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ABSTRACT

An elementary axiomatic approach along the lines of axiomatization of probability

functions is developed. Some essential differences are noted.
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1. INTRODUCTION

Combinations of 'evidence', 'expert opinion', 'support', 'likelihoods' or just 'data' in
general, in a fundamental problem of statistical analysis, with an implied emphasis on
condensation and summarization. Although the problem has a venerable history, dating
back at least as far as T. Bayes' investigations, and has, indeed, received considerable
attention in the statistical literature of the last two decades (e.g. McConway (1981), Good
(1983,1985), Genest and Zidek (1986)), this theme has attracted only superficial attention
in most textbooks. Moreover, much current research in the field seems to be devoted,
primarily, to construction of rules for combination ('pooling') of opinions in specific cases
(see, e.g. Stone (1961), and later, more detailed discussions in DeGroot (1974) and Kadane
et al. (1980)). To the best of our knowledge, there have been few serious attempts at
axiomatization of combination of evidence analogous to Kolmogorov's axiomatization of

probability or Shannon's axiomatization of measures of information.



It was against this background that our attention was caught by an article by V.L.
Stefanyuk (1987) devoted to a description of expert systems. He presented an axiomatic
approach to certain formulas for combinations of evidence (or likelihoods). In particular he
derived an analog of the classical addition formula for probabilities. This derivation,
however, was based on quite sweeping assumptions about the function representing support
('degree of confidence' is Stefanyuk's term) for a hypothesis.

In this paper we (i) derive Stefanyuk's formula in a simpler fashion with less
restrictive assumptions and (ii) investigate the effect of further relaxation of a key
assumption.

Related arguments will be found in Shortliffe and Buchanan (1975) and Shortliffe
(1976, Chapter 4) in connection with combination of expert opinions in medical diagnosis.
See also the recent article by Rennelles and Shortliffe (1987).

The elementary deviations and analysis in this note may be of use in courses on
probability theory for undergraduates and first year graduate students, and may trigger

further research in this field.

2. STEFANYUK'S AXIOMS

Stefanyuk (1987) presented the following axioms for a function x(a,5) representing
the combination of two supports a, for a hypotheses:
a) 0<a<l; 0<A<1; 0<x(af) < 1.
b) x(e¢,0) = a
¢) x(a,B) is a symmetric function of a and 3.
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e) x(a,f) can be expanded as a power series in @ and .

f) subject to (a)—(e), x(@,B) has its maximum possible value.




Axiom (a) and (b) establish a scale of 0 to 1 for 'support'. (Note that this approach
does not allow for negative support, though Shortliffe (1976) does allow for this — see
Section 6.)

Axiom (c) is natural; it supposes that the order in which the support is received is
immaterial. Axiom (d) just says that the combination of two evidences, each giving full
support separately, also give full support when combined.

The remaining axioms are less self-evident. Axiom (e) is, perhaps, not unreasonable;
though Stefanyuk (and ourselves) restrict it further in order to obtain explicit formulas for
x(a,f). Axiom (f) seems the least natural, though it is in the spirit of axiomatizations
along information—theoretic lines. In fact in our derivation of Stefanyuk's formula, using
his restricted form of (e), we do not need to use (f). It is, however, needed when the
restrictions on (e) are relaxed slightly.

An equally appealing axiom would be (f)' x(a,f) is a nondecreasing function of a and
B separately. (Note that if (f) were to be replaced by (f)', then axiom (d) would not be

necessary, since from (b) we would have x(1,0) = 1, and from (f)' and (a), 1 < x(1,1) < 1.

3. STEFANYUK'S FORMULA

Stefanyuk restricts the expansion under axiom (e) to terms of 2nd and lower order,
and then derives the formula
x(a,f) = a+ - af. (1)
This has a formal analogy to the well-known formula,
P(AuB)=P(A) + P(B)-P(ANB)
for the probabilities relating to two independent events A,B.

Axiom (e) states that
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xef)= L I a af.
r=0 s=0



With Stefanyuk's restriction, a . =0 for r+s > 2.
We first note that, generally

(i) (c) implies a o = 2.

(ii)) (b) implies (§

aoarza for 0 < a <1, whence
r=0 T

a10(-291) = 1; g (=ag) =0 forr#l.

(iii) (d) implies

5 3 3 ¥y 5 (cf. (i))
a =1= a_+2 a_ + 2 a cf. (i
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= a_. +2 a_ . +2 cf. (ii
=1 T 1<res 8
whence
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r=1 1<r<s IS

Ifa = 0for r+s > 2, then (iii) gives a;7 = —1, and so, noting (from (ii)) that a0 =

ag) = 1, we have

x(o,f) = a+ - af

which is Stefanyuk's formula.

Note that condition (f) is not used in this derivation.

4. CASEr+s<3

If the restriction on (e) is relaxed to allow a . #0if r+s <3 then from (i)~(iii):

x(a,8) = a+f - aff - ay9 0f(2-a-p)

Since 2~a—f > 0 if a # §, condition (f) requires that a9 has the least possible value.



Now x(1,0) = 1-a;, B(1-4) < 1.

Hence a9 2 0, and the least possible value of 319 is 0.

