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ABSTRACT

PAIGE L. WILLIAMS. Analytic Expressions for Maximum Likelihood Estimators in a
Nonparametric Model of Tumor Incidence and Death (under the direction of Dr.
Christopher J. Portier)

ABSTRACT: The primary objective of a long-term animal carcinogenicity experiment is
the comparison of tumor incidence rates among treatment groups. Complications arise in
the statistical analysis of tumor incidence data when the tumor type of interest is not
observable. Since reliance on assumptions regarding tumor and treatment lethality is likely
to introduce bias, this research focuses attention on the estimation of tumor incidence rates
from long-term animal studies which incorporate interim sacrifices. A nonparametric
stochastic model is described with transition rates between states corresponding to the
tumor incidence rate, overall death rate, and death rate for tumor-free animals. Exact
analytic solutions for the maximum likelihood estimators (MLE's) of the discrete hazard
rates are presented, and constrained MLE's are derived for a study design with up to three
intervals under the imposition of boundary constraints. For a study design with more than
three intervals, alternative estimators of the discrete death rates and tumor incidence rate are
~ developed heuristically by pooling together data from adjacent time intervals. The
estimators derived in this research are applied to actual data from a long-term animal study, )
and the results are compared with ofher published estimates of the tumor incidence rates for
the same data. The ability of these estimators to predict the true tumor incidence rate under
a variety of study designs is evaluated by Monte Carlo simulation studies.

The availability of closed-form expressions for the MLE's of the tumor incidence
rate and death rates represents a dramatic savings in time over the iterative computer
algorithms currently used, in addition to avoiding biases from inappropriate assumptions
regarding tumor and treatment lethality. The constrained MLE's exhibit only a small degree

of bias even within the small samples typically employed in long-term animal studies, and

appear to have smaller variances than the unconstrained MLE's. For study designs with



more than three time intervals, estimators derived from intuitively pooled data appear to .

offer a reliable alternative to the constrained estimators.
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CHAPTER I: STATISTICAL ANALYSIS OF LONG-TERM ANIMAL STUDIES

1.1 Role of Long-Term Animal Studies in Risk Assessment

A rapid increase in the number of chemicals in common use has brought with it an
increasing need for qualitative and quantitative methods of evaluating the potential adverse
effects from chemical exposure. The assessment of a chemical compound for carcinogenic
potential in humans is based upon many sources of information. Epidemiologic
observations gathered on human subjects, in vitro assays of mutagenicity, study of DNA
damage and repair in mammalian cells, examination of chemical structure, pharmacokinetic
studies, and short-term and long-term animal carcinogenicity studies all play a part in

evaluating the risk of chemical exposure to man.

Recognition of a chemical substance as a human carcinogen has been met with the
least controversy when sound epidemiologic evidence of carcinogenic risk factors was
available. However, the difficulties inherent in controlling and measuring individual
exposures, the long latency period between exposure to the chemical and onset of cancer in
humans, and the typically low levels of exposures tend to prevent direct measurement of
risk in epidemiologic surveys. Clearly, use of clinical trials with human subjects to
perform risk assessment cannot be considered an ethical alternative. The lack of controlled
experiments in humans has led to the need to employ animal carcinogenicity studies to
predict human risk. In the limited number of chemicals for which both human and animal
experimental data are available, there appears to be a good qualitative correlation (Tomatis

et al., 1980a).



Although methods for extrapolating animal carcinogenicity studies to human ‘
populations have become a center of controversy, long-term animal carcinogenicity studies
remain the most commonly used tool for evaluating the carcinogenic potential of
compounds in our food, environment, and workplace. Short-term studies can evaluate a
large number of chemicals quickly and at a relatively low cost in comparison to long-term
animal studies; however, a recent evaluation of the ability of these tests to predict chemical
carcinogenicity in rodents demonstrated a lack of both sensitivity and specificity for the
four most common short-term tests (Tennant et al., 1987). While the advantages of these
short-term methods should not be overlooked, "in the absence of human data, long-term
animal tests are still today the only ones capable of providing conclusive evidence of the

carcinogenic effect of a chemical" (Tomatis, 1980b).

i ng-T nim: i

The goal of a long-term animal carcinogenicity experiment is to compare animals .
treated with a particular chemical compound to untreated animals with respect to tumor
development. In order to accomplish this goal, the design of a carcinogenicity bioassay
must direct attention at the characteristics of the chemical compound, the sex, species, and -
number of animals to be tested, the dosage levels and route of administration of the test
substance, the randomization of animals to dosage levels, the duration of exposure, and the
collection of clinical and histopathologic observations. The experimental design must
include recruitment of experienced personnel to plan, conduct, and analyze the results of

the long-term animal experiment.

