SIMPL/1: A SIMULATION PROGRAMMING LANGUAGE

ABSTRACT

SIMPL/1 is a set of SIMSCRIPT-like extensions to
PL/1 which facilitate the direct expression of con-
cepts inherent in discrete simulation programming.
SIMPL/1 statements, which are intermixed with PL/1
statements in the source program and are syntacti-
cally compatible with PL/1, are translated into
PL/1 code by a translator which is also written in
PL/1. Completely dynamic treatment of entities,
sets, and events is accomplished via PL/1 list pro-
cessing using based variables. The paper also dis
cusses some features unique to PL/1 itself which
are particularly desirable and useful for simula-
tion programming.

I. INTRODUCTION

SIMPL/1 (SIMulation PL/1l is a set of SIMSCRIPT-
like extensions to the PL/1 language which facili-
tate the programming of discrete—time, event-
oriented simulations. The development of SIMPL/1
was undertaken not to create a new simulation
language, but to make available a basic simulation
capability to educational institutions (and others)
which do not have access to SIMSCRIPT or other
commercially available languages, but which do
have a PL/1 compiler.

The author was motivated in part by the experience
of trying to teach simulation concepts and tech-
niques to undergraduates. The concepts could, of
course, be proferred to the class in lecture, but
reinforcement of the concepts by implementation of
a simulation project in a standard procedural
language was unsatisfactory. These languages,
such as FORTRAN, BASIC, or PL/1l, do not allow
direct expression of the notions inherent in dis-
crete~-time, event-oriented simulation, namely,
sets of related entities and, in particular,
events.

Acknowledgements

The author is indebted to the University of Alberta
for the provision of computer time and a small
grant for a research assistant. I am grateful for
the assistance provided by Mr. Fred Rogers and for
the fine programming of Mr. Ping Wong, whose time
was provided by the Faculty of Commerce.

John W. Rettenmayer

University of Montana

II. SIMULATION CONCEPTS

Typically, a simulation is designed to study the
behavior of some system under various circum-
stances. The simulator (i.e., person conducting
the study) often perceives the system as consisting
of sets, or collections, of entities, each entity
having various attributes, or characteristics. The
sets are dynamic in that their membership changes
over time; any given entity associates and disasso-
ciates with various other entities as it moves
through the system. For example, if the system
being studied is a carwash, the entities might be
customers, each of whom might have the attributes
(1) arrival time, (2) size of car, and (3) whether
he wants a wax application. Each entity, in this
case, will join, successively, two sets as it pass-—
es through the system, namely the queue of customers
waiting to be washed and the queue of customers
being washed.

The behavior of the system may be described in terms
of the way in which the system state changes over
time, where 'state' is a description of the entities
and sets at any instant in time. Changes in state
are caused by activities in which entities either
are engaged or are acted upon. Most changes in
state may be conceptualized as occurring either
smoothly or abruptly. For example, the activity of
turning up the flame of a gas stove certainly causes
a rather smooth or continuous increase in the out-
put of heat. However, it may be quite satisfactory
to think of the heat state as having changed from
low at the initiation of the activity to high at
the conclusion of the activity. In the latter case,
we may conceptually replace the activity by an
event, which we might call 'change flame to high'’
and which is considered to occur at an instant in
time. Changes in state are then thought to result
from events and therefore may occur only at those
instants in simulated time when events happen.

Such is the approach taken in discrete simulation.

Thus, SIMPL/1l, like other languages designed for
event-oriented simulation programming, provides a
timing mechanism whereby a 'clock' advances from
the time of one event immediately to the time of
the next event, as determined by a chronologically
ordered list of event notices. Each time the clock
is advanced, the timing mechanism calls a subrou-
tine of the same name as that of the event, the
purpose of which is to update the state description
of the system in an appropriate way. Of course,

Winter Simulation Conference

SIMPL/1 ... Continued

EXHIBIT 1

?DCL event EVENT ARGUMENTS (attr.l,,attr.m);

7CAUSE event AT expression PASS (expr.l,,expr.n);

7DCL entity ENTITY ATTRIBUTES (attribute list)
SET_MEMBERSHIP (member list)
SET_OWNERSHIP (owmed list);

?CREATE entity;

?CREATE entity CALLED name;

?DESTROY entity;

?DESTROY entity CALLED name;

?attribute(entity) = expression;

?attribute(entity CALLED name) = expression;

?variable = attribute(entity);

?variable = attribute(entity CALLED name);

?PUT LIST (entity):

?FILE entity LAST IN set(owner_entity);

?FILE entity CALLED name LAST IN set(owner_entity);

7REMOVE FIRST entity FROM set(owner_entity);

?7IF set IS EMPTY THEN clause;

