Deconvolution with Supersmooth Distributions

Jianqing Fan

Department of Statistics
University of North Carolina
Chapel Hill, N.C. 27514
July 15, 1990

Abstract

The desire to recover the unknown density when data are contaminated with errors leads to nonparametric deconvolution problems. Optimal global rates of convergence are found under the weighted \(L_p \)-loss \((1 \leq p \leq \infty)\). It appears that the optimal rates of convergence are extremely slow for supersmooth error distributions. To overcome the difficulty, we examine how large the noise level can be for deconvolution to be feasible, and for the deconvolution estimate to be as good as the ordinary density estimate. It is shown that if noise level is not too large, nonparametric Gaussian deconvolution can still be practical. Several simulation studies are also presented.

\[^0\text{Abbreviated title. Supersmooth Deconvolution.}\]

\[^0\text{AMS 1980 subject classification. Primary 62G20. Secondary 62G05.}\]

\[^0\text{Key words and phrases. Deconvolution, Fourier transforms, kernel density estimates, } L_p\text{-norm, global rates of convergence, minimax risks.}\]
Section 4 examines how the theory works for moderate sample sizes via simulation studies. Further remarks are given in section 5. Proofs are deferred in section 6.

2. Optimal Global Rates

Let's give a global lower bound on rates for supersmooth error distributions. Let's assume that the second half inequality of (1.4) holds:

$$|\phi(t)|t^{\beta_1} \exp(|t|^\beta / \gamma) \leq d_1 \quad (\text{as } t \to \infty),$$

(2.1)

for some constants $\beta, \gamma > 0$, $d_1 \geq 0$, and β_1, and that

$$P\{|\varepsilon - x| \leq |x|^{\alpha_0}\} = O \left(|x|^{-(a + \alpha_0)}\right), \quad (\text{as } x \to \pm \infty),$$

(2.2)

for some $0 < \alpha_0 < 1$ and $a > 1 + \alpha_0$.

Theorem 1. Suppose that the distribution of error variable ε satisfies (2.1) and (2.2) and $f \in C_{m,B}$. Then, no estimator can estimate $f^{(l)}(x)$ faster than the rate $O \left((\log n)^{-(m-l)/\beta}\right)$ in the sense that for any estimator $\hat{\varepsilon}_n(x)$,

$$\liminf_{n \to \infty} \sup_{f \in C_{m,B}} \left(\log n\right)^{(m-l)/\beta} E_f \|\hat{\varepsilon}_n(\cdot) - f^{(l)}(\cdot)\|_w > C_{p,l},$$

(2.3)

for all $1 \leq p \leq \infty$, provided that the weight function $w(\cdot)$ is positive continuous on some interval, where $C_{p,l}$ is a positive constant independent of the estimator.

In terms of technical argument of Theorem 1, we will use the technique of adaptively Bernstein's (1975) to randomize $f^{(l)}(x)$ local one-dimensional subproblems developed by Fan (1989), and then reduce the global problem to a pointwise estimation problem so that the existing lower bound (Fan (1990)) on pointwise rates of convergence can be used. To our knowledge, the technical argument appears to be new.

Now, let's show that the rate above is indeed attained by the deconvolution kernel estimator (1.3), and hence it is optimal. Some assumptions on kernel function $K(\cdot)$ are

Condition 1:
• $K(\cdot)$ is bounded continuous, and $\int_{-\infty}^{\infty} |y|^m |K(y)|dy < \infty$.

• The Fourier transform ϕ_K of K has a bounded support $|t| \leq M_0$. Moreover, $\phi_K(t) = 1 + O(|t|^m)$.

Theorem 2. Assume that $\phi_e(t) \neq 0$ for any t, and that

$$|\phi_e(t)||t|^{-\beta_2} \exp(|t|^\beta / \gamma) \geq d_2,$$ \hspace{1cm} (2.4)

for some positive constants β, γ, d_2 and constant β_2. If the kernel function K satisfies

Condition 1, then for $h_n = cM_0(2/\gamma)^{1/\beta}(\log n)^{-1/\beta}$ with $c > 1$,

$$\sup_{f \in C_{m,B}} \text{E}\|f_n \cdot f - f_n \cdot f\|_{W^p} = O \left((\log n)^{-(m-1)/\beta} \right)$$ \hspace{1cm} (2.5)

for all $0 \leq p \leq \infty$, provided that the weight function is integrable.

In light of the bandwidth given by Theorem 2, there is no much room for bandwidth selection. If $c > 1$, then the variance converges to 0 much faster than the bias does, while if $c < 1$, the variance goes to infinity. Thus, practical selection of bandwidth would select a constant c close to 1 in Theorem 2.