The standard animal bioassay guidelines first developed by the National Cancer
Institute (NCI, Sontag et al., 1976) and later adopted and refined by the National

Toxicology Program (NTP, Haseman, 1983) specify use of both male and female animals .

of at least two species. Rodents such as mice, rats, and Syrian hamsters are most



commonly employed based on their small size, short lifespan, and availability. In addition
to these practical advantages, inbred strains of these rodents have been developed which

exhibit fairly uniform responses to chemical insults as a result of their genetic homogeneity.

The levels of doses for a long-term animal study are based on subchronic toxicity
studies which determine for each sex and species the maximum tolerated dose (MTD), i.e.,
the highest dose that can be given that does not cause a significant decrease in survival from
effects other than carcinogenicity. Some definitions of the highest dose have also required
that it does not appreciably inhibit normal weight gain as compared with control animals
(Food Safety Council 1978, IRLG 1979). The number of dose levels employed by the
long-term study depends on whether the specific purpose of the long-term carcinogenicity
study is the evaluation of the carcinogenic potential of a chemical compound on a qualitative
basis (screening assay) or determination of possible dose-response relationship. The
original NCI bioassays were designed as carcinogenic screening assays and define only
three experimental groups: high dose (MTD), low dose (1/2 or 1/4 MTD), and control
(untreated). The MTD is used as the high dose to maximize the probability of observing a
carcinogenic effect if one exists, and the lower dose is included to confirm the evidence and
protect against early mortality in the high dose group due to toxicity from the MTD. If the
purpose of the long-term bioassay is to examine the dose-response relationship, three or
more test doses in addition to a control are typically employed; the current NTP guidelines
suggest three dose levels in addition to an untreated control (Haseman, 1983). Most
bioassay designs recommend a minimum of 50 animals in each sex, species, and dose level
cross-classification for testing each potential carcinogen. The route of administration is

chosen to most closely mimic the human route of exposure.

The final step before starting a long-term animal study is the randomization of

animals to experimental groups. The purpose of randomization is to prevent the bias that



could occur if the predisposition to tumor development is not the same in all treatment

groups. Animals are first stratified by factors thought to affect the predisposition to tumor
development, such as body weight, litter and age, and then animals are randomly allocated
to dose levels within strata. In some study designs, cage locations are also randomized to

protect against environmental gradients within the animal facility.

Treatment is initiated a few weeks after the weaning period and continues for an
exposure period which constitutes the major portion of the animals' expected lifespan. A
commonly used treatment period for mice and rats is 2 years, which constitutes 60-70% of
the lifespan of the breeds of mice and rats most commonly used (Portier et al., 1986). The
animals are observed daily or weekly for indications of tumor onset (if it is possible to
observe this endpoint) or other clinical abnormalities, and a complete necropsy is
performed for any animal found dead. If the cause of death can be ascertained, it is
recorded along with the time of death. At the end of the treatment period, all surviving ‘
animals are subjected to a complete necropsy and histopathologic examination. Specific
sites at which tumors are observed are recorded, along with cause of death information, if

available.

Occasionally, designs for long-term animal experiments may designate timepoints at
which interim sacrifices (planned kills prior to study termination) are to be performed in
order to obtain more information on the progression of the tumor over time. Generally, an
equal number of animals from each dose group are randomly selected to be sacrificed and
necropsied from those animals surviving to the chosen sacrifice time. Since interim
sacrifices reduce the number of animals at risk of cancer development at later times, more
animals should be included in an animal bioassay design with planned interim sacrifices.
Reviews and summaries of the design concepts discussed here are provided by Feron e al.

(1980), Hamm (1985), Gart et al. (1986), and Portier (1988).



