
Online request scheduling subject to a percentile
response time SLA in a distributed cloud

Keerthana Boloor ∗ ‡, Rada Chirkova † ‡, Timo Salo ‡, and Yannis Viniotis ∗ ‡
∗Department of Electrical and Computer Engineering, NC State University, Raleigh, North Carolina 27695

† Department of Computer Science, NC State University, Raleigh, North Carolina 27695
‡ IBM Software Group, RTP, North Carolina 27709

kboloor@ncsu.edu,chirkova@csc.ncsu.edu,tjsalo@us.ibm.com,candice@ncsu.edu

Abstract—We consider geographically distributed data centers
forming a collectively managed cloud computing system hosting
multiple applications, each subject to Service Level Agreements
(SLA). The Service Level Agreements for each application require
the response time of a certain percentile of the input requests
to be less than a specified value, with the non-conforming
requests being charged a penalty. We present a novel approach of
heuristics based request scheduling at each server in each of the
geographically distributed data centers, to globally minimize the
penalty charged to the cloud computing system. We evaluate
two variants of our heuristic-based approach, one based on
the simulated annealing method of neighborhood searches and
another based on gi-FIFO scheduling, which has been analytically
proven to be the best schedule for percentile goals in a single
machine, multi-class problem. We also compare our approaches
with FIFO scheduling.

I. Introduction and motivation

Deployment of on-demand e-business applications in large
cloud computing systems is getting increasingly pervasive.
The significant reduction of the total cost of ownership by
deploying web-based applications in massive data centers is
resulting in many businesses opting to host their applications
in a cloud. The e-business applications with implementations
usually based on service oriented architectures tend to be
global in scale and require deployments in geographically
distributed data centers for scalability and survivability [1] [2].

Most enterprise applications hosted by a cloud computing
system provider are associated with a Service Level Agree-
ment (SLA), which specifies terms and conditions of the
service provided by the cloud for the application [3]. With the
applications deployed across multiple data centers, there is a
need for resource allocation and request scheduling techniques
for the satisfaction of the SLA of each application, globally,
across the geographically distributed data centers.

Typically, SLAs for business applications specify (among
other constraints) certain guarantees in terms of the fraction
of requests serviced, as opposed to average-performance cri-
terion. Thus, many service level agreements are designed to
provide specific percentile-based performance goals. Recent
business trends in cloud computing systems have shown
increasing adoption of fixed-step percentile SLAs, where a
certain fraction of service requests for a hosted application is
required to have a specific response time [4]. As geographi-
cally distributed data centers, each having a large number of

P

X 100

Penalty charged per 

non-conforming request 

($)

Conformance(%)
0

Fig. 1: Example percentile SLA.

servers, form a cloud computing system, this percentile SLA
has to be respected globally across all the servers among all
the data centers.

In this paper we consider the single-step percentile SLA,
where the fraction of service requests to be executed within
a certain response time is specified, along with the penalty
charged on the cloud on the non-conformance of the percentile
requirement. The formal description of the SLA we consider is
as follows: Let X% be the fraction of requests of a particular
application which need to have a response time less than
r seconds. If the percentile of requests that have response
time less than r seconds is less than X%, then each of
the non-conforming requests contributing to the drop in the
percentile is charged a penalty of P$, as shown in Fig. 1. In
our paper we consider the problem where a cloud computing
system consists of multiple geographically distributed data
centers, each with a large number of servers. The centers host
collectively multiple classes of applications, which are each
negotiated with a single step-wise SLA and so have to be
adhered to globally by the cloud. We consider the situation
where requests for different applications arrive at the servers
hosting the applications, and the requests queued at each
server have to be scheduled optimally in order to minimize
the penalty charged according to the SLAs negotiated. We
make no assumptions about any prior knowledge about the
number of requests arriving at the cloud computing systems
for different applications or at different data centers. Hence
there is a need for a dynamic scheduling algorithm, which
would schedule incoming requests at each server, taking into



consideration the global conformance of the percentile single-
step SLAs for all classes of applications.

