ESTIMATING POTENTIAL FUNCTIONS OF ONE-DIMENSIONAL GIBBS STATES UNDER CONSTRAINTS

by

Chuanshu Ji

Department of Statistics
University of North Carolina
Chapel Hill, NC 27514
USA

SUMMARY

Some consistent estimators are constructed for estimating potential functions of one-dimensional Gibbs states. Certain normalization constraints are imposed to resolve the identifiability problem. The step-length selection is also discussed in terms of the convergence rates of those estimators.

Key Words and Phrases: potential function, Gibbs state, consistent estimator

Running Title: Estimation of Potential Functions for Gibbs States

*Research partially supported by a David Ross Fellowship at Purdue University
1. Introduction and Background

A one-dimensional Gibbs state μ_f is a probability measure on the space

$$\Sigma^+ = \Pi_{i=0}^{\infty} \{1, \ldots, r\}.$$

each element of Σ^+ is a sequence $x = (x_0, x_1, \ldots)$ whose
coordinates x_i have possible states $1, \ldots, r$. Define the forward shift
operator $\sigma : \Sigma^+ \to \Sigma^+$ by $(\sigma x)_n = x_{n+1}$, $n=0,1,\ldots$ for $x \in \Sigma^+$. The Gibbs
measure μ_f is the unique σ-invariant probability measure on Σ^+ satisfying

$$c_1 \leq \frac{\mu_f(y : y_1 = x_1, 0 \leq 1 \leq m-1)}{\exp\{-m p + \sum_{j=0}^{m-1} f(\sigma^j x)\}} \leq c_2$$

for some constants $c_1, c_2 \in (0, \infty)$ and for all $x \in \Sigma^+$, $m \in \mathbb{N}$, where p is
called the pressure for f, and f is a real-valued function defined on Σ^+,
called the potential (or energy) function. It is observed that f determines
the dependence in the stationary sequence $X = (X_0, X_1, \ldots)$ which has the
probability distribution μ_f.

Assuming the potential function f is unknown and the observations
X_0, \ldots, X_{n-1} are given. One may want to estimate f based on those n
observations. The motivation for considering such a problem is mentioned in
[2]. However, since two different functions f and g may induce the same
Gibbs measure $\mu_f(=\mu_g)$, f is not identifiable; only μ_f is. Two approaches are
adopted to resolve the identifiability problem: reparameterization and
normalization constraints. In [2], instead of estimating f we estimate the
linear functional $\theta = \int \phi f \mu_f$, where ϕ is a known function. Estimators of
maximum likelihood type are constructed and shown to be strongly consistent, asymptotically normal and asymptotically efficient. In this paper, we show that under appropriate normalization constraints f is identifiable. Strongly consistent (in sup-norm) estimators T_n for the unknown function e^f are constructed.

After renormalization e^f becomes an infinite-step backward transition function (See (2.5)). This suggests us to use a sequence of finite-step (backward) transition functions $\{g_m, m \in \mathbb{N}\}$ to approximate e^f, and at each step m to estimate g_m by a "sample transition function" which is a ratio of two empirical measures. A key question is what is the appropriate order for the step-length m as the sample size n tends to infinity. Some heuristic arguments indicate that m should be of the order $\log n$ so that T_n can achieve the "nearly best" convergence rate among all consistent estimators of e^f.

For simplicity, we only consider the case of the sample space Σ^+ in this paper. However, all results here can be extended to the case of a more general sample space Σ_A^+ in which transitions between certain states are not allowed. The definition and description of Σ_A^+ are given in [2].

Now we define Gibbs states rigorously by Ruelle-Perron-Frobenius theory.

(1) **Forward shift:** Recall that our sample space is $\Sigma^+ = \prod_{i=0}^{\infty} \{1, \ldots, r\}$, which is compact and metrizable in the product topology.

Define the forward shift operator $\sigma: \Sigma^+ \to \Sigma^+$ by $(\sigma x)_n = x_{n+1}$, $n \in \mathbb{N}$, $x \in \Sigma^+$. Observe that σ, although continuous and surjective, is not generally 1-1.

(2) **Hölder continuity:** Let $C(\Sigma^+)$ denote the space of continuous, complex-valued functions on Σ^+. For $f \in C(\Sigma^+)$ define

$$\text{var}_n f = \sup_{x,y} |f(x) - f(y)| : x_i = y_i, 0 \leq i < n;$$
for $0 < \rho < 1$ let

$$|f|_\rho = \sup_{n \in \mathbb{N}} \frac{\text{var}_n f}{\rho^n}$$

and

$$\mathcal{F}_\rho^+ = \{ f \in C(\Sigma^+) : |f|_\rho < \infty \}.$$

Elements of \mathcal{F}_ρ^+ are referred to as Hölder continuous functions. The space \mathcal{F}_ρ^+ is a Banach algebra when endowed with the norm $\|\cdot\|_\rho = |\cdot|_\rho + \|\cdot\|_\infty$.