The distributions satisfying conditions (2.1), (2.2), and (2.4) include normal, mixture normal, and Cauchy distributions. For these supersmooth error distributions, nonparametric deconvolution is extremely hard: the optimal rate of convergence is only of order $\log n^{-\alpha}$, where $\alpha > 1$. One way of resolving this difficulty will be discussed in the next section.

Some special global results (basically $p = m = 2, l = 0$, ϵ normal or Cauchy) are obtained independently by Zhang (1990) under different formulation. The results in Theorem 1 & 2 provide better insights: it shows that both lower and upper bounds depend on F_{ϵ} only through the tail of ϕ_e, and the dependence is explicitly addressed.

Remark 1. In an early version of the proof of Theorem 1 (see Fan (1988), for which the results in this section are based), a 1-dimensional subproblem is hard enough to capture the difficulty of the full global deconvolution problem. In contrast with the ordinary density estimation (Stone (1982)), in order to construct an attainable lower bound under the global
and
\[\theta_{j_1} = (\theta_1, \ldots, \theta_{j-1}, 1, \theta_{j+1}, \ldots, \theta_{m_n}). \]

Let \(F_\varepsilon \) be the distribution of \(\varepsilon \), and \(\chi^2(f, g) = \int (f - g)^2/f \, dx \) be the \(\chi^2 \)-distance. By Theorem 1 of Fan (1989), if
\[\max_{1 \leq j \leq m_n} \max_{\theta \in (0,1)^m_n} \chi^2 \left(f_{\theta_{j_0}} * F_\varepsilon, f_{\theta_{j_1}} * F_\varepsilon \right) \leq c_1/n, \tag{6.3} \]
then
\[\inf_{T_n(x)} \sup_{f \in C_{m,N}} E_f \int_0^1 |T_n(x) - f_X^{(1)}(x)|^p w(x) \, dx \]
\[\geq \left(1 - \sqrt{1 - \exp(-c_1)} \right) \int_0^1 w(x) \, dx \int_0^1 |H^{(1)}(x)|^p \, dx (m_n^{-(m-1)})^p. \tag{6.4} \]

Thus, \(m_n^{-(m-1)} \) is the global lower rate.

Let's determine \(m_n \) from (6.3). Note that there exists a positive constant \(c_2 \) such that \(f_0(x) > c_2 f_0(x + j/m_n) \) (1 \(\leq j \leq m_n \)). By (6.1) and (6.2) with a change of variable, we have
\[\max_{1 \leq j \leq m_n} \max_{\theta \in (0,1)^m_n} \chi^2 \left(f_{\theta_{j_0}} * F_\varepsilon, f_{\theta_{j_1}} * F_\varepsilon \right) \leq 26^2 m_n^{-2m} \int_{-\infty}^{+\infty} \frac{|H(m_n(\cdot)) * F_\varepsilon|}{f_0(\cdot + z_j) * F_\varepsilon} \, dz. \]
\[\leq \frac{26^2 m_n^{-2m}}{c_2} \int_{-\infty}^{+\infty} \frac{|H(m_n(\cdot)) * F_\varepsilon|}{f_0 * F_\varepsilon} \, dz. \tag{6.5} \]

To construct a pointwise minimax lower bound, one also has to select \(m_n \) such that (6.5) is of order \(O(1/n) \), which is determined by Fan (1990) to be \(m_n = c_3 (\log n)^{1/\beta} \), for some constant \(c_3 > 0 \). Consequently, the global rate is of order \(m_n^{-(m-1)} = c_3^{-(m-1)} (\log n)^{- (m-1)/\beta} \).

The conclusion follows.

\[\forall n \in \mathbb{N}, \quad 0 < \frac{m_n}{n}. \]

\[\textbf{6.2. Proof of Theorem 2} \]

We need only to prove the result for \(p = \infty \); the other result follows from
\[\text{as \, } n \to \infty, \quad (\text{for all } \varepsilon \geq 0). \]
\[E\|\hat{f}_n^{(1)}(\cdot) - f_X^{(1)}(\cdot)\|_{w, \infty} \leq E\|\hat{f}_n^{(1)}(\cdot) - f_X^{(1)}(\cdot)\|_{\infty}, \]