In this paper we propose a novel Online algorithm for the
scheduling of requests at the end servers of the data centers
of a cloud. We perform extensive evaluations to demonstrate
that the algorithm provides optimum schedules that globally
minimize the total penalty in the cloud. To the best of
our knowledge, this is the first effort towards considering
global conformance of percentile SLAs and utilizing a Online
approach for scheduling of service requests at each of the end
servers to collectively minimize the penalty.

Resource management techniques for cloud computing sys-
tems have been researched extensively. However, none so
far have dealt with request scheduling in geographically dis-
tributed data centers or with global conformance to percentile
SLAs. In [3] the authors derive a closed-form expression for
average response time in terms of scheduling and routing of
requests for a single data center. They use tabu search for
optimum solutions based on a step-wise SLA, with penalties
alloted for steps of response time and not percentiles. Authors
of [4] also consider step-wise percentile SLAs and propose
scheduling algorithms for a single database server; in this
work we propose a distributed solution. Authors of [5] pro-
vide an analytical solution for resource optimization subject
to percentile response time, by modeling the system as an
overtake-free open tandem queuing network with feedback.
They provide closed-form expressions of the probability dis-
tribution function of the response time. In contrast, we provide
a heuristic-based scheduling algorithm for global conformance
in a distributed data center topology.

In summary, our contributions in this paper are as follows:
• We identify the need for SLA-based, penalty-minimizing

request scheduling at end servers of a cloud computing
system with geographically distributed data centers.

• We propose an Online request scheduling algorithm for
geographically distributed data centers hosting multiple
classes of requests, aiming to minimize the penalty
charged on the cloud computing system.

• We propose and evaluate two heuristic-based variants of
our algorithm, one based on Simulated Annealing [6]
and another based on the gi-FIFO schedule, which has
been mathematically proven in [7] to be the most suitable
for percentile SLAs for a single server serving multiple
classes.

The paper is organized as follows. In Section II, we de-
scribe the topology of the cloud computing system under
consideration. In Section III, we explain our heuristic-based
scheduling algorithm. In Section IV, we evaluate our algorithm
and compare it with alternatives.

II. Problem formulation
A. System model

The general architecture of the system is shown in Fig. 2.
The following are the key elements of the system:
• Clients. These are nodes that generate the service re-

quests forwarded to the servers at the different data

Data center 1 

hosting K 

applications
Clients

Data center 3 hosting K 

applications

Data center 2 

hosting K 

applications

Fig. 2: The general architecture of the system.

Server ‘j’ at data 

center ‘i’

Class 1

Class 2

Class K

Fig. 3: Model of an end-server in a data center.

centers of the cloud. The clients are represented as the
internet cloud in Fig. 2.

• Data centers and hosted applications. A data center
is a cluster of a large number of networked computing
resources. In the topology considered, multiple geograph-
ically distributed data centers form the cloud computing
system with each data center hosting the same set of
applications as shown in Fig. 2. Each data center receives
web service requests for applications from clients. An
application’s web service end points are replicated in
all the data centers, i.e., any data center is capable of
serving a request for any application. Each application is
identified by a class. So if the cloud hosts K applications,
there are K classes of requests to be served by the data
centers.

• Model of resources in a data center. Each data center
has a number of servers (resources) for processing the
web service requests. A server processes a single request
to completion each time. A request being processed
cannot be preempted. Requests arriving when the server is
busy are queued. Each server in a data center can process
a request of any class (application). So each server in the
data center is modeled as serving multiple single-class
queues, each queue holding requests of a particular class
as shown in Fig 3.

• Percentile Service Level Agreements. In this problem
we consider percentile SLAs where the percentile of
service requests to be executed within a certain response
time is given, along with the penalty charged on the cloud
for the non-conformance of any service request beyond
the stated percentile as shown in Fig. 1. The SLA is global
in definition, i.e., all the data centers in the cloud have to
collectively respect the SLA. So, the response time and



percentile constraints of the application should be met at
the global cloud system level.