?7IF set(owner) IS EMPTY THEN clause}

EXHIBIT 2
01 SIMPL/1: DCL entity ATTRIBUTES (attr.l, . . .,attr.n)
02 SET_MEMBERSHIP (membership list)
03 SET_OWNERSHIP (owned list);
04 ==>PL/1: DCL 1 entity__STRUCTURE BASED- (entity PTR),
05 2 attr.l,
06 2 .
07 2 .
08 2 attr.n,
09 2 P_set POINTER, /* THERE WILL BE ONE SUCH %/
10 2 S_set POINTER, /* TRIPLET FOR EACH SET %/
11 2 M set BIT(8), /% MEMBERSHIP. */
12 2 F_set POINTER, /% ONE TRIPLET FOR EACH */
13 2 L_set POINTER, /* SET OWNED BY ENTITY. */
14 2 N_set FIXED BINARY; /* ; ONLY FOR LAST LINE. */
15 DCL entity POINTER, .
16 set_OWNER , POINTER, /* IF entity OWNS A set */
17 MEMBERSHIP set POINTER; /% IF entity BELONGS TO set */

18 SIMPL/1: CREATE entity CALLED name;

19 ==>PL/1: ALLOGATE entity_ STRUCTURE;
20 name = entity PTR; /* name MUST HAVE BEEN DECLARED POINTER */

21 SIMPL/1l: REMOVE FIRST entity FROM set(owner entity);

22 ==>PL/1l: owner_entity Ptr = owner_ entity;

23 entity = owner entity STRUCTURE.F_ set;

24 entity PTR = owner_entity STRUCTURE.F_set;

25 IF entity PTR = NULL THEN

26 PUT LIST ('*** CANNOT REMOVE FROM EMPTY SET %%%');
27 owner_entity STRUCTURE.F set = entity STRUCTURE.S_set;
28 IF owner_entity STRUCTURE.F set = NULL THEN

29 owner_entity STRUCTURE.L set = NULL;

30 entity STRUCTIURE.M set = '0'B;

31 SIMPL/1l: attribute(entity) = expression;

32 ==>PL/1: entity -> entity_ STRUCTURE.attribute = expression;

4 January 14-16, 1974

SIMPL/1 and other simulation programming languages
also provide facilities for the natural and easy
use of entities, attributes, and sets.

IIT. SIMPL/1l STATEMENTS

Insofar as possible, SIMPL/1 statements follow the
syntax pattern of PL/1. This design choice was
made not only to achieve some measure of linguis-
tic aesthetics, but also to facilitate the assimi-~
lation of SIMPL/1 by the PL/1l programmer and to
avoid confusing those who try to learn PL/1 and
SIMPL/1 concurrently.

SIMPL/1 statements, which are intermixed with
standard PL/1 statements in the source program,
are translated into PL/1 statements by a pre~
processor which is itself written in PL/1l. ©No use
is made of the pre-processor phase of the PL/1
compiler; the tramslation is a distinct step in a
job control sense. The SIMPL/1 statements must
begin with a '?' so that the translator can dis-
tinguish them from PL/1l statements. Any number of
blanks may follow the '?'. Also, each SIMPL/1
statemerit must begin on a new line, although it
may extend over several lines, and a PL/1 state-
ment may not follow a SIMPL/1 statement on a line.

The extant set of SIMPL/Ll statements is given in
Exhibit 1 and, for a few of them, the correspond-
ing target PL/1 statements generated by the trans—
lator are shown in Exhibit 2. In general, of
course, each SIMPL/l statement translates into
several PL/1l statements. This is particularly
true for the set operations, i.e. filing entities
in sets and removing entities from sets.

The notational conventions used in Exhibits 1 and
2 are as follows. Words in all upper case letters
are keywords and must be used as shown. Words in
lower case letters represent identifiers to be
chosen by the programmer. These identifiers are
substituted verbatim ac litteratim in the corres-
ponding target PL/l statements.

For example, (see Exhibit 2) the SIMPL/1 statement,
?7CREATE DOG CALLED FIDO;
would produce the following PL/1l statements:

ALLOCATE DOG_STRUCTURE;
FIDO = DOG_PTR;

Note that the identifiers, or variable names, DOG
and FIDO, which are chosen by the programmer, are
substituted directly into the target PL/1l state-
ments.

IV. SIMPL/1 EXAMPLES

The following examples illustrate the uses of
various SIMPL/1 statements. I extend a small
apology for the usual but still unsettling fact
that examples of a size and complexity suitable
for a conference paper do not satisfactorily dem—
onstrate the strength or usefulness of the language.

The program EXAMPLE 1, Exhibit 3, is a simulation
of a single-server, single-channel queueing system,
assuming Poisson arrival rates and exponential ser-
vice time. This is a good problem for a simulation
class since the results of the simulation may be
compared with the well-known analytic solution.