(3) **Ruelle–Perron–Frobenius (RPF) operators:** For $f, g \in C(\Sigma^+)$, define $\mathcal{L}_f : C(\Sigma^+) \to C(\Sigma^+)$ by

$$\mathcal{L}_f g(x) = \sum_{y : \sigma y = x} e^{f(y)} g(y), \quad x \in \Sigma^+.$$

Theorem 1.1. For each real-valued $f \in \mathcal{F}_\rho^+$, there exists $\lambda_f \in (0, \infty)$, a simple eigenvalue of $\mathcal{L}_f : \mathcal{F}_\rho^+ \to \mathcal{F}_\rho^+$, with strictly positive eigenfunction h_f and a Borel measure ν_f on Σ^+ such that $\mathcal{L}_f^* \nu_f = \lambda_f \nu_f$. Moreover, spectrum $(\mathcal{L}_f) \setminus \{\lambda_f\}$ is contained in a disc of radius strictly less than λ_f. Finally,

$$\lim_{n \to \infty} \|\mathcal{L}_f^n g / \lambda_f^n - (\int g d\nu_f) h_f \|_\infty = 0, \quad \forall g \in C(\Sigma^+).$$

The proof may be found in [1], [4].

(4) **Gibbs states:** Assume that $\int h_f \, d\nu_f = 1$. For each real-valued $f \in \mathcal{F}_\rho^+$, the Gibbs measure μ_f is defined by

$$\frac{d\mu_f}{d\nu_f} = h_f.$$

It is easy to verify that μ_f is an invariant probability measure under σ.

Let $\mathcal{M}_\sigma(\Sigma^+)$ denote the set of all σ-invariant probability measures on Σ^+.

Theorem 1.2. For each real-valued $f \in \mathcal{F}_\rho^+$, there exist constants $c_1, c_2 \in (0, \infty)$ such that (1.1) holds for all $x \in \Sigma^+$ and all $m \in \mathbb{N}$; and μ_f is the
unique element in $\mathcal{M}_\sigma(\Sigma^+)$ satisfying (1.1). In (1.1), $p = p(f) = \log \lambda_f$ is the pressure for f.

The proof is given in [1].

Remark 1.3. Two functions $f, g \in C(\Sigma^+)$ are said to be homologous, written $f \sim g$, if there exists $\varphi \in C(\Sigma^+)$ such that

$$f - g = \varphi \circ \sigma - \varphi.$$

Homology is clearly an equivalence relation. It can be shown (cf. [1]) that $\mu_f = \mu_g$ iff $f - g \sim$ constant; otherwise $\mu_f \perp \mu_g$. Because μ_f and μ_g are ergodic measures.

Remark 1.4. The Gibbs state model includes the following special cases: Let $X = (X_0, X_1, \ldots)$ be a stationary sequence with underlying distribution μ_f.

(i) If $f(x) \equiv c$, for all $x \in \Sigma^+$, then X is a sequence of iid random variables with discrete uniform distribution.

(ii) If $f(x) = f(x_0)$, for all $x \in \Sigma^+$, i.e., f only depends on the first coordinate, then X is a sequence of iid random variables with $P(X_0=l) = c e^{f(l)}$, $l=1, \ldots, r$, where $c = 1/\Sigma_{l=1}^r e^f(l)$.

(iii) If $f(x) = f(x_0, x_1)$, for all $x \in \Sigma^+$ and some $k \in \mathbb{N}$, i.e., f only depends on the first $k+1$ coordinates, then X is a k-step Markov dependent chain.

(iv) If $f(x) = f(x_0, \ldots, x_k)$, for all $x \in \Sigma^+$ and some $k \in \mathbb{N}$, i.e., f only depends on the first $k+1$ coordinates, then X is a k-step Markov dependent chain. $k \in \mathbb{N}$.

In fact the family of Gibbs states includes all finite state stationary k-step Markov chains, $k \in \mathbb{N}$.

2. Construction of Consistent Estimators for e^f under certain constraints on f

The reason that the identifiability problem arises when estimating the potential function f is because all potential functions equivalent to f in the sense of homology induce the same Gibbs state μ_f (See Remark 1.3). The next lemma indicates that in each equivalence class there is a unique distinguished element which satisfies certain normalization conditions. We will construct estimators of this distinguished element later on.

Lemma 2.1. For every $f \in \mathcal{F}_\rho^+$, there uniquely exists $\tilde{f} \in \mathcal{F}_\rho^+$ such that

1. $\tilde{\lambda}_f = 1$;
2. $\tilde{h}_f \equiv 1$;
3. $\tilde{f} \sim f + \text{constant}$.

Proof. Let

$$\tilde{f} = f + \log h_f - \log h_f \circ \sigma - \log \lambda_f,$$

then (1), (ii), (iii) are straightforward.