The service requests for different applications from the clients
can be routed to any end server at any data center in the
cloud. The routing of service requests to the different servers
is based on cloud management policies depending on load
of individual servers, proximity to databases etc. (We do not
consider the problem of routing the service requests to the
servers.) The new requests are queued for scheduling at the
servers. The most common scheduling principle in a non-
preemptive system is the First-in-First-out (FIFO) policy. In
FIFO, some requests can be delayed beyond the constraints
specified in the SLA and incur penalties. Requests of different
classes when delayed, incur different penalties, based on the
current number of requests that conform to the response-
time constraint mentioned in the SLA. The local scheduling
policy at each end server should be such that the cloud
globally minimizes the penalty. There is a need for a dynamic
scheduling policy which schedules new requests at end servers,
to adhere to the SLAs specified for each class of service
request and thus minimizing the penalty incurred globally.

B. Problem statement

We want to schedule the incoming service requests of
different classes locally at the servers in the geographically
distributed data centers so as to minimize the total global
penalty incurred.
More specifically, we want to determine a scheduling algo-
rithm that provides the minimum in equation 1 below:

min
∑

1≤j≤K

penj (1)

where penj is the penalty charged for non-conformance of the
requests of class j as described by Fig. 1 for the entire cloud.

III. Online scheduling algorithm for global percentile
SLA conformance

In this paper, we propose a distributed, measurement based
policy to schedule requests queued at individual servers lo-
cated in each data center in the cloud. There are two basic
ideas behind the proposed scheduling policy. The first is that,
for the scheduling at each server to be based on the current
global SLA conformance, we propose periodic updates of
conformance levels of each application between the geograph-
ically distributed data centers so that each data center is aware
of the current global conformance at periodic intervals. The
second is the calculation of penalty incurred by each arriving
request, which is charged, if it does not meet the response
time constraint; this calculation (see Algorithm 3) is done
adaptively, based on the current global non-conformance of
the class of the request, which is the fraction of requests of
the class which have not met the response time specified in the
SLA (1−cck). The aim is to ensure that incoming requests of
classes with higher current conformance with respect to their
SLA are assigned a lower penalty and vice versa.

1) Algorithm description: The observation interval (T
secs) during which the SLA has to be met is divided into
several subintervals, the number of which is configurable.
The observation interval is applicable to the entire distributed
cloud i.e the observation interval is the duration for which the
equation 1 has to be minimal. This can repeat indefinitely or
a set number of times configurable by the cloud administrator.
The subintervals start and end at the same instant in all the
data centers (synchronization). Each subinterval is partitioned
into a “scheduling phase” and an “adaptation phase”, as shown
in Fig. 4 and formalized in Algorithm 1. The two phases are
explained in detail in Algorithms 2 and 3.

Adaptation phase In the adaptation phase, described in Al-
gorithm 2, each data center exchanges its current conformance
levels of all classes with other data centers in the cloud, and
each data center calculates the updated conformance levels for
all the classes. This updated current conformance level (cck
in Algorithm 2 and 3) is used in individual request-penalty
calculations during the scheduling phase.