1.3 Analysi ng-T i xperim

Once a long-term carcinogenicity experiment has been designed and conducted, an
analysis of the results must be performed based on the data collected. By convention, a
separate analysis of the effect of a chemical compound is performed for each individual
tumor site (Peto et al., 1980). Since most carcinogens are believed to have a specific target
organ or group of organs, site-specific analyses usually increase the power of detecting a
true carcinogenic effect. In fact, a recent comparison of site-specific and overall analyses
of NTP tumor incidence data found that less than half of the species- and sex-specific
effects regarded as carcinogenic by site-specific analyses remained significant if primary
emphasis was given to the overall proportion of animals with primary or malignant tumors
(Haseman et al., 1986). Although designs have been proposed in which the cage or litter is
the experimental unit, knowledge of these types of clustering effects is still limited and the
statistical analysis of most studies continues to treat the individual animal as the
experimental unit. This assumption also implies that an animal with a single tumor at a

given site is treated the same as an animal with multiple tumors at this site.

1 Basi i n istical Framew

In the construction of a long-term carcinogenicity study, suppose that a total of N
animals are randomly assigned to K+1 dose groups, and the Nj animals in dose group i
receive dose z;, where zg < 21 <. .. <zk. The control group is indexed by i=0 and
receives dose zo=0. Let tjj be the time at which the endpoint of interest (e.g., tumor onset

or death) is observed for the j-th animal in the i-th dose group, j=1,2,...,Nj.

For the purposes of summarization and statistical analysis, it is often desirable to
divide the total length of the long-term experiment into S time periods with endpoints at ts,
s=1,2,...,S. For the i-th dose group and the s-th time period, let xjs be the number of

events (deaths or tumor onsets) and let ris be the number of animals at risk of developing



the response of interest. The data corresponding to the experimental endpoints tjj can be

summarized in S 2x(K+1) contingency tables of the following form.

Contingency Table for Time Period s

Dose Z ] ... K Total
No. of events  xqg X1 eee.. XKs X g
No. at risk I0s Tls  veees IKs I.s

In a long-term carcinogenicity experiment, it is assumed that the probability that a
single experimental endpoint occurs in a given time period is independent of the probability
that the endpoint falls into any other time period for animals in each dose group; the data
thus follows the multinomial distribution. Under the null hypothesis of equal tumor
" incidence rates among dose groups, the probability of observing an event is the same for all
dose groups and can be estimated by the ratio of the total number of events to the total
number of animals at risk within the specified time period, or X, g/ 1 5. The expected
number of events for the i-th dose level and s-th time period computed under the null
hypothesis in the multinomial framework is thus Ejg = Tis * (x s/ ). These expected
values can be summed over time periods to obtain the total number of expected events for

each dose level, Ej = L Ej5.

Several authors have shown that the most commonly used tests for carcinogenicity
can be expressed as particular cases of a generic test statistic, Zg, which is asymptotically
distributed as a standard normal variate (Bailer and Portier, 1988), or X2 = (Zg)2, which is

asymptotically distributed as a chi-square random variable (Gart et al., 1986). The




construction of the test statistic Zg is accomplished by dividing a "trend" statistic -- the
weighted sum of differences between observed and expected number of events of interest
over strata defined by dose groups -- by the square root of its cdrrespondin g variance
under the assumption of independent strata (Mantel and Haenszel, 1959). The weights are
taken to be either the actual doses or dose rankings. More specifically, the test statistics can

be calculated as shown below:

Tg X
ZG=V—G, where TG=Zzi(xi-Ei),
i=0

K
S, = o
s=1 S =0

Although the same generic test statistic can be used for several different types of
statistical procedures, both the assumptions and the interpretations of the procedures may
differ appreciably. The main differences between many of the statistical procedures to be
discussed lie in the response of interest tjj, the construction of the S time-dependent strata,
and in the specification of the number of animals at risk, ris . In order to discuss how these )

criteria are determined, the following indicator variables are defined for each experimental

endpoint.

8o = indicator of type of tumor (8¢=0 if observable, 1 if occult)

d1 = indicator of tumor presence  (8;=0 if not present, 1 if present)

&2 = indicator of cause of death (=0 if sacrifice, 1 if natural death by
unknown cause, 2 if natural death by
competing causes, and 3 if natural death due to

tumor)



In general, dyjj is defined as the value of the indicator 8 (k=0, 1, or 2) for the j-th
animal in the i-th dose group. It must be noted that all of the possible values of the
indicator variables defined above may not be available to a particular long-term
carcinogenicity study. Within the context of a single study, the tumor type will generally
remain constant for all experimental endpoints. In many studies, only subsets of the values

of the cause of death indicator, 8;, will be appropriate.

If 80=0 and 8;=1, then the experimental endpoint t;; is taken to be the time of tumor
onset for an observable tumor, i.e., one which can be identified visually or by palpation.
In all other cases, tjj is taken to be the time of death. For example, if 8g=1, §;=1, and
d=1, then tjj is the time of natural death for which histopathologic examination revealed
an occult tumor, i.e., an internal tumor which can be discovered only at necropsy. When a
tumor is observed in an animal that died from causes completely unrelated to the tumor
(competing causes or sacrifice), the tumor is said to be observed in an "incidental” context.
A tumor observed in an animal whose death was directly or indirectly attributable to the

tumor of interest is said to be observed in a "fatal" context.

The three indicators 8¢, 81, and &, together define the amount and types of data
available from a long-term animal study, and thus the appropriate type of analysis.
Although there are 16 theoretical possibilities for the combinations of the three indicators,
there are only nine practical possibilities, as shown in Table 1.3.1.1. For situations in
which no tumors of the given type are discovered at the time of sacrifice or death, then the
cause of death cannot be due to the tumor, and must therefore be due to competing causes
(including sacrifice). The cases in which the triplet (89,81,82) is equal to (0,0,1), (0,0,3),
(1,0,1), or (1,0,3) are thus eliminated from consideration. When an observable tumor type
is determined to be present, then j; is the time of tumor onset and no death status indicator

is necessary. The four theoretical possibilities (0,1,0), (0,1,1), (0,1,2), and (0,1,3) are




thus combined into the one practical possibility (0,1, . ).

Based on the cross-classification of tumor type, tumor-status, and death status,
statistical analyses of long-term carcinogenicity experiments can be considered to fall into
one of four general categories: (1) analysis of observable tumors, (2) analysis of occult
tumors when cause of death is known, (3) analysis of occult tumors when cause of death is
unknown, but assumptions are made regarding cause of death or interim sacrifices are
incorporated, and (4) analysis of occult tumors with unknown cause of death, no
assumptions regarding cause of death, and no interim sacrifices. These four categories
range from the situation in which the most informative set of data possible is available to

the situation when the least information is available regarding tumor incidence.
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Table 1.3.1.1

Possible Combinations of Tumor Type, Tumor Status, and Death Status

5

8o

Tumor
T

81 &2
Tumor  Death o
Status ____Description

0 0 observable tumor not present
at sacrifice

0 2 observable tumor not present at
death from competing causes

1 observable tumor present

0 0 occult tumor not present at
sacrifice

0 2 occult tumor not present at death
from competing causes

1 0 occult tumor present at sacrifice

1 1 occult tumor present at death,
cause of death unknown

1 2 occult tumor present at death
from competing causes

1 3 occult tumor present at death due

to tumor

10
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1.3.2 Case I: Analysis of Qbservabl

The ideal statistical analysis relies on the primary assumption that the tumor to be
studied is detectable either visually or by palpation, so that the time of tumor onset is
directly observable. In terms of the three indicator variables, this occurs when 80=0.
Under the assumptions that the tumor type under study is observable and irreversible, a
standard lifetable method of analysis can be used to test for differences in tumor incidence
(Tarone, 1975). The observed tumor onset times tjj for group (3) are ordered from lowest
to highest to indicate the end of each stratum tg, and tg=t;; where s=rank(t;;) among those

animals with observable tumors (i.e., 59=0 and 81=1). For the i-th dose and s-th time

period, the number of observed tumors can be calculated by

Xig= 2, (1- 8g;) 8y
j:ts-l<tij5ts

‘ The number of censored observations, Cjs, is defined to be those animals dying without the

observable tumor, i.e.,

Cis= z (1'8011)(1'8111).