by assuming that \(\int_{-\infty}^{+\infty} w(x) \, dx = 1. \)
Note that
\[
E \hat{f}_{n}^{(l)}(x) = \int_{-\infty}^{+\infty} f_{X}^{(l)}(x - h_{n}y)K(y)dy,
\]
which is independent of the error distribution \(F_{\varepsilon} \). Thus, by the results in the ordinary density estimation, or Taylor's expansion
\[
\sup_{f \in C_{m,B}} \| E \hat{f}_{n}^{(l)}(\cdot) - f_{X}^{(l)}(\cdot) \|_{\infty} \leq \frac{B}{(m-l)!} \int_{-\infty}^{+\infty} |y|^{(m-l)} K(y) dy h_{n}^{(m-l)}. \quad (6.6)
\]
Thus, we need only to verify that
\[
\sup_{f \in C_{m,B}} E \| \hat{f}_{n}^{(l)}(\cdot) - E \hat{f}_{n}^{(l)}(\cdot) \|_{\infty} = O \left((\log n)^{-\beta} \right).
\]
Note that by (1.3),
\[
\| \hat{f}_{n}^{(l)}(\cdot) - E \hat{f}_{n}^{(l)}(\cdot) \|_{\infty} \leq \frac{1}{2\pi} \int_{-\infty}^{+\infty} |\phi_{K}(th_{n})| |t| t E |\hat{\phi}_{n}(t) - \phi_{Y}(t)| dt
\leq \frac{\max |\phi_{K}|}{2\pi n^{1/2}} \int_{|t| \leq M_{0}/h_{n}} |\phi_{K}(th_{n})| |t| t E |\hat{\phi}_{n}(t) - \phi_{Y}(t)| dt
\leq \frac{M_{0} \max |\phi_{K}|}{2\pi n^{1/2} h_{n}^{l+1}} \int_{|t| \leq M_{0}} 1 \frac{1}{|\phi_{C}(t/h_{n})|} dt, \quad (6.7)
\]
by using the fact that \(\phi_{K} \) has a support \([-M_{0}, M_{0}]\), and that
\[
E |\hat{\phi}_{n}(t) - \phi_{Y}(t)| \leq \left(E |\hat{\phi}_{n}(t) - \phi_{Y}(t)|^{2} \right)^{1/2} \leq n^{-1/2}.
\]
By (2.4), there exists a constant \(t_{0} \) such that when \(|t| \geq t_{0} \),
\[
|\phi_{C}(t)| |t|^{-\beta_{2}} \exp(|t|^{\beta}/\gamma) \geq \text{constant} \times \exp(-\gamma |t|^{\beta}).
\]
Consequently, by (6.7) and the fact that \(\min_{|t| \leq t_{0}} |\phi_{C}(t)| > 0 \), we have
\[
\| \hat{f}_{n}^{(l)}(\cdot) - E \hat{f}_{n}^{(l)}(\cdot) \|_{\infty} = O \left(h_{n}^{-\beta_{2}+l+1/2} \exp\left(|M_{0}/h_{n}|^{\beta} \right) \right). \quad (2.3)
\]
With the bandwidth given by Theorem 2, the last display is of order \(o((\log n)^{-d}) \), for any positive constant \(d \). This completes the proof.
6.5. Proof of Theorem 5

First, using the integration by parts twice, it is easy to see that \(K_n \) defined by (3.5) is bounded by

\[
|K_n(x)| \leq \frac{C}{1 + x^2} \quad \text{(for some constant } C),
\]

i.e. \(K_n(x) \) is bounded and decays at the rate \(|x|^{-2} \) as \(|x| \to \infty \). Thus, \(\hat{F}_n \) is well defined, and can be expressed as

\[
\hat{F}_n(x) = \frac{1}{n} \sum_{1}^{n} K^*(\frac{x - Y_i}{h_n})
\]

with \(K^*(x) = \int_{-\infty}^{x} K_n(y) dy \). Note that

\[
\sup_x |E \hat{F}_n(x) - F(x)| = \sup_x \left| \int_{-\infty}^{\infty} F_X(x - h_n y) K(y) dy - F(x) \right| = O(h_n^2) = O(n^{-1/2}).
\]

Thus, we need to prove that

\[
E \| \hat{F}_n(\cdot) - E \hat{F}_n(\cdot) \|_{\psi_p} = O(n^{-1/2}),
\]

which follows from Marcinkiewicz-Zugmund’s inequality (Chow and Teicher (1988), p356) or direct expansion by assuming \(p = 2j \) as Theorem 4,

\[
E \left| \frac{1}{n} \sum_{1}^{n} \left[K^*(\frac{x - Y_i}{h_n}) - E K^*(\frac{x - Y_i}{h_n}) \right] \right|^p \leq D n^{-p/2},
\]

for some constant \(D \), as had to be shown.

References