Scheduling phase In the scheduling phase, run at each end-
server, shown in Algorithm 3, each arriving request at end-
server is assigned a penalty and scheduled. We calculate the
effect of delaying the recently arrived request on the current
non-conformance, so the numerator and denominator in equa-
tion (A) of Algorithm 3 are both incremented by one request. If
delaying this request causes the non-conformance to increase
beyond that given in the SLA, then the request is assigned
a penalty pk, else it is assigned a penalty of 0. This penalty
assignment (paj) is performed at each end server, upon arrival
of every request and so each queued request has a penalty
assigned, which is charged if it does not meet the response
time. So our multi-class, multi-server, percentile penalty-based
scheduling problem is now converted to the well-investigated,
multi-class, single machine scheduling problem, in which
the penalty charged is dependent on the request completion
time [8] shown in Equation (B) of Algorithm 4. Determining
the schedule that minimizes the total penalty for the single
server in Equation (C) in Algorithm 4 is known to be NP-
hard [9]; typically, such a problem is solved with heuristics for
neighborhood searches [10]. The neighborhood search method
we have chosen is Simulated Annealing (SA) [6]. In this
iterative method, summarized in Algorithm 4, we begin with
a seed schedule in the first iteration, typically ordered on the
arrival instants (in our implementation); in each subsequent
iteration, we re-order the requests queued and calculate the
penalty for each schedule obtained. The next schedule to
move to is chosen in random and this is continued for a set
number of iterations. At the end, we choose the schedule
with the lowest penalty [6]. We investigate two methods
of neighborhood search in simulated annealing, namely last
insertion and pairwise interchange [10]; we have selected them
for the computational overhead they introduce. They differ in
the way of obtaining the next (neighbor) schedule. In pair-
wise interchange, we interchange the order of two randomly
selected service requests in each neighbor schedule and so we
have a maximum of n(n − 1)/2 number of schedules with



n being the number of requests queued. However, depending
on the number of iterations, all the schedules may not occur.
In last insertion, a new neighbor is generated by inserting the
recently arrived request in different positions of the schedule
leading to a total of (n− 1) schedules.

Aheuristic similar to simulated annealing is Tabu
Search [10]. Tabu search prevents the occurrence of
local optima in any neighborhood search. In tabu search, a
search for the optimum solution is carried out in a similar
manner as in simulated annealing, in addition, a tabu list
is maintained which holds a configurable number of past
traversed schedules. The currently found schedule is compared
to the list and if it is found, it is discarded and a new schedule
is obtained in its place. The two variants of neighborhood
search proposed for simulated annealing can be utilized for
Tabu search as well.

Our second method of scheduling the arriving request at
each end sever is the gi-FIFO policy [7], which is described
as follows: First, choose the request class with the highest
penalty; then, amongst all the queued requests of the chosen
class, choose one with maximum waiting time but which results
in a response time less than or equal to r. If no such request
exists, choose the request with higher waiting time resulting
in a response time greater than r.

The gi-FIFO policy was shown to maximize delay per-
centiles in single-server systems [7]. In Section IV, we com-
pare the two variants of simulated annealing,Tabu search with
pairwise interchange and gi-FIFO and FIFO policies with
respect to minimizing penalty in our system.

2) Assumptions: In formulating the algorithm we have
made the following assumptions:
• The latency in exchanging messages between the geo-

graphically distributed clusters is negligible when com-
pared to the request inter-arrival and service times.

• The time required for updates of the status of an arriving
request, to propagate to all servers in the data center is
negligible compared to the service request inter-arrival
and service times.

• The processing time of a service request at a server is
known on its arrival.

• The data-centers are synchronized and so the subintervals
start and end at the same instant at all data-centers.

00:00 06:00

Scheduling 

phase

Scheduling 

phase

Adaptation 

phase

Adaptation 

phase

Observation interval (T)

subinterval

Fig. 4: Periodic scheduling and adaptation at each data center.

IV. Evaluation
In this paper, we center our evaluation (performed via

simulations) on the following questions. The first question we

Algorithm 1 Online scheduling algorithm for global penalty mini-
mization.

Input:
• Length of observation interval: T
• Number of subintervals: Z

Output: Minimization of Equation 1.
for z = 1 to Z do

Scheduling phase as in Algorithm 3
Adaptation phase as in Algorithm 2

end for

Algorithm 2 Adaptation phase at datacenter d, calculating updated
global conformance levels.