Furthermore, by [3] Proposition 1 we have

$$\mu_f(x_0|x_1, x_2, \ldots, x_m) = \frac{e^f(x) h_f(x)}{\tilde{\lambda}_f h_f(\sigma x)}, \forall x \in \Sigma^+.$$

where the LHS is the conditional probability of x_0 appearing in the slot 0 given that x_1, x_2, \ldots appear in the slots 1, 2, \ldots. Since the martingale convergence theorem implies that the limit

$$\lim_{m \to \infty} \mu_f(x_0|x_1, \ldots, x_{m-1}) = \lim_{m \to \infty} \mu_f(y : y_i = x_i, 0 \leq i \leq m-1)$$

exists for almost every $x \in \Sigma^+$ under μ_f, the LHS in (2.2) is well-defined as the limit in (2.3). Therefore, the uniqueness follows from (2.2).
Let $\mathcal{F} \subset \mathcal{F}_\rho^+$ be the set of all functions that satisfy (i) and (ii) in Lemma 2.1. In the sequel we just use the notation f to denote the generic element in \mathcal{F} when there is no confusion.

Assume that $X = (X_0, X_1, \ldots)$ is a stationary sequence with probability distribution μ_f, $f \in \mathcal{F}$ and let $x = (x_0, x_1, \ldots)$ denote a specific value of X. We want to estimate the unknown function e^f based on observations X_0, \ldots, X_{n-1}, f and e^f are in 1-1 correspondence. Hence Lemma 2.1 guarantees that e^f is identifiable for $f \in \mathcal{F}$.

Our goal is to construct a random function T_n on Σ^+ based on X_0, \ldots, X_{n-1} such that for every $f \in \mathcal{F}$

$$\sup_{y \in \Sigma^+} |T_n(y) - e^f(y)| \to 0, \text{ a.s. under } \mu_f \text{ as } n \to \infty.$$ \hfill (2.4)

The random function T_n satisfying (2.4) is called a strongly consistent estimator of e^f.

Notice that Lemma 2.1 (i) and (ii) are equivalent to the normalization constraints

$$\sum_{x_0} e^f(x_0, x_1, \ldots) = 1, \forall x \in \Sigma^+. \quad (\text{x})$$

Moreover, for $f \in \mathcal{F}$, by (2.2)

$$\mu_f(x_0|x_1, x_2, \ldots) = e^f(x), \forall x \in \Sigma^+. \quad (\text{m})$$

So e^f may be regarded as an infinite-step backward transition function, which sheds light on the construction of T_n.

First of all, we may use a sequence of finite-step (backward) transition functions $\{\mu_f(x_0|x_1, \ldots, x_{m-1}), m \in \mathbb{N}, x \in \Sigma^+\}$ to approximate e^f. Then at each stage m we estimate $\mu_f(x_0|x_1, \ldots, x_{m-1})$ by the "sample transition
function. Given n observations, the correct order for the step-length m should be $c \log n$, where $c \in (0,1)$ also depends on f, hence is unknown. Certain adaptive procedures are proposed in that situation. Further discussion on the choice of the step-length m will be given in Section 4.

Construction of Consistent Estimator T_n

Given observations X_0, \ldots, X_{n-1} we first construct n periodic sequences $\sigma^j X(n)$, $j = 0,1,\ldots,n-1$ with

$$X(n) = (X_0, \ldots, X_{n-1}; X_0, \ldots, X_{n-1}; \ldots) .$$

Then for every $y \in \mathcal{X}$ and $m < n$ define

$$N_m^{(n)}(y) = \sum_{j=0}^{n-1} \mathbb{I}\{ (\sigma^j X(n))_k = y_k, \ k=0,1,\ldots,m-1 \},$$

$$N_{m-1}^{(n)}(y) = \sum_{j=0}^{n-1} \mathbb{I}\{ (\sigma^j X(n))_k = y_k, \ k=1,\ldots,m-1 \},$$

where $(\sigma^j X(n))_k$ represents the k-th coordinate of the sequence $\sigma^j X(n)$. And define

$$R_m^{(n)}(y) = \begin{cases} \frac{N_m^{(n)}(y)}{N_{m-1}^{(n)}(y)} & \text{if } N_{m-1}^{(n)}(y) > 0, \\ 0 & \text{otherwise} \end{cases}$$

$R_m^{(n)}(y)$, also written as $\frac{N_m^{(n)}(y)}{n} / \frac{N_{m-1}^{(n)}(y)}{n}$, is the "sample conditional frequency" of y_0 appearing in the slot 0 given that y_1, \ldots, y_{m-1} appear in the slots 1,\ldots,m-1. The next two theorems show that under certain conditions $R_m^{(n)}$ is just a strongly consistent estimator of e^f.
Theorem 2.2. Suppose f is an unknown potential function satisfying

(A1) $f \in \mathfrak{F}$;

(A2) $\|f\|_p \leq K$ for a known constant $K > 0$.

Let

$$\bar{a} = \frac{2K}{1-\rho}$$

and

$$m = \lfloor c \log n \rfloor,$$

where $c \in (0, 1)$ satisfies

$$1 - \bar{ac} > 0;$$

the notation $\lfloor z \rfloor$ represents the integer part of z.

Define

$$T_n(y) = R_m^{(n)}(y), \ y \in \Sigma^+,$$

then (2.4) holds for T_n.

Theorem 2.3. Under the assumptions in Theorem 2.2 without (A2), T_n defined by the following procedure also satisfies (2.4).