So x(a,0) = a+8 - of.
This is the same formula as for r+s < 2; however, we will now show that a different

result is obtained if r+s < 4.

5. CASEr+4+s<4

If we allow a ., # 0 for r+s < 4, then from (i)—(iii):
X(@f) = a+f - af - a1 af(2-a-) - a4 af(2-0>~) - a,,0f(1-af);
x(1,8) = 1‘(312+322)ﬁ(1‘ﬂ) - amﬁ(l“ﬂ?)

In order to satisfy (f) we will make x(1,4) = 1 for 0 < B < 1. Equating coefficients of powers

of 3 to zero, we obtain

819 T 399 T 213 =215 + 299 =2.3=0
whence

x(a,8) = a+f~ aff - ay50f(1-a—f+ap)
= a+f- aff - 319 af(1-a)(1-0)
To satisfy (f) we require a1, to have its least possible value.
Since x(1,6) = 1 for all # and x(a,B8) < 1 for all a,3 we must have

&\5 a,f)
a

2 0 for all g.
a=1




ie. (1-8)(1+a;50) 2 0

whence

398241
ie. a9 2 -1/8 for 0<p<1.
The least possible value of 4, is therefore -1, giving

x(e,f) = a+f - af + af(1-a)(1-H)
(2)
= [= 1-(1-0)(1-p)(1-ap)]

This differs from Stefanyuk's formula by the additional term af(1-a)(1-6).

6. THE POSSIBILITY OF ALLOWING FOR NEGATIVE SUPPORT

Although the axioms (a)—(f) do not require x(@,f) to be a nondecreasing function of a .
and f separately, both formulas (1) and (2) do have this property. It is, therefore, implicit
in this approach that any additional evidence cannot decrease the total support — that is,
the possibility of adverse evidence is excluded. We now consider some points arising in
trying to allow for adverse evidence.

We present the following axioms, tentatively, as a basis for allowing for negative
support ("evidence against")

%
(a) ~1<a<;-1<A<1;-1 <x(af) < 1.

(&) X(=0, =f) = —x(a,p)

together with (b), (c) and (d), and possibly (f).
Note that from (g)

x(~a,a) = —=x(,-a)




but from (d) x(-a,a) = x(a,~a)
so x(@,—a) = 0 which is natural, as it reflects a balance of evidence pro and con.
The simple approach of converting formula (1) to allow for a measure o* of support

having range -1 to +1, by the transformation
$(a*+1) = a, or equivalently o* = 2a-1
would not satisfy (g).
In fact, from (1) we would obtain
Hx®(0%,5%) - 1} = §(a*+1) + Y(B*+1) - Ha*+1)(F*+1)

whence

x*(o*,0%) = H1+a*+f*~a*f*),
implying

x*(a*,—a*) = H1+a*7) # 0

and X*(—0* —f*) = Y1-a*—fF*+a*F*) # —x*(o*,5%).

2)

Note, also, that the natural conditions
x*(1,65) =1 for B*>0; x*(1,/) <1 for f*<0
cannot be satisfied by any polynomial representation. (If the polynomial x*(1,5%) is
constant for 0 < #* < 1, it must be constant for all #*, including * < 0.)

It does seem desirable to allow for the possibility of support decreasing as a result of
additional information. There are, however, circumstances — for example, when support is
measured by precision, or reciprocal variance of an estimator — when additional
(independent) observation cannot decrease support, so that Stefanyuk's approach can be
justified. Another example is in multiple linear regression analysis, wherein the addition of
a further predicting (control) variable cannot reduce the residual sum of squares (of

differences between observed and fitted regression values).



REFERENCES

DeGroot, M.H.(1974) Reaching a consensus, J. Amer. Statist. Ass., 69, 118-121.

Genest, C. and Zidek, J.V. (1986) Combining probability distributions, Statist. Sci, 1,
114—-135. )

Good, 1.J. (1983) Good Thinking: The Foundations of Probability and its Applictions
Minnesota University Press, Minneapolis, Minnesota.

bl

Good, I.J. (1985) Some statistical applications of Poisson's work, Statist. Sci., 1, 157-180.

Kadane, J.B., Dickey, J.H., Winkler, R.L., Smith, W.S. and Peters, S.C. (1980)
Interactive elicitation of opinion for normal linear model, J. Amer. Statist. Ass., 75,
845-854. o

McConway, K.J. (1981) Marginalization of linear opinion pools, J. Amer. Statist. Ass.,
'Z@, 410-414.

Renelles, G.D. and Shortliffe, E.H. (1987) Advanced computing for medicine, Sci.
American, 257 (4), 154-161.

Shortliffe, E.H. (1976) Computer Based Medical Consultations. MYCIN, American
Elsevier, New York.

Shortliffe, E.H. and Buchanan, B.G. (1975) A model of inexact reasoning in medicine
Math. Bio Sci., 23, 351-379.

3

Stefanyuk, V.L. (1987) Some aspects of theory of expert systems, Soviet J. Comp. Svst.
Sci., 25(2), (translation of original Russian article in Tekh. Kibernet. , No. 2, 85-91

(1987)).

Stone, H. (1961) The opinion pool, Ann. Math. Statist., 32, 1339-1342.