Input:
• Number of geographically distributed data centers: N
• Number of classes of service requests: K
• Number of requests serviced of class k in data center

l in current subinterval: Xslk ∀k ∈ {1, . . . ,K} ∀l ∈
{1, . . . , N}

• Number of requests class k in data center l which met
the required response time in current subinterval: Xrlk

• Total number of requests serviced of class k from the
start of the observation interval as measured by d: Xk

• Current conformance of class k in cloud as calculated
by data center d: cck

Output: Updated current global conformance calculated by
d: cck ∀k ∈ {1, . . . ,K}

for k = 1 to K do
temp = 0
temp2 = Xk

for i = 1 to (d− 1) and i = (d+ 1) to N do
temp = temp+Xrik
Xk = Xk +Xsik /*Get updates from all other data centers*/

end for
cck = (cck∗temp2+temp)/Xk /*Updated conformance level*/

end for

investigate is “How does the solution algorithm suggested
for solving the minimization problem in equation 1 per-
form?” A representative scenario involves a cloud computing
system with (a) K = 10 classes of services each with SLAs as
described in Fig. 1, (b) N = 5 geographically distributed data
centers, (c) 10 servers in each data center, (d) the input arrival
process is Poisson, (e) the service processes are exponential,
uniform across all classes. Typical results for such simulation
runs show that the simulated annealing algorithm substantially
outperforms the FIFO policy. For example, Fig. 6 shows (with
95% confidence intervals) the penalty incurred in FIFO is
much higher (many times, almost 103 times) than that incurred
by our algorithm for varying input rates. Moreover as Fig. 5
shows (with 95% confidence intervals) Online scheduling
typically outperforms FIFO even on a per class basis, with
conformance levels for each class matching that required by



Algorithm 3 During scheduling phase: A request j arrives at end-
server s for service.

Input:
• Number of servers in each data center: ml ∀l ∈
{1, . . . , N}

• Request j of class k arrived at queue of server s at
data center l ∀k ∈ {1, . . . ,K}, ∀s ∈ {1, . . . ,ml}, ∀l ∈
{1, . . . , N}

• Penalty per request of class k on non-conformance as
per SLA: pk ∀k ∈ {1, . . . ,K}

• Required global conformance of class k as per SLA:
ck ∀k ∈ {1, . . . ,K}

• Required response time conformance of class k as per
SLA: rk ∀k ∈ {1, . . . ,K}

• Number of requests queued at server s at data center l
at time t: qls

Output: Penalty applied for newly arrived request j in the
schedule if it does not meet rk: paj

if qls = 0 and server s is free then
Dispatch request j for processing at end-server s
Depending if request j met the response time, update

the conformance for class k.
else

nonconf = ((1− cck) ∗Xk + 1)/(Xk + 1) (A)
if nonconf > (1− ck) then

paj = pk /*non-conformance high, pk penalty assigned to j*/

else
paj = 0 /*non-conformance low, 0 penalty assigned to j*/

end if
Insert request j charged with penalty paj in the queue

of end server s
Apply heuristics for scheduling the request as in Algo-

rithm 4.
end if

the SLA whereas conformance levels in FIFO is much lower
than that in the SLA.

The estimation of nonconformance in equation (A) in Al-
gorithm 3 (and the corresponding penalty prediction for each
individual request) is a key element of our scheduling policy.
Therefore, the second question we wanted to answer is “Does
the scheduling algorithm adapt the penalty assigned to an
incoming request according to the current conformance of
its class?” In the same configuration as in the first experiment,
consider, for example, two classes with differing conformance
requirements. Fig. 7 is a typical depiction of the penalty
charged to an incoming request for both classes for a small
time window. As can be seen in Fig. 7, the penalty for the class
with higher conformance requirement was constantly higher,
indicating the desired adaptation feature.

Intuitively, since our algorithm attempts to minimize the
total penalty as expressed in Equation 1, it must ensure that
classes with higher pk penalty values are scheduled “sooner”
than classes with lower such values. So the third question

Algorithm 4 Simulated Annealing/gi-FIFO based optimum sched-
ule for requests queued at server.

Input:
• Number of requests queued at server s at datacenter l

at time t: n ∀s ∈ {1, . . . ,ml}, ∀l ∈ {1, . . . , N}
• Process time of request j: Pj ∀j ∈ {1, . . . , n}
• Starting time of request j: xj ∀j ∈ {1, . . . , n}
• Penalty charged if request j is scheduled at time xj :

pnj(xj)
• If scheduling the request j of class k at time xj causes

the response time of j to be less than or equal to rk,
then pnj(xj) = 0, otherwise pnj(xj) = paj /* paj can be

either 0 or pk depending on the current conformance of class k as assigned

in Algorithm 3*/

• X: { x | xj1 = t and xjz+1 = xjz + Pjz, z = 1, ..., n
for some permutation j1, ..., jn of 1, ..., n } (B)

We have to obtain optimum schedule of the n requests
queued where minx∈X

∑
1≤j≤n pnj(xj) (C)

Output: Most optimum schedule of requests queued at
server s

SA: Use current schedule as starting seed schedule
iterations = 0
repeat

penalty = Compute penalty with current schedule
new schedule = pairwise interchange or last insertion
delta = Penalty of new schedule - penalty
if delta < 0 then

final penalty = penalty + delta
Final schedule = new schedule

end if
current schedule = new schedule
iterations++

until iterations < MAXITERATION
OR
Apply gi-FIFO policy for the requests queued

we pose is “Does the Online scheduling algorithm favor
requests with higher penalty?” To answer this we simulated
the algorithm with the same cloud computing configuration as
mentioned before but with just two classes of service requests,
class one with penalty of 0.9$ for each non-conforming request
and class two with penalty of 0.1$ for each non-conforming
request, with a cut-off conformance of 90% and the same
response time requirement for both. The input request rates for
the two classes are the same. We ran the simulation multiple
times varying the input request rate each time and the results
in Fig. 8 show that the requests for class one are favoured
over requests of class two by our scheduling algorithm, thus
scheduling the requests with higher penalty ahead of requests
with lower penalty but FIFO scheduling favours requests of
both classes equally.

The scheduling algorithm at each geographically distributed
data center should aim to minimize the global penalty. This is



0 1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

Request Class ID

%
 C

on
fo

rm
an

ce
 a

ch
ie

ve
d

 

 

Required SLA conformance
Online request scheduling
FIFO

Fig. 5: Typical comparison of FIFO and simulated annealing.

100 200 300 400 500 600 700
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Request rate

P
en

al
ty

 in
cu

rr
ed

 (
$)

 

 

FIFO scheduling
Online request scheduling

Fig. 6: Total penalty incurred in FIFO and Online schedules
with varying input rates.

achieved by the periodic adaptation phase as shown in Fig. 4.
So “Is the algorithm distributed in nature?” is our next
question. In the same configuration as in the first experiment,
consider, for example, two clusters, one with large number of
resources and another with small number of resources. Results
in Fig. 9 show that the locally calculated current conformance
cck values, at data center with low resources increase after
considering the global value.

The next question is centered around the approximating
variants proposed: “Which variant of our algorithm (among
last insertion, pairwise interchange simulated annealing,
tabu search and gi-FIFO) obtains schedules with lower
penalty?” Our simulations did not reveal a clear winner; in
general, pairwise interchange performed better than the other
two (and so we simulate only pairwise interchange variant
of Tabu search). A typical result from our run is shown in
Fig. 10. In this figure, we compute the total penalty as a
function of request rates for both pairwise interchange and gi-
FIFO with very stringent SLA criterion, and when the system
is stressed where even at lower request rates, the penalty
incurred is high. As we can see, at lower request rates (lesser

250 300 350 400 450 500
0

0.5

1

1.5

Arriving request

P
en

al
ty

 a
ss

ig
ne

d 
($

)

 

 
Request class with required SLA conformance 90%

250 300 350 400 450 500
0

0.5

1

1.5

Arriving request

P
en

al
ty

 a
ss

ig
ne

d 
($

)

 