Jteg<tysitg

The number at risk, rjs, is defined to be those animals alive and tumor-free immediately

before the stratum delimiter, so that

s-1
ris=nj - 2, (Xjj+ Cjj) -
Fl

McKnight and Crowley(1984) state that the response of interest in the analysis of

. all long-term carcinogenicity experiments is the tumor incidence rate, or the instantaneous
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probability of tumor development in an alive tumor-free animal. Since the analysis of .
observable tumors is based on the times of tumor onset, the incidence test is directly aimed

at testing for differences in tumor incidence rates. In this sense, the incidence test

represents the ideal against which all other tests should be compared. H;)wever, its

pract@cal merit ranks very low among the tests to be discussed, as the times of tumor onset

are rarely observable. Nuclear magnetic resonance (NMR) techniques may some day allow

accurate identification of the types of internal tumors which are currently regarded as

occult. Until these methods have been further developed, the analysis of observable

tumnors serves primarily as a hypothetical standard for comparison in simulation studies.

1 II: _Analysis of Occult Tum nown of Death
When the tumor type of interest is occult (8g=1), but the cause of death is known
(82=0, 2, or 3), then analysis proceeds in a straightforward manner. A review of the
statistical methods applicable to the case in which the cause of death is known is provided .
by Kalbfleisch et al. (1983). Separate analyses are performed for tumors observed in an
incidental context (62=0 or 2) and those observed in a fatal context (63=3), as described

below.

1.3.3.1 Analysis of Inci Tumor

Since incidental tumors are assumed to have no effect on mortality, the prevalence
method proposed by Hoel and Walburg (1972) can be used to test for equal tumor
incidence in all dose groups. The time period encompassed by the long-term
carcinogenicity study is subdivided into smaller time periods, with the terminal sacrifice
constituting its own stratum. The time periods can be chosen arbitrarily, although Peto et
al. (1980) discuss an adaptive interval method for defining suitable subdivisions based on
tumor prevalence data. The National Toxicology Program uses the strata defined in weeks

as 0-52, 53-78, 79-92, 93-Terminal Sacrifice, and Terminal Sacrifice (Haseman, 1984). ’
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Within each time-dependent stratum and dose group, xjs is the number of deaths for which
the tumor of interest is observed at necropsy and cjg is the number of animals which die

without the tumor of interest, computed as shown below:

Xis= 2, OOy and cig= X 8g;(1-8y;)
Jteg<tystg g <tyst

The number of animals at risk, ris, is defined as the total number of deaths within a time

period, i.e., ris=Xjs + Cis.

An alternative method for comparison of tumor prevalence in the analysis of non-
lethal tumors is the use of a logistic regression model which adjusts for differential survival
by incorporating age as a covariable in the regression model (Dinse and Lagakos, 1983).
This method avoids the difficulty and potential bias sometimes encountered by the Hoel-
Walburg method in subdividing the length of study into smaller time intervals at the
expense of using a parametric model for tumor prevalence. The logistic regression analysis
models tumor prevalence as a function of both age and dose, allowing for incorporation of
both discrete and continuous covariates. When mortality patterns differ across dose
groups, extensive simulations have demonstrated that the logistic regression test is more
powerful than the Hoel-Walburg test of dose-related trend in prevalence of non-lethal
tumors (Dinse, 1985).

1.3.3.2 Analysis of Fatal Tumors

The analysis of fatal tumors, sometimes called a "death-rate" or lifetable analysis, is
conducted in a manner similar to the analysis of observable tumors except that strata are
formed based on the times of death for which tumors are observed, rather than the

observed times of tumor onset (Tarone 1975, Haseman 1984). In terms of the generic test
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statistic, xis is the number of animals dying with the tumor present in the s-th stratum, cig is
the number of animals dying without the tumor of interest, and ris is the number of animals
in dose group i alive just prior to the s-th time period, as in the analysis of observable

tumors.

1 ination of iden r An,

The separate analyses of incidental and fatal tumors can be combined in an intuitive
manner as described by Peto et al. (1980) when the tumor of interest can be observed in
both contexts. This is possible if a group of animals has a high rate of mortality from
causes unrelated to the tumor (termed "intercurrent mortality"), so that many potentially
fatal tumors may be observed in an incidental context if tumor-bearing animals die of other
causes before being killed by the tumor. The observed and expected number of events for
incidental tumors are denoted in vector form by O!=(0l 01, ,...,0'k ) and
El=(Ely El; ,....Elg ) respectively, and their corresponding variances and covariances in
the matrix V1. Similarly, the observed and expected numbers of events in the analysis of
fatal tumors are denoted by OF and EF, and their corresponding covariance matrix by VF.
These vectors and covariance matrices are summed over analyses to obtain O=01+OF,
E=E! +EF, and V=VI + VF. The test statistic Zg as presented in Section 1.3.1 is then

based on these combined analyses.