Procedure 2.4. Choose a sequence of positive constants $\{c_n, \ n \in N\}$, such that $c_n \downarrow 0$ as $n \to \infty$ with arbitrarily slow rate (e.g. $c_n \log n \to \infty$ as $n \to \infty$). Set

$$m = \lfloor c_n \log n \rfloor,$$

then define

$$T_n(y) = R_m^{(n)}(y), \ y \in \Sigma^+.$$

The proofs of Theorem 2.2 and Theorem 2.3 will be given in Section 3.

3. Exponential Decay of Certain Large Deviation Probabilities

In this section the deviation of the estimator T_n from the estimated function e^f is investigated in detail. The main result is that the related
large deviation probabilities drop to zero exponentially as n tends to infinity. As a corollary, the strong consistency of T_n is established.

The next lemma provides uniform bounds for certain conditional probabilities, which will be used very often.

Lemma 3.1. For every $f \in \mathcal{F}$, there exists a positive constant a which depends on f, such that

(3.1) $e^{-a} \leq \mu_f(y_{m-1} | y_0, \ldots, y_{m-2}) \leq 1 - e^{-a},$

(3.2) $e^{-a} \leq \mu_f(y_0 | y_1, \ldots, y_{m-1}) \leq 1 - e^{-a},$

uniformly for all $y \in \Sigma^+$ and all $m \in \mathbb{N}$.

Proof. For $f \in \mathcal{F}$, (1.1) implies that

$$
\mu_f(y_m | y_0, \ldots, y_{m-2}) \geq \frac{c_1}{c_2} e^{f(\sigma^{m-1} y)} \quad \text{and}
$$

$$
\mu_f(y_0 | y_1, \ldots, y_{m-1}) \geq \frac{c_1}{c_2} e^{f(y)}, \quad \forall y \in \Sigma^+, \ m \in \mathbb{N}.
$$

Bowen [1] gives

$$
\begin{cases}
 c_1 = e \\
 c_2 = e^\eta
\end{cases}
$$

with

$$
\eta = \sum_{k=0}^{\infty} \text{var}_k f \leq \frac{|f|_p}{1-p}.
$$

Therefore, (3.1) and (3.2) follow by setting

(3.3) $a = \frac{2|f|_p}{1-p}.$

For $y \in \Sigma^+$ and $m < n$, let

$$
p^{(n)}_m(y) = \mu_f(x \in \Sigma^+ : x_i = y_i, \ i = 0, \ldots, m-1);
$$
and
\[p_{m-1}^{(n)}(y) = \mu_f(x \in \mathbb{Z}^+ : x_i = y_i, \ i = 1, \ldots, m-1). \]

Then
\[\mu_f(y_0|y_1, \ldots, y_{m-1}) = \frac{p_{m-1}^{(n)}(y)}{p_{m-1}^{(n)}(y)}. \]

By (2.5), \(\frac{p_m^{(n)}(y)}{p_{m-1}^{(n)}(y)} \) is close to \(e^f(y) \) for every \(y \) when \(m \) is large.

Notice that
\[
|T_n(y) - e^f(y)| \leq \frac{p_m^{(n)}(y)}{p_{m-1}^{(n)}(y)} - e^f(y) + I \left(N_{m-1}^{(n)}(y) = 0 \right) \cdot \frac{p_m^{(n)}(y)}{p_{m-1}^{(n)}(y)}
\]
\[+ I \left(N_{m-1}^{(n)}(y) > 0 \right) \left(\frac{N_{m-1}^{(n)}(y)}{p_{m-1}^{(n)}(y)} - \frac{p_m^{(n)}(y)}{p_{m-1}^{(n)}(y)} \right) = D_n^{(1)}(y) + D_n^{(2)}(y) + D_n^{(3)}(y). \]

The first term has a uniform upper bound. For \(m \) sufficiently large,

\[
\sup_{y \in \mathbb{Z}^+} D_n^{(1)}(y) \leq e^{\|f\|_{\infty} \text{var}_m f} (e - 1) \leq 2 e^{\|f\|_{\infty} \text{var}_m f}.
\]

In what follows we simply denote the probability of event \(A \) under \(\mu_f \) by \(P(A) \), and the corresponding expectation operator by \(E(\cdot) \).

For every \(\varepsilon \in (0, \frac{1}{4}) \),

\[
P(D_n^{(2)}(y) > \varepsilon) = P(N_{m-1}^{(n)}(y) = 0) \leq P\left(\left| N_{m-1}^{(n)}(y) - np_{m-1}^{(n)}(y) \right| > \varepsilon \right).
\]

Lemma 3.2. For every \(\varepsilon > 0 \),
(3.7) \(P(D_n^{(3)}(y) > 2\varepsilon) \leq P\left[\left| \frac{n^{(n)}_{m-1}(y)}{n^{(n)}_m(y)} - 1 \right| > \delta_1 \right] + P\left[\left| \frac{n^{(n)}_{m-1}(y)}{n^{(n)}_m(y)} - 1 \right| > \delta_2 \right] \),

where \(\delta_1 = \frac{\varepsilon}{1+\varepsilon}, \delta_2 = \left(\frac{\varepsilon}{1-e^{-a}} \right)/\left(1+\frac{\varepsilon}{1-e^{-a}} \right) \).