 
Request class with required SLA conformance 50%

Fig. 7: Penalty assigned to each incoming request for two
classes with different conformance requirements.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Request rate

%
 C

on
fo

rm
an

ce
 a

ch
ie

ve
d

 

 

Online request scheduling − class penalty 0.9$
Online request scheduling − class penalty 0.1$
FIFO − class penalty 0.9$
FIFO − class penalty 0.1$

Fig. 8: Adaptation of algorithm to favor requests with higher
penalty, each run with varying input request rate.

stress), both gi-FIFO and pairwise interchange perform equally
well; at higher request rates (more stress), pairwise interchange
performs much better due to its almost exhaustive search for
the optimum schedule. However, pairwise interchange takes
significantly longer than gi-FIFO to execute and so when
the system is less stressed (with comparatively lower rate of
requests and more relaxed SLA constraints), gi-FIFO is as
effective as pairwise interchange. Fig. 11 (obtained with the
same topology configuration as in experiment one) depicts
a typical per class behavior for all three algorithms: no
algorithm meets all per class requirements and no algorithm
is a consistent winner, on a per class basis. In last insertion,
the penalty only depends on the position of the newly arrived
request in the schedule and not on finding the best overall
schedule as in the case of pairwise interchange. Also shown
in Fig. 11 is that gi-FIFO exceeds pairwise interchange for
some classes; however, these classes have a low penalty and
as can be seen from Fig. 11, the gi-FIFO policy does not adapt
to the required percentile SLA as well as pairwise interchange
causing the total penalty incurred in gi-FIFO to be higher



0 1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

Request class ID

%
 C

on
fo

rm
an

ce
 c

al
cu

la
te

d

 

 
% Conformance calculation after adaptation phase

% Conformance calculation before adaptation phase

Fig. 9: Conformance calculated by datacenter with low re-
sources before and after adaptation phase.

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

x 10
4

Request rate

T
ot

al
 p

en
al

ty
 in

 $

 

 

Pairwise interchange
giFIFO

Fig. 10: Comparison of gi-FIFO and pairwise interchange
under high stress and stringent conformance values.

as shown in Fig. 10. Also shown in Fig. 11 is that Tabu
search with pairwise interchange performs as well as simulated
annealing with pairwise interchange gaining on the latter for
some classes. This is expected as in Tabu search we can expect
to obtain a number of schedules more than that in simulated
annealing owing to the tabu list where a configurable past
number of schedules are stored and each new schedule is
checked against that list and if there is any match, the schedule
is discarded and another schedule is obtained in its place. We
also compare the penalties obtained with simulated annealing
and tabu search both employing pairwise interchange with
varying input rates in Fig. 12. As shown, Tabu search and
simulated annealing result in low penalties for almost all of
the input rates, with Tabu performing a shade better in most
cases. However in a few cases the penalty incurred in Tabu
search is slightly less than that in simulated annealing and
we attribute this to our implementation of dynamic list sizes,
where, if requests queued are very less in number, we do not
perform comparison with the tabu list in tabu search and so,
the variation is due to the randomness in the input rates and
schedule selection in the two simulation runs.

With simulations we have found that pairwise interchange

0 1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

90

100

Request Class ID

%
 C

on
fo

rm
an

ce
 a

ch
ie

ve
d

 

 

Pairwise interchange
Last insertion
giFIFO
Tabu
Required conformance

Fig. 11: Comparison of simulated annealing based pairwise
interchange, last insertion and gi-FIFO.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

Request rate

$ 
P

en
al

ty
 C

ha
rg

ed

 

 
Simulated Annealing − pairwise interchange
Tabu search − pairwise interchange

Fig. 12: Comparison of total penalty in simulated annealing
based pairwise interchange and tabu search based pairwise
interchange.

with Tabu search or simulated annealing performs the best
among all other variants. The pairwise interchange algorithm
finds the optimum schedules over a set number of iterations.
So our next question is “How do the heuristic-based variants
of the algorithm perform with varying iterations?”. To
answer this, we evaluated pairwise interchange based Tabu
search with a set number of iterations for two different
request rates, results in Fig. 13. As expected, as the number
of iterations increase, the total penalty decreases, also the
minimum iterations required for the total penalty to be zero is
higher for higher input rate.

V. Conclusion and future work
In this paper, we studied the problem of request scheduling

in a cloud computing system with geographically distributed
data centers hosting multiple applications; the system operates
under a global, percentile response time SLA. The SLA calls



10
1

10
2

10
3

10
4

0

500

1000

1500

2000

Number of iterations

T
ot

al
 p

en
al

ty
 (

$)

 

 
Request rate 700 req/sec

10
1

10
2

10
3

10
4

0

20

40

60

Number of iterations

T
ot

al
 p

en
al

ty
 (

$)

 

 
Request rate 300 req/sec

Fig. 13: Total penalty obtained in tabu search pairwise inter-
change with varying iterations for two input request rates.

for economic penalties if percentile targets are not met. We
proposed a novel, distributed request scheduling scheme that
aims to minimize the total penalty charged on the cloud. We
implemented and evaluated two variants of a heuristic algo-
rithm, one based on simulated annealing and another on gi-
FIFO scheduling. Our evaluation has shown that our methods
far outperform the commonly deployed FIFO scheduling.

Our future work involves expanding the scope of the
problem to include (a) on-demand routing of the requests to
appropriate resources, (b) dynamic resource management of
the servers in a distributed cloud for both the single-step and
multi-step percentile SLA and (c) minimization of response
time and power consumption-based penalties with multi-tier
applications in a distributed cloud computing system.

REFERENCES

[1] “Geographically distributed system for catastrophic recovery,” in
LISA’02: Proceedings of the 16th USENIX conference on System admin-
istration. Berkeley,CA,USA: USENIX Association, 2002, pp. 47–64.

[2] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, H.-A.
Bohannon, Philip andJacobsen, N. Puz, D. Weaver, and R. Yerneni,
“Pnuts: Yahoo!’s hosted data serving platform,” Proc. VLDB Endow.,
vol. 1, no. 2, pp. 1277–1288, 2008.

[3] L. Zhang and D. Ardagna, “Sla based profit optimization in autonomic
computing systems,” in ICSOC ’04: Proceedings of the 2nd international
conference on Service oriented computing. New York,NY,USA: ACM,
2004, pp. 173–182.

[4] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, and A. Kemper,
“Adaptive quality of service management for enterprise services,” ACM
Trans. Web, vol. 2, no. 1, pp. 1–46, 2008.

[5] K. Xiong and H. Perros, “Sla-based service composition in enterprise
computing,” in 16th International Workshop on Quality of Service,
IWQoS. Washington,DC,USA: IEEE Computer Society, 2008, pp. 30–
39.

[6] N. S. Cave, Alex and A. Kouzani, “Schedule evaluation: simulation
optimization for process scheduling through simulated annealing,” in
WSC ’02: Proceedings of the 34th conference on Winter simulation.
Winter Simulation Conference, 2002, pp. 1909–1913.

[7] N. Agarwal and I. Viniotis, “Performance space of a gi/g/1 queueing
system under a percentile goal criterion,” in MASCOTS ’95: Proceedings
of the 3rd International Workshop on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems. Washington,DC,USA:
IEEE Computer Society, 1995, pp. 53–57.

[8] E. J. Anderson and C. N. Potts, “Online scheduling of a single machine
to minimize total weighted completion time,” Math. Oper. Res., vol. 29,
no. 3, pp. 686–697, 2004.

[9] M. L. Fisher and A. M. Krieger, “Analysis of a linearization heuristic
for single-machine scheduling to maximize profit,” Mathematical Pro-
gramming, vol. 28, no. 2, pp. 218–225, 1984.

[10] K. R. Baker, Principles of sequencing and scheduling. Hoboken, N.J,
John Wiley, 2009.