Other authors have proposed models which estimate the joint distributions of time
to tumor and time to death from tumor when individual tumors can be classified as either
fatal or incidental. Kodell and Nelson (1980) describe an illness-death model for occult
tumors under the assumption that the time-to-tumor, time-to-death from tumor, and time-to-
death from competing risks follow independent Weibull distributions. Kodell, Shaw and
Johnson (1982), Dinse and Lagakos (1982), and Turnbull and Mitchell (1984) derive

nonparametric maximum likelihood estimators for the time to tumor and time to death from
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tumor based on iterative procedures. All of these methods can incorporate interim sacrifice

data but do not require it for estimation of the time to tumor and time to death distributions.

1.3.3.4 Potential for Bias in Analysis of Fatal or Incidental Tumors

Although the methods of analyzing long-term carcinogenicity studies appear to be
straightforward when the cause of death is known, there is still the potential for bias. Both
incidental and fatal tumor analyses require the assumption that tumor-bearing and tumor-
free animals are equally healthy with regard to all life-shortening disorders, including
toxicity, that are not caused by the presence of the tumor (Gart ez al, 1986). It is often the
case that the presence of tumors accelerates death more in exposed animals than in the
control group due to some cause unrelated to the tumor of interest, especially in the early
age intervals. Analyses of incidental tumors using prevalence methods actually test for
equality of incidence rates only under strict assumptions (McKnight and Crowley, 1984).
The choice of stratification intervals in the analysis of incidental tumors by the Hoel-
Walburg method can bias comparisons of tumor prevalence rates when the intervals are
forced to be too wide by the lack of natural deaths at comparable times in all dose groups
~ (McKnight, 1988). Although prevalence tests are regarded as tests which avoid biases due
to treatment-induced mortality, Bailer and Portier (1988) have shown that these test can be
sensitive to effects of extreme treatment lethality. The analysis of fatal tumors can be
biased by the fact that no distinction is made between rapidly lethal tumors and tumors
which kill their hosts slowly. In addition, Bailer and Portier (1988) have shown that the

lifetable analysis is extremely sensitive to the degree of treatment lethality.

Analyses based on the combination of fatal and incidental tumors can also suffer
from a number of sources of bias. Lagakos (1982) has discussed possible biases resulting
from misclassification of the context of observation. The type of analysis proposed by

Kodell and Nelson (1980) is dependent upon the choice of a certain parametric model for
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which the appropriateness may not be able to be validated, and also depends upon the
strong assumption that the time until tumor onset and time until death from tumor are

- independent. A lack of interim sacrifice data may create difficulties in computation of the
nonparametric maximum likelihood estimates of the time to tumor distribution using the

methods proposed by Kodell et al, Dinse and Lagakos, and Turnbull and Mitchell.

4 III: Analysis of T wn f Death

In many long-term carcinogenicity studies involving non-observable tumors, it is
not possible to classify deaths of tumor-bearing animals as occurring in an incidental
context or fatal context. When the tumor type is occult (8g=1) and the cause of death is
unknown (82=1), then the analysis of the long-term carcinogenicity study must rely on
additional assumptions about the nature of the tumor or additional data as provided by
interim sacrifices. These additional assumptions or data are needed to allow for
characterization of the tumor incidence rates while still adjusting for differential survival

rates among the dose groups.

1.3.4.1 Assumed Cause of Death

In many cases in which the cause of death is unknown for an animal dying with an
occult tumor, an assumption is made that the tumor type of interest is, in general, either
incidental or fatal. If it is assumed that the tumor type is incidental, then the data are
analyzed using the methods described in Section 1.3.3.1. If it is assumed that the tumor
type is generally fatal, then the death-rate methods of analyzing fatal tumors are employed
as described in Section 1.3.3.2. The assessment of the carcinogenicity of chemical
compounds by the National Toxicology Program currently includes both a life table
analysis under the assumption of fatal tumors and a prevalence analysis under the

assumption of incidental tumors.