Proof. Since

\[
D_n^{(3)}(y) \leq \frac{|N^{(n)}_{m-1}(y) - np^{(n)}_m(y)|}{N^{(n)}_m(y)} \cdot \frac{N^{(n)}_m(y)}{N^{(n)}_{m-1}(y)} + \frac{|N^{(n)}_{m-1}(y) - np^{(n)}_{m-1}(y)|}{N^{(n)}_m(y)} \cdot \frac{p^{(n)}_m(y)}{p^{(n)}_{m-1}(y)},
\]

and \(N^{(n)}_{m-1}(y) \geq N^{(n)}_m(y) \), we obtain that

\[
P(D_n^{(3)}(y) > 2\varepsilon)
\leq P\left(|N^{(n)}_m(y) - np^{(n)}_m(y)| > \varepsilon N^{(n)}_m(y) \right)
\]

\[
+ P\left(\left| N^{(n)}_{m-1}(y) - np^{(n)}_{m-1}(y) \right| > \frac{\varepsilon}{1-e^{-a}} \cdot N^{(n)}_{m-1}(y) \right)
\]

\[
+ P\left((1+\varepsilon) |n^{(n)}_m(y) - np^{(n)}_m(y)| > \varepsilon np^{(n)}_m(y) \right)
\]

\[
= P\left(\left| \frac{n^{(n)}_m(y)}{np^{(n)}_m(y)} - 1 \right| > \delta_1 \right) + P\left(\left| \frac{n^{(n)}_{m-1}(y)}{np^{(n)}_{m-1}(y)} - 1 \right| > \delta_2 \right). \quad \square
\]

(3.6) and (3.7) indicate that it suffices to evaluate

\[
P\left(\left| \frac{n^{(n)}_m(y)}{np^{(n)}_m(y)} - 1 \right| > \varepsilon \right) \text{ for large } n.
\]

Now let

\[
Z_j = I\{ c^jX(n) \}_{k} = y_k, \; k = 0,1,\ldots,m-1 \} - p^{(n)}_m(y), \; j = 0,1,\ldots,n-1;
\]
Then
\[N_m^{(n)}(y) - nP_m^{(n)}(y) = \sum_{j=0}^{n-1} Z_j, \]
and
\[\frac{N_m^{(n)}(y)}{nP_m^{(n)}(y)} - 1 \mid > \epsilon \Rightarrow \epsilon nP_m^{(n)}(y). \]

This is the large deviation probability for partial sum of a double-array, mean zero, mixing sequence. The following "splitting" procedure turns out to be useful.

For a small number \(\lambda \in (0,\lambda) \).

Set
\[p = [n^{\lambda}], \]
\[q = [n^{\lambda}]. \]

and
\[k = \left[\frac{n-m+q}{p+q} \right], \text{ i.e.} \]

\[k p + (k-1)q \leq n-m+1 < (k+1)p + kq. \]

Let
\[U_1 = Z_p + \ldots + Z_{p-1}, \]
\[U_2 = Z_{p+q} + \ldots + Z_{2p+q-1}, \]
\[\ldots \]
\[U_k = Z_{(k-1)(p+q)} + \ldots + Z_{kp+(k-1)q-1}. \]

And
\[V_1 = Z_{p+q} + \ldots + Z_{p+q-1}, \]
\[V_2 = Z_{2p+q} + \ldots + Z_{2p+2q-1}, \]
\[\ldots \]
\begin{equation*}
V_k = \begin{cases}
Z_{n-m+1} + \ldots + Z_{n-1}, & \text{if } kp + (k-1)q = n-m+1, \\
k p + (k-1)q + \ldots + Z_{n-m} + Z_{n-m+1} + \ldots + Z_{n-1}, & \text{if } kp + (k-1)q < n-m+1.
\end{cases}
\end{equation*}

Each \(U_i, \ i=1,\ldots,k \) contains \(p \) Z-terms; each \(V_j, \ j=1,\ldots,k-1 \) contains \(q \) Z-terms. In particular, \(V_k \) contains \(s \) Z-terms with

\[m-1 \leq s \leq (p+q-1) + (m-1). \]

The idea is that for large \(n \) both \(\{U_i, \ i=1,\ldots,k\} \) and \(\{V_j, \ j=1,\ldots,k-1\} \) behave approximately like iid sequences. And \(V_k \) does not affect the \(n \)-magnitude of \(\sum_{j=0}^{n-1} Z_j \) very much.

Denote \(nP_m^{(n)}(y) \) by \(b_n^2 \) and note that

\[\sum_{j=0}^{n-1} Z_j = \sum_{i=1}^{k} U_i + \sum_{j=1}^{k-1} V_j + V_k. \]

Therefore,

\[P\left(\left| \sum_{i=1}^{k} U_i \right| > \delta b_n^2 \right) \leq P\left(\left| \sum_{j=1}^{k-1} V_j \right| > \delta b_n^2 \right) + P\left(\left| V_k \right| > \delta b_n^2 \right). \]

with \(\delta = \frac{\varepsilon}{3} \).

Recall the following weak Bernoulli property of \(\mu_f \) (cf. [1] Theorem 1.25).

Let \(\mathcal{A}_{m-1} \) be the \(\sigma \)-field generated by \((X_0,\ldots,X_{m-1}) \); \(\mathcal{A}_{m+n,\omega} \) be the \(\sigma \)-field generated by \((X_i, \ i \geq m+n) \). Then there exist constants \(C > 0 \) and \(\beta \in (0,1) \), which only depends on \(f \), such that

\[|\frac{P(A \cap B)}{P(A) \cdot P(B)} - 1| \leq C \beta^n \]

uniformly for all \(A \in \mathcal{A}_{m-1}, B \in \mathcal{A}_{m+n,\omega} \) and all \(m,n \in \mathbb{N} \).
Lemma 3.3.

$$\left| \frac{E(Z_0 Z_\ell)}{E Z_0^2} \right| = O(\beta^{\ell-m}), \forall \ell \geq m.$$

Proof. (3.8) implies that

$$|E(Z_0 Z_\ell) - E Z_0 \cdot E Z_\ell| \leq C \cdot E |Z_0| \cdot E(Z_\ell) \cdot \beta^{\ell-m}, \forall \ell \geq m.$$

(3.9) follows since $E Z_j = 0$, $\forall j \in \mathbb{N}$.

Lemma 3.4. Let $v \in \mathbb{N}$ satisfy $v \sim n^b$ as $n \to \infty$ with $b \in (0,1]$. Then

$$\frac{E(Z_0^+ \ldots + Z_{v-1})^2}{v \cdot E Z_0^2} = 0(1), \text{ as } n \to \infty.$$

Proof. LHS = $1 + 2 \sum_{\ell=1}^{v-1} \left(1 - \frac{\ell}{v}\right) \cdot \frac{E(Z_0^+ Z_\ell)}{E Z_0^2}$

$$= 1 + 2 \sum_{\ell=1}^{m-1} \frac{E(Z_0 Z_{\ell+1})}{E Z_0^2} + 2 \sum_{\ell=m+1}^{v-1} \frac{E(Z_0 Z_{\ell})}{E Z_0^2} - \frac{2}{v} \sum_{\ell=1}^{v-1} \frac{E(Z_0 Z_{\ell})}{E Z_0^2}.$$

By (3.9),

$$2 \sum_{\ell=m+1}^{v-1} \frac{E(Z_0 Z_{\ell})}{E Z_0^2} = O(1), \text{ as } n \to \infty.$$

Moreover, for $1 \leq \ell \leq m$.

$$E(Z_0^+ Z_{\ell}) = P((X_0, \ldots, X_{m-1}) = (X_{\ell}, \ldots, X_{\ell+m-1}) = (y_0, \ldots, y_{m-1})) - (p_m^{(n)}(y))^2.$$

$$E Z_0^2 = p_m^{(n)}(y) \cdot (1 - p_m^{(n)}(y)).$$

And

$$P((X_0, \ldots, X_{\ell+m-1}) = (y_0, \ldots, y_{m-1}) | (X_0, \ldots, X_{m-1}) = (y_0, \ldots, y_{m-1})) = p_m^{(n)}(y).$$
\[P(X_{m+\ell_1} = y_{m+\ell_1}, \ldots, X_{m+\ell_2} = y_{m+\ell_2} | X_0 = y_0, \ldots, X_{m-1} = y_{m-1}) \]

\[= P(X_{m+\ell_1} = y_{m+\ell_1} | X_0 = y_0, \ldots, X_{m-1} = y_{m-1}) \]

\[\cdot P(X_{m+\ell_2} = y_{m+\ell_2} | X_0 = y_0, \ldots, X_{m-1} = y_{m-1}, X_{m+\ell_1} = y_{m+\ell_1}) \]

\[\cdots \]

\[\leq e^{-b\ell} \text{ by (3.1). (b = -log(1-e^{-a}))} \]

Therefore,

\[\left| \frac{2}{v} \sum_{\ell=1}^{m} \frac{E(Z_{0}^{\ell} \beta)}{E Z_{0}^{2}} \right| \leq \frac{2}{v} \sum_{\ell=1}^{m} \ell e^{-b\ell} + \frac{2}{v} \sum_{\ell=1}^{m} \frac{e^{-b\ell}}{\ell} \]

\[\to 0, \text{ as } n \to \infty; \]

And by the Kronecker lemma,

\[\left| \frac{2}{v} \sum_{\ell=m+1}^{v-1} \frac{E(Z_{0}^{\ell} \beta)}{E Z_{0}^{2}} \right| \leq \frac{2C}{v} \sum_{\ell=m+1}^{v-1} \ell e^{-b\ell} \to 0, \text{ as } n \to \infty. \]

Finally,

\[\left| \frac{2}{v} \sum_{\ell=1}^{m} \frac{E(Z_{0}^{\ell} \beta)}{E Z_{0}^{2}} \right| \leq \frac{2}{v} \sum_{\ell=1}^{m} \frac{e^{-b\ell}}{1-p_{m}(y)} + \frac{2}{v} \sum_{\ell=1}^{m} \frac{p_{m}(y)}{1-p_{m}(y)} \]

\[\to \frac{2\alpha}{1-\alpha}, \text{ as } n \to \infty. \]

Thus (3.10) follows.

The next lemma indicates that \(\{U_i, i=1,\ldots,k\} \) is similar to an iid sequence.

Lemma 3.5. For every \(t > 0 \),
(3.11) \(E[\exp(\frac{t}{b_n} \sum_{i=1}^{k} U_i)] = (E[\exp(\frac{t}{b_n} U_1)])^k (1+o(1)), \) as \(n \to \infty. \)

Proof. Applying (3.8) to the sequence \(\{U_i, i=1, \ldots, k\} \) iteratively gives that

\[
(1 - Cb^{q-m})^{k-1} \leq \frac{E[\exp(\frac{t}{b_n} \sum_{i=1}^{k} U_i)]}{E[\exp(\frac{t}{b_n} U_1)]} \leq (1+Cb^{q-m})^{k-1}.
\]

Since

\[
| (1 \pm Cb^{q-m})^{k-1} - 1 | \leq Ck \beta^{q-m} \to 0, \text{ as } n \to \infty,
\]

(3.11) follows.

Lemma 3.6. For every \(t > 0, \)

(3.12) \((E[\exp(\frac{t}{b_n} U_1)])^k = o(1), \) as \(n \to \infty. \)

Proof. By Taylor expansion,

\[
E[\exp(\frac{t}{b_n} U_1)] = 1 + \frac{t^2}{2} \cdot \frac{E U_1^2}{b_n^2} + \frac{t^3}{3!} \cdot \frac{E U_1^3}{b_n^3},
\]

where \(|\theta| \leq 1 \) may be different on each appearance.

By (3.10),

\[
\frac{E U_1^2}{b_n^2} = o(b_n) = o\left(\frac{1}{n^{q-\lambda}} \right), \text{ as } n \to \infty;
\]

And the same argument as in [5] Lemma 5.4.8 implies that

\[
E|U_1|^3 = o((EU_1^2)^{\frac{3}{2}}), \text{ as } n \to \infty.
\]

Hence \(n \to \infty \)

\[
k \cdot \frac{E U_1^2}{b_n^2} = o(1).
\]
and

$$k \cdot \frac{E U_1^3}{b_n^3} = o(1).$$

Therefore,

$$\{E[\exp(\frac{t}{b_n} U_1)]\}^k = \left[1 + \frac{t^2}{2} \cdot \frac{E U_1^2}{b_n^2} + \frac{\theta t^3}{3!} \frac{E U_1^3}{b_n^3}\right]^k = 0(1), \text{ as } n \to \infty.$$

The main result is

Theorem 3.7. For every $\delta > 0$, there exist $\gamma > 0$ and $n_0 \in \mathbb{N}$ such that

$$P(\sum_{i=1}^{k} U_i > \delta b_n^2) \leq e^{-\delta n^\gamma}.$$

uniformly for all $y \in \Sigma^+$ and all $n > n_0$.

Proof. It suffices to verify the inequality

$$P(\sum_{i=1}^{k} U_i > \delta b_n^2) \leq e^{-\delta n^\gamma}.$$

For every $t > 0$ and n sufficiently large,

$$P(\sum_{i=1}^{k} U_i > \delta b_n^2) = P(\exp(\frac{t}{b_n} \sum_{i=1}^{k} U_i) > e^{t\delta b_n^2})$$

$$\leq e^{-t\delta b_n^2} E[\exp(\frac{t}{b_n} \sum_{i=1}^{k} U_i)]$$

$$= e^{-t\delta b_n^2} \cdot \{E[\exp(\frac{t}{b_n} U_1)]\}^k (1 + o(1)) \quad \text{by (3.11)}$$

$$= e^{-t\delta b_n^2} \cdot 0(1) \quad \text{by (3.12)}.$$
(3.14) follows by setting $0 < \gamma < \frac{1-\omega}{2}$.

Since the same argument shows that

$$\sum_{j=1}^{k-1} |V_j| > \delta b_n^2 \leq e^{-5n^\gamma},$$

and

$$P(|V_k| > \delta b_n^2) \leq e^{-5n^\gamma},$$

uniformly for all $y \in \Sigma^+$ and $n > n_0$, by combining (3.13), (3.15) and (3.16) we obtain

Corollary 3.8. For every $\epsilon > 0$,

$$P\left(\left| \frac{\sum_{m=1}^{n} v_m}{b_n^2} - 1 \right| > \epsilon \right) \leq e^{-\epsilon n^\gamma},$$

uniformly for all $y \in \Sigma^+$ and $n > n_0$.

Proof of Theorem 2.2 and Theorem 2.3.

First by (3.4)

$$\sup_{y \in \Sigma^+} |T_n(y) - e^{-f(y)}| \leq \sup_{y \in \Sigma^+} D_n^{(1)}(y) + \sup_{y \in \Sigma^+} D_n^{(2)}(y) + \sup_{y \in \Sigma^+} D_n^{(3)}(y).$$

Then recall that each coordinate of $y \in \Sigma^+$ may take r different values.

Thus

$$P\left(\sup_{y \in \Sigma^+} D_n^{(i)}(y) > \epsilon \right) \leq r^mp(D_n^{(i)}(y) > \epsilon), \quad i = 2, 3.$$

Hence Theorem 2.2 follows from (3.5), (3.6), (3.7), (3.17) and the Borel-Cantelli lemma.

Furthermore, for every $f \in \mathcal{F}$, the quantity $a = \frac{2\|f\|}{1-\rho}$ satisfies
for n sufficiently large. Theorem 2.3 is proved just like Theorem 2.2.

4. Remark on the step-length selection

Many consistent estimators T_n could be constructed in the same way as in Section 2 provided the step-length m tends to infinity "not too fast". Therefore their convergence rates need to be taken into consideration. In this section we explain why m should be of the order $\log n$ and what is the corresponding convergence rate.

First of all, we have a stronger theorem than Theorem 2.2.

Theorem 4.1. Suppose f is an unknown potential function satisfying (A1) and (A2) in Theorem 2.2. Let $\bar{a} = \frac{2K}{1-\rho}$ and $m = \lceil c \log n \rceil$ (same as (2.6), (2.7)), where the constant c satisfies

$$\frac{\lambda}{-\log \rho} < c < \frac{1-2\lambda}{\bar{a}};$$

and λ is a constant satisfying

$$0 < \lambda < \frac{1}{2 \bar{a} \frac{2K}{1-\rho}}.$$

Define $T_n(y) = R_m^{(n)}(y)$, $y \in \Sigma^+$. Then

$$\sup_{y \in \Sigma^+} n^\lambda \rho^m |T_n(y) - e^{f(y)}| \to 0, \ a.s. \ \text{under } \mu, \text{ as } n \to \infty.$$

Proof. The first inequality in (4.1) implies that

$$n^\lambda \rho^m \to 0 \ \text{as } n \to \infty.$$

Hence by (3.5).
(4.5) \(n^\lambda \sup_{y \in \Sigma^+} D_n^{(1)}(y) \to 0, \) a.s. under \(\mu_f \) as \(n \to \infty. \)

Moreover, the second inequality in (4.1) allows us to obtain a stronger result than (3.17): For every \(\epsilon > 0 \), there exist \(\gamma > 0 \) and \(n_0 \in \mathbb{N} \) such that

\[
(4.6) \quad P(n^\lambda | N_{m_n}(y) - \frac{b}{n}^2 | > \epsilon) \leq e^{-\epsilon n^{-\gamma}}
\]

uniformly for all \(y \in \Sigma^+ \) and \(n > n_0. \)

It follows from the same arguments in Section 3 that

\[
(4.7) \quad n^\lambda \sup_{y \in \Sigma^+} D_n^{(i)}(y) \to 0, \quad i=2,3, \quad \text{a.s. under } \mu_f \text{ as } n \to \infty.
\]

Therefore, (4.3) holds.

Theorem 4.1 shows the sufficiency of the order \(\log n \) for step-length \(m. \)

Is it also necessary? Notice that the empirical measure \(\frac{N_{m}(\cdot)}{n} \) plays a role of sufficient statistics in this nonparametric estimation problem. To derive consistent estimator \(T_n \) in (2.4), the ratio \(\frac{N_{m}(y)}{n} / p_m(y) \) has to be close to one for every \(y. \) Hence \(n \ p_m(y) \) should be large for every \(y. \) By (3.1)

\[
n e^{-ma} \leq n p_m(y) \leq n e^{-mb}
\]

uniformly for \(y \in \Sigma^+ \) and all \(m \in \mathbb{N}, \) where \(b = -\log(1-e^{-a}) > 0. \) So \(m \) should grow no faster than \(c \log n \) for some \(c > 0. \) On the other hand, (3.4) suggests that there is a trade-off between the good approximation (evaluated by \(|\mu_f(y_0| y_1, \ldots, y_{m-1}) - e_f(y)| \)) and the accurate estimation at each step (evaluated by \(|T_n(y) - \mu_f(y_0| y_1, \ldots, y_{m-1})| \)). The convergence rate of the
former part will be damaged if \(m \) grows too slowly. Therefore, \(\log n \) is the right order for \(m \) and the constant \(c \) is determined by (4.1).

Let \(\Lambda = \frac{1}{2 + \frac{a}{-\log \rho}} \). Then for \(\lambda \geq \Lambda \) no constant \(c \) will satisfy (4.1).

Therefore (4.3) can not be established under our construction of \(T_n \). We conjecture that in that situation no other methods can produce the result (4.3), i.e. if \(\lambda \geq \Lambda \), let \(T_n \) be an arbitrary consistent estimator of \(e^f \) in the sense of (2.4). Then (4.3) fails for some \(f \) satisfying (A1) and (A2). For the time being, the rigorous proof is still in the process of development.

Acknowledgement

This work constitutes a part of the author's doctoral dissertation, which was written under the supervision of Professor Steven Lalley. The author gratefully acknowledges Professor Lalley's guidance and support.
REFERENCES