One real system which fits this model is a car wash
where only one car can be washed at a time and the
washing time, i.e., service time, varies with car
size. .

The program consists of a main procedure and five
nested procedures, or subroutines. Procedure EXP
generates exponentially distributed pseudo-random
numbers for use as either inter-—arrival times or
service times. The distribution parameters may be
different for the two times. EXP in turn calls on
IRANDOM, which generates pseudo-random values from
a uniform 0-1 distribution.

Lines 5-19 are standard PL/1 declarations. They
give the internal storage type and initial values
of some of the identifiers. Lines 20-22 are
SIMPL/1 declaration statements which declare 3
events ~- ARRIVAL, SERVICE, and STOPSIM. The
state changes corresponding to the occurrence of
these events are recorded by the procedures of the
same names. In this first example, the notions of
entities, attributes, and sets are not utilized.

The simulation is quite straight~forward, partic-
ularly with regard to the scheduling of events,
which is the aspect of primary interest. The GET
DATA statement in line 23 gives the user the
opportunity to input any of the parameters; there
are default initial values for those which are not
input by the user (more will be said about this
later). STIME (line 25) is the identifier used by
SIMPL/1 to denote the simulated clock value; it is
automatically updated to the time of each current
event as the simulation progresses. In line 27, an
event notice for the event STOPSIM is placed in the
event list to be executed at time SIM PERIOD, which
is the length of the simulation run. The very next
statement (line 28) inserts in the event list a
notice for an ARRIVAL event to occur at time zero

(0).

The ?START SIMULATION statement in line 30 essen-—
tially transfers control to the SIMPL/1 control pro-
cedure, which in turn calls the event procedures
according to the chromological order of the event
notices in the event list. Thereafter, the simula-
tion consists of a series of procedure calls made
by the control routine.

At this point ($TIME=0) there are two event notices
in the list ~~ one to stop the simulation at the
lapse of SIM PERIOD time units on the simulated
clock, and one to cause an ARRIVAL event at time O.
Hence, the procedure ARRIVAL will be called immedi-
ately. It first generates another arrival to occur
at some future point in simulated time, i.e., an
event notice is inserted in the 1list in the proper
chronological position. If the number of customers
already in the queue, which includes the customer
being serviced, is zero, then service activity for
the customer is initiated; otherwise, the just-
arrived customer is placed in the queue (line 40).

Winter Simulation Conference

EXHIBIT 3
01 /* SIMPL/1 PROGRAM USING EVENTS */
02 EXAMPLE 1: PROCEDURE OPTIONS (MAIN);

03 /* THIS IS A SIMULATION OF A SINGLE SERVER ~ */

04 /* SINGLE CHANNEL QUEUEING SYSTEM. */

05 DCL EXP ENTRY (FIXED BIN(31),FIXED BIN(15)) RETURNS(FIXED BIN(15)),

06 IRANDOM ENTRY (FIXED BIN(31), FLOAT);

07 DCL (# _QUEUE, /* LENGTH OF QUEUE, INCLUDING
THE UNLIT BEING SERVICED */

08 TIDT, /* TOTAL IDLE TIME */

09 LAST_EVENT TIME,

10 #_ARRIVALS,

11 _TQL, /*TOTAL QUEUE LENGTH */

12 # SAMPLES) FIXED BIN(15),

13 AQL FLOAT INITIAL(O), /* AVERAGE QUEUE LENGTH*/

14 SIM PERIOD FIXED BIN(15) INITIAL(20);

15 DCL (SEED1 INIT(44444),

16 SEED2 INIT(33333)) FIXED BIN(31),

17 (MAT INIT(4), /* MEAN INTER-ARRIVAL TIME */

18 MST INIT(6) /* MEAN SERVICE TIME */

19) FIXED BIN(15);

20 ?DCL ARRIVAL EVENT;
21 ?DCL SERVICE EVENT;
22 ?DCL STQOPSIM EVENT;

23 BEGIN: GET DATA (MAT, MST, SIM PERIOD, SEED1, SEED2) COPY;

24 IF MAT = 0 THEN GO TO FINI;

25 $TIME = 0; /* $TIME IS THE SIMULATED CLOCK. */

26 #_QUEUE, TIDT, TWT, TQL, # SAMPLES,# ARRIVALS = 0;

27 ? CAUSE STOPSIM AT SIM PERIOD;

28 7 CAUSE ARRIVAL AT 0;

29 LAST EVENT TIME = 0;

30 2 START SIMULATION; /* START THE CLOCK MECHANISM */

31 ARRIVAL: PROCEDURE;

32 #_ARRIVALS = # ARRIVALS + 1;

33 2 CAUSE ARRIