mixing condition. Since G
is also an extreme value distribution, unless § = 0, and since there is already an
extensive literature on estimating extreme value distributions from i.i.d. data, 6 is the
key parameter when estimating extreme value distributions for stationary sequences.
For example, if § were determined, the method of maximum likelihood could be
applied to GY or the threshold method could be applied to cluster maxima instead of
all exceedances over a high threshold. From the point of view of statistical estimation,
there have been a number of attempts to find good estimators for #. In particular,
Nandagopalan [30], Hsing [17] and Smith and Weissman [52] studied estimators for 6
such as the blocks estimator and the runs estimator.

On the other hand, it is unfortunately not known how to calculate analytically
the extremal index 6 for stationary sequences except for a few mathematical examples.
Berman (3] showed that a stationary standard Gaussian sequence {X,} has § = 1
if the autocovariance function r, = Cov(X;, X;4,) satisfies r,logn — 0 as n — oo.
Later on, Rootzén [40] calculated. 8 for a class of moving averages of stable processes,
and Chernick [5] considered a particular stationary first-order autoregressive sequence
to compute §. For a general stationary sequence, O’Brien [34] and Rootzén [41]
found similar characterizations for 8, which are however still intractable to compute.
Smith [49] used this to find a technique to calculate 8 for stationary Markov chains
under the assumption that the bivariate distribution of the two successive variables
belongs to the domain of attraction of some bivariate extreme value distribution.
Perfekt [35] obtained similar results under rather milder conditions. These successive
papers motivated this research for the problem of how to generalize this idea to higher
order stationary Markov chains under general assumptions, which is one of the main

topics of this dissertation. The principal assumption is the domain of attraction of a

4



multivariate extreme value distribution.

The subject of multivariate extremes is another area in modern extreme value
theory which has been studied very actively. The two books by Galambos [10] and
Resnick [39] contain good reviews. One of the main issues in multivariate extreme
value theory is to examine the dependence structure of the variables. For this, para-
metric or nonparametric methods can be used. As parametric models, Gumbel [12]
introduced the logistic model and Marshall and Olkin [29] proposed an exponential
model, which were the only models in the general multivariate extreme value liter-
ature before Tawn [56] and Coles and Tawn [6] introduced new ones. On the other
hand, much has been done about bivariate models (e.g. see Tiago de Oliveira [58],
[59] and Tawn [55]). Technical aspects of this subject are also reviewed in Section 1.4.

This dissertation consists of two main parts. In the first part (Chapters 2~4),
we study extremal behavior of a higher order (k-th order, & > 1) stationary Markov
chain {X,}, particularly focusing on how to calculate the extremal index 8 of {X,}.
Specifically, Chapter 2 deals with the limiting behavior of rescaled stationary transi-
tion kernels under the assumption that the joint distribution of the £+ 1 consecutive
variables belongs to the domain of attraction of some multivariate extreme value dis-
tribution. The general functional forms for the limiting kernels are obtained and the
explicit forms are presented for various models for the multivariate extreme value
distributions. In Chapter 3, a converse direction is conducted, that is, studied is the
problem of what conditions can be imposed on the limits of the rescaled transition
densities for the joint distribution to belong to the domain of attraction of some mul-
tivariate extreme value distribution. Several well-known multivariate distributions
are examined to find the corresponding domains of attraction. As a by-product,
some parametric models for multivariate extreme value distributions afe obtained.
In Chapter 4, a technique to calculate the extremal index 8 is developed under the
assumption of multivariate domain of attraction. This is achieved by defining a new
(k — 1)st order Markov chain using the limiting transition densities, from which an
effective representation for the extremal index 6 is obtained. The representation is
then well suited for simulation to calculate the extremal index. A number of examples
with simulation results are presented.

The second part, Chapter 5, develops an extension of the threshold method for
i.i.d. observations, to consider the joint distribution of all exceedances over a high

threshold. The methodology is based on both the Markov chain mechanism and the



multivariate domain of attraction. As a result, for a given time series { X, }, the tails of
{X:} are modeled by a k-th order Markov chain. The techniques are then applied to
statistical analysis of real time series data of ground-level ozone collected in Chicago
area for 11 years. In the ozone study, a particular attention is also given to modeling

the short-term annual trend and detecting the long-term trend.

1.2 Threshold Methods

Threshold methods are methods based on exceedances over a high threshold instead
of maxima over samples of fixed size. Pickands [36] derived the validity of use of the
generalized Pareto distribution as an appropriate model for exceedances over a high
threshold. Davison and Smith (8], following earlier papers by Davison [7] and Smith
[43], gave a comprehensive description of this method including statistical estimation
techniques which can be applied to i.i.d. data. Instead of Pickands’ original work,
we here provide the following theorem which also justifies the use of the generalized
Pareto distribution as a model for exceedances over a high threshold. This is a
reformulation of Theorem 1.6.2 of Leadbetter et al. [26] and will be extended to the

multivariate case later which becomes useful in developing our theory.

Theorem 1.1 A distribution function F belongs to the domain of attraction of some
extreme value distribution if and only if there exists a £ € R such that

lim 1— F(u+g(u)z)

— -1/¢
L G (1.6)

where zp = sup{z € R: F(z) < 1} and

zp = oo and g(u) =1+ €u if £€>0;
g(u) is some strictly positive function if £ =0;

zr < 00 and g(u) = —€(zr — u) if £€<0.
In this case, there exist a, > 0,b, € R such that

F'(anz + by) — exp{—(l + §x);1/£}, z €R, asn — oo.

The last statement of this theorem implies that £ is exactly the same shape

parameter that is used in (1.3). Now let X denote a random variable with distribution



function F', which satisfies either condition of Theorem 1.1. Then the conditional

distribution of X — u given X > u may be approximated by

-1/¢

P(X—uSy]X>u):1—1—lf—(:,(%)éylzl-—(1+%)+ , y>0 (1.7)
for a sufficiently high u (i.e. close enough to zr), where ¢ = g(u). The right hand
side of (1.7) is called the generalized Pareto distribution with parameters ¢ > 0 and
¢ € R (¢ shape parameter). As before, the case £ = 0 is interpreted as the limit
¢ — 0, which corresponds to the exponential distribution with mean ¢. The cases
¢ > 0 and ¢ < 0 correspond respectively to a réparameterization of the usual Pareto
distribution and (—¢/¢) - Beta(1, —1/¢).

The generalized Pareto distribution has two important properties. One is that
if Y is generalized Pareto and u > 0, then the conditional distribution of ¥ — u given
Y > u is also generalized Pareto. The other is that if N has a Poisson distribution
and if conditionally on N, Yj,...,Yy are i.i.d. generalized Pareto random variables,
then max{Y], ..., Yy} has an extreme value distribution. These properties agree with
the fact that if { X, } is a sequence of ¢.:.d. random variables with distribution function
F which belongs to the domain of attraction of some extreme value distribution G

with normalizing constants a,, > 0, b,,, then the exceedance point process N, on (0,1]
defined by

No(B) = Y I(i/n € B, X; > w,), B € B((0,1]), (1.8)

i=1

with v, = a,z + b,, converges in distribution to a Poisson process with intensity
—log G(z) as n — oo, where I denotes the indicator function, B((0,1]) the Borel
o-field in (0,1], and z an arbitrary but fixed real number satisfying 0 < G(z) < 1.
In other words, a Poisson process of exceedances with generalized Pareto excesses
implies the extreme value distribution.

The preceding argument suggests that if {X,} is a sequence of i.i.d. observations
from an unknown distribution function F' which is assumed to be in the domain of
attraction of some extreme value distribution, then the excesses, the magnitudes of
exceedances over a fixed threshold, can be treated as a sequence of i.i.d. observations
from the generalized Pareto distribution, provided that the threshold is taken suffi-
ciently high. The method of choosing the threshold, which is one of the critical issues

here, has been studied by Smith [46]. Several methods for estimating the parameters



of the generalized Pareto distribution are also available (e.g. see Hosking and Wallis
[14] and Davison and Smith [8]).

If there is serial dependence in the data set {X,}, then the exceedances over a
high threshold tend to form asymptotically independent clusters. In this case, one
may apply the above-explained threshold method to cluster maxima instead of all
exceedances. The justification of use of the generalized Pareto distribution for the
cluster maxima over a high threshold is given by Leadbetter [24]. This is, of course,
based on extreme value theory for stationary sequences including mixing, exceedance
point processes and so on, which will be mentioned in Section 1.3 in detail. However,
it is again a naturally arising problem to waste the most of the data, the remaining
data after choosing cluster maxima, which may contain valuable information. The
first attempt to compensate for this was given by Joe, Smith and Weissman [20].
There is also work by Smith, Tawn and Coles [54] to build an appropriate model for
the joint distribution of all exceedances within clusters and to apply this to stationary

Markov chains.

1.3 Extremal Index

The theory of extremal index for a stationary sequence was well described by Leadbet-
ter et al. [26] (particularly at Part II). Let {X,,} be a stationary sequence of random
variables with marginal distribution function F'. There are several mixing conditions
to restrict dependence at long ranges for {X,}. These include strong mixing, con-
dition A(u,), condition D(u,) and AIM(u,) (Asymptotic Independence of Mazima)
with respect to high thresholds u,. The relation among these four conditions is that
the first one is the strongest and the last one is the weakest. For definiteness, we
are going to use the condition A(u,) which is stronger than the condition D(u,),
but much weaker than strong mixing, as Hsing et al. [18] adopted this to develop
the exceedance point process for {X,}. The definition of the condition A(u,) is as.

following:

Definition 1.1 Let us write

B = o({Xi>un),s<k<t), 1<s<t<n,
any = sup{|P(ANB)— P(A)P(B)|: Ac B ,Be B, 1<s<s+I<n},
I=1,..,n—1.



Then the sequence {X,} is said to satisfy condition A(u,) if ang, — 0 asn — oo .

for some sequence {l,} with [, = o(n).

Roughly speaking, the condition A(u,) restricts the dependence of exceedances
of the sequence { X, } at long ranges, and therefore the exceedance events separated by
long distance behave as if they are independent. This is essential to obtain compound
Poisson limits of the exceedance point processes for stationary sequences. The fol-

lowing important theorem gives a motivation for the existence of the extremal index
for {X,} under the condition A(u,).

Theorem 1.2 (Theorem 3.7.1 of Leadbetter et al. [26]) Suppose that for any

T > 0, there erists a sequence {u,(7)} of real numbers such that n{1 — F(u,(7))} — 7

asn — oco. If A(un(7)) holds for every T > 0, then there exist 8,60’ with0 < 0 <§' <1

such that '
m P(M, < u,(7)) =€ and lim P(M, < u,(7)) =€~ %"

for every 7 > 0, where M,, = max{X,,..., X, }.

Theorem 1.2 immediately implies that if P(M, < u,(7)) converges for some
7 > 0, then 6 = 0’ and lim,_,o. P(M, < u,(7)) = 7% for every 7 > 0. Motivated

from this, the extremal index of a stationary sequence is defined as following:

Definition 1.2 A stationary sequence {X,} is said to have an extremal indez 6 (0 <
0<1)if

(1) for any T > 0, there ezists a sequence {u,(7)} of real numbers such that

Jim {1 — Flun(r))} = 7 (1.9)
(ii) for any T > 0,
Jim P(M, < uy(7)) =e". (1.10)

There are some points on Definition 1.2 which are worthy of notice:

e The definition of the extremal index does not depend on the particular choice
of the sequence {u,(7)} (for each 7 > 0) satisfying (1.9). That is, if (1.10)
holds for some sequence {u,(7)} satisfying (1.9), then it holds for all sequences

satisfying (1.9).



e Suppose A(un(7)) holds for every 7 > 0 under condition (1.9). Then condition
(1.10) can be replaced by

lim P(M, < un(7)) = %" for some 7 > 0.

n—co

e From Leadbetter et al. [26] (Theorem 1.7.13), condition (1.9) holds if and only
if (1 - F(z))/(1 - F(z—)) —» 1 as z T zF, which is again, if and only if there
exists a sequence {u, } such that lim, o n(1 — F(u,)) = 7 for some 7 > 0. This
means that the existence of a sequence {u, } satisfying limp—co n(1—F(u,)) =7
for some 7 > 0 implies the existence of a sequence {u,(7)} such that (1.9) holds
for every 7 > 0. The argument also guarantees that (1.9) automatically holds

for F' being continuous.

The justification of (1.4) invokes another theorem of Leadbetter et al. [26] (The-
orem 3.7.2), which is omitted here. As is mentioned before, the independence of { X}
corresponds to § = 1. But the converse is not generally true. For example, station-
ary Gaussian sequences usually have 8 = 1 even though the variables are dependent.
Leadbetter et al. [26] introduced a sufficient condition, so-called D'(u, ), together with
D(uy), for {X,} to have § = 1. The condition D’(u,) is a local dependence condition
which restricts clusters of exceedances of a high threshold. However, it is perhaps
the more usual case that this local condition is not satisfied, which means that there
should be developed some appropriate methods to calculate the extremal index for
broad classes of stationary sequences.

Another important result related to the extremal index is the following theorem.
For this, we need a definition about a cluster size distribution for the exceedance point
process N, on (0,1] defined as (1.8), of a threshold u,, by the stationary sequence { X, }:
define the cluster size distribution 7, for N, with respect to some sequence {k,} of

positive integers with &, — co as
(j) = P{N.(0,1/k,] = j|N.(0,1/k,] > 0}
= P{Xn:I(Xi > up) =53 I(Xi > un) > 0}, i=12,.., (1.11)

=1 =1

where r, = |n/k,|, the integer part of n/k,.

Theorem 1.3 (Hsing et al. [18], Leadbetter and Hsing [25]) Suppose A(uy)
holds, and let {kn} be a sequence of positive integers such that

[
knéooandkn(an,lnﬁ-—n)-—)O as n — oo.
n
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Then N, converges in distribution to a point process N as n — oo if and only if
PM, <u,)—e?andn, 5 7r asn — oo

for some A > 0 and some probability distribution = on {1,2,...}. In this case, N
is necessarily a compound Poisson process on (0,1] with intensity X and multiplicity

distribution «.

This theorem informs us that the limiting structure of the exceedance point pro-
cess 1s compound Poisson and that clusters of exceedances may occur independently,
based on Poisson positions, when the local dependence condition is relaxed. When
{X.} has an extremal index 6 > 0, § has a relation with the cluster size distribution
in such a way that X g

5= ,}Lrglo;y -7 (J)-
This means that 67! is the asymptotic mean cluster size. All these facts make it
clear that the extremal index 8 is a key parameter for studying extremal behavior of

stationary time series having serial dependence.

1.4 Multivariate Extreme Value Theory

Multivariate extreme value theory deals with the limiting behavior of componentwise
partial maxima of i.i.d. random vectors. Its results may be used, for example, to
examine the dependence among flooding at several nearby sites, or among the break-
down of several components in a reliability network. Also, it can be applied to the
joint distribution of consecutive observations in time series having serial dependence,
to give alternative versions of threshold methods.

Let {X,} be a sequence of i.i.d. p-dim. (p > 1) random vectors with distribution
function F'(x). Suppose that there exist some normalizing p-dim. vectors a,> 0,b,,€

P (with componentwise ordering) such that
PM, <a,x+b,)=F*(a,x+b,) > G(x)asn— oo (1.12)

for some p-dim. nondegenerate distribution function G(x), where M, = max;<i<n X
(componentwise maxima), a,X = (@n1Z1, .., Gnplp) (componentwise operations), a,

= (@ni1y -y Anp), X = (Z1,...,2p). G being nondegenerate means that each marginal
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of G is nondegenerate. Then G is called a p-dim. extreme value distribution and F
is said to be in the domain of attraction of G, written F' € D(G). This is a natural
extension of (1.1) to the multivariate case. Also, it is obvious that every marginal of G
is a univariate extreme value distribution and so has the form (1.3). One prominent
feature characterizing the multivariate extreme value distributions is the notion of

max-stability, which is defined as following:

Definition 1.3 A p-dim. distribution function G(x) is said to be maz-stable if there

exist p-dim. vector-valued functions

a(t) = (au(t), -, ep(t)) > 0, B(t) = (Bi(?), .., Bp(t)) € ¥?,
which are defined on t > 0, such that for anyt > 0,
G'(x) = G(a(t)x + B(t)).

Multivariate extreme value distributions are completely characterized by the fact
that their class is precisely the class of nondegenerate max-stable distribution func-
tions. When the multivariate extreme value distributions are dealt with, it is usual to
standardize the problem so that G has specified equal marginals. This is particularly
helpful to characterize max-stable distributions (and consequently multivariate ex-
treme value distributions). The standardization can be done by adopting appropriate
transformations of marginals. Although the choice of marginals is arbitrary, the stan-
dard Gumbel distribution A(z) and the standard Fréchet distribution ®,(z) defined
as (1.2) are preferred. The standard exponential distribution is also frequently used,
in particular, for handling bivariate extremal data, using the concept of dependence
function. For example, Pickands [37] used exponential margins and Tiago de Oliveira
[57] and Galambos [10] used Gumbel margins, whereas de Haan and Resnick [9] used
Fréchet margins.

It is however theoretically possible to handle these various margins in terms
of a single-parameter. family of margins. That is to use the so-called von Mises

representation
Q¢(z) = exp {—(1 + {w);l/ﬁ}, z€eER (1.13)

for the univariate extreme value distribution, which covers all those three different
types in (1.2) according to the sign of the shape parameter ¢ (¢ € R). The case { =0

is always interpreted as the limit ¢ — 0 in this dissertation, which corresponds to
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the standard Gumbel distribution A(z) = Qo(z). The representation turns out to be
very helpful for our theory in this dissertation to become flexible against any specified
marginals. Also, using representation (1.13) for the marginals of G makes it unnec-
essary to transform the marginals of both F' and G with the condition F' € D(G)
unchanged so that G has specified equal marginals. Since the transformations of
marginals of F' usually involve the explicit functional forms of the marginal distribu-
tion functions of F as well as their inverses (e.g. see Proposition 5.10 of Resnick [39]),
it is particularly useful to adopt representation (1.13) for the marginals of G where
the explicit functional forms of the marginal distribution functions of F cannot be
obtained. Anyway, under the von Mises representation for the univariate marginals,
the multivariate extreme value distributions have a special representation as in the
following theorem, which is originally due to Pickands [37]. This theorem is a refor-
mulation of Propositions 5.11 and 5.11’ of Resnick [39] which are obtained using the

max-stability of multivariate extreme value distributions.

Theorem 1.4 For any fized £ € R, the following are equivalent:
(a) G(x) is a p-dim. extreme value distribution with equal marginals Q¢(x).

(b) There exists a finite positive measure Q, on the (p — 1)-dim. unit simplez

P
S,,={W€§R”:w20, Ewizl}

=1
satisfying
/ widQp(w) =1, i =1,..,p
S

P

such that

Sp 1<i<p

G(x) = exp [— max {w,»(l + fa:,-)“l/f} de(W)} , 1+&x>0, - (1.14)
where 1 + {x means (1 + {z1,...,1 + &xp) when x = (24, ..., Zp).

The family of (1.14) is infinite-dimensional while that of (1.3) is not. Thus
direct parametric estimation is impossible, which implies that we need to apply ei-
ther nonparametric methods to the whole family or parametric methods to classes
of parametric subfamilies. Smith, Tawn and Yuen [53] reviewed this problem very

well, particularly concentrating on bivariate cases. As nonparametric approaches,
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they introduced the kernel method for density estimation to estimate the depen-
dence function between the two variables which is obtained after transforming the
marginals so as to be standard exponential distributions. An alternative is to use
the nonparametric method of maximum likelihood, which was suggested by Pickands
[37], for estimating the dependence function. However, the function estimators, the
nonparametric maximum likelihood estimators, do not provide all the properties the
dependence function must have. For instance, they are neither convex nor differen-
tiable, whereas the dependence function should be convex and will be differentiable
whenever G is absolutely continuous. The kernel estimators can be made differen-
tiable and even convex, but not always. For this reason, many statisticians devote
themselves to developing several flexible parametric models. The parametric models
usually have greater convenience and tractability.

There are a number of known parametric models for G: logistic model, asymmet-
ric logistic model, bilogistic model, Dirichlet model, and so on. For bivariate cases,
Tawn [55] studied several statistical issues for various models; multivariate cases were
also handled by Tawn [56] and by Coles and Tawn [6]. The logistic model is a basic
model covering independence of variables through complete dependence, from which
the asymmetric logistic and bilogistic models come to allow asymmetry of variables.-
Some of these parametric models will be used in several places later as examples of
multivariate extreme value distributions. It is also noted that some new parametric

models for multivariate extreme value distributions are introduced in Section 3.5.
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Chapter 2

Limiting Kernels under
Multivariate Domains of

Attraction

2.1 Introduction

As a whole, Chapters 2~4 deal with extremal behavior of higher order stationary
Markov chains. Let {X,.} denote a k-th order (k > 1) stationary Markov chain.
That is, {X,} is a (strictly) stationary sequence of random variables and for every

n=12..,
P(X, € AlXy,...., Xn-1) = P(X, € Al Xy kyoey Xnm1) 25, A€ B(R),

with the convention that X;_x = --- = Xy = X;. The method, which is developed
in Chapter 4, of calculation of the extremal index of {X,} is mainly based on the
assumption that the joint distribution of the k + 1 consecutive variables X,,, ..., X4z
belongs to the domain of attraction of some multivariate extreme value distribution.
Here, the Markov property imposed on {X,} enables us to consider the joint distri-
bution as the product of successive stationary transition kernels. This means that
there may be a strong relation between the behavior of the transition kernels and the
multivariate domain of attraction.

This chapter examines possible limiting distributions of rescaled transition ker-
nels under the assumption of multivariate domain of attraction, which will be used

effectively in Chapter 4 to calculate the extremal index. As pointed out in Chap-



ter 1, when multivariate extreme value distributions are handled theoretically, the
von Mises representation ¢ in (1.13) will be adopted as the univariate marginal
distributions without loss of generality, which makes our theory flexible against any

specified marginals encountered in many practical examples.

2.2 Multivariate Domains of Attraction

The domain of attraction of a univariate extreme value distribution is one of the clas-
sical problems in extreme value theory and is completely solved. The three different
types of extreme value distributions in (1.2) have their own domains of attraction.
Theorem 1.1 in Chapter 1 gives a necessary and sufficient condition for a distribution
function F' to be in the domain of attraction of some extreme value distribution with
shape parameter { € R. The auxiliary function g there is assumed to satisfy the

following properties: for any z € £ with 1 + x> 0, as u T zp,

u +g(u)z — zF;
g(u + g(w)z)/g(u) — 1 +£g; (2.1)
(zr —u)/g(u) — 1/|¢] if zF < oo.

This is obviously true for £ # 0. When £ = 0, this is of no loss of generality because if
(1.6) holds for some g which does not satisfy (2.1), then there exists another § which
satisfies (1.6) and (2.1), with §(u) ~ g(u) as u T zF. For details, see Lemmas 1.2 and
1.3 of Resnick [39]. The following are a few examples:

e For F =9®,,§{ =1/aso that F' € D(®,).

o For the t-distribution F with v (v: a positive integer) degrees of freedom,
£ = 1/v so that F € D(D,).

e For F = A, £ =0 and take g(u) =1 so that F € D(A).

e For the standard normal distribution F, £ = 0 and take g(u) = 1/u so that
F € D(A).

e For the standard exponential distribution F, £ = 0 and take g(u) = 1 so that
F € D(A).

e For F=U,, zr =0 and { = —1/a so that F' € D(¥,).
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e For the uniform distribution F on (0,1), zr = 1 and { = —1 so that F' € D(¥,).

The idea of Theorem 1.1 can be generalized into the multivariate case. First
of all, Galambos [10], Theorems 5.4.3 and 5.4.4, gave a separate criterion for the
domain of attraction of a multivariate extreme value distribution with each of those
three different types of margins in (1.2). The following theorem is a special case for
those in which the same marginals of the considered multivariate distribution function
are assumed. We use the notation F,(x) for a p-dim. (p > 1) distribution function
instead of F(x).

Theorem 2.1 Let F,(x) be a p-dim. distribution function with equal marginals Fy(z),
and let G,(x) be a p-dim. eztreme value distribution with equal marginals G,(z). Then
necessary and sufficient conditions for F, € D(G,) with G, equal to each of those three
types in (1.2) are:

Gy =A : There erists a strictly positive function g(u) such that
. I—F(ut+g(u)x) .
ul%gll T~ Fi(w) = —log Gp(x), x € K7,
Gi=9®, : zp =0 and
. 1= Fy(ux) .
Jim T Fw) —log Gp(x), x > 0;
Gi=V, : zp <o and
.1 — Fp(xpl + hx)
A Y p——

= —log Gp(x), x < 0.

Using the same idea as in Theorem 1.1, this theorem can be reformulated to give
a single criterion for domains of attraction of multivariate extreme value distributions

with equal marginals having the von Mises representation ), in (1.13) as following:

Theorem 2.2 Let F,(x) be a p-dim. distribution function with equal marginals F(z),
and let G,(x) be a p-dim. extreme value distribution with equal marginals Gi(z) =

Q¢(z) for some & € R. Then F, € D(G,) if and only if
1 - Fp(u + g(u)x)

ulrial,% - Fu) = —log Gp(x), 1 + (x>0, (2.2)
where
zr, =00 and g(u) =1+ u if £€>0;
g(u) is some strictly positive function if £ =0; (2.3)
zp, < oo and g(u) = —¢(zR — u) | if £€<0.
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PROOF. For { = 0, there is nothing to prove. For £ > 0, define F;(x) = F,(x —1/£),
and also define G;(y) = G,(§”'(y — 1)), ¥y > 0 so that G} has equal marginals
Gi(y) = ®¢-1(y), and then, from Theorem 2.1, we have

F,eD(G,) if F:eD(G,)

it Fr € D(GY)

i Jim T2 = —1ogG3(y) = ~log Gy(€ (v = 1)), ¥ > 0
” }l{{}o 1 ——ff(;f—}(—uf)ux)
iff  lim ! —1Fi(1;?1zu1£§1-+/-€§)ux) = —log Gp(x), 1 +¢éx >0

L Lo Le(ut g(u)x)
T T R

= —logGy(x), 1 +€x>0

= —log G,(x), 1 +&x > 0,

where g(u) = 1+ £u and F} is the equal marginals of F;. For £ < 0, define G,(y) =
Go((=€)"Y(y + 1)), y < 0 so that G, has equal marginals G (y) = U _e)-1(y), and
then again, from Theorem 2.1, we have

F,eD(G,) iff F,eD(G,)

. . 1- Fp(wFl + hY) _ ~ _ -1

T s o)~ 08GrY) = —lg (=07 (v + 1)),
y<o

i i Ll e(w)x) —log G,(x), 14 ¢&x > 0,

ulzpy 1— Fl (U)

where 25, < 00 and g(u) = —{(zp, —u). O
Remark 2.1
1. The condition F, € D(G,) implies that for any i = 1, ..., p, F; € D(G;), where

Fi(x) = Fo(X, 25, -y TR, ), Gi(X) = Gp(X,26,, 26, ) X = (Z1, ey Ts)-
p—1 p—t
Thus, the auxiliary function g satisfying (2.2) also satisfies (1.6) with F replaced
by Fi. By the same reason as before, g is assumed to satisfy (2.1) with F
replaced by Fj.

2. (2.2) is equivalent to

i L= Fp(utg(u)x)  —logGy(x)
wlzr, 1 — Fp(u) —log G,(0)

, 14+£&x >0,
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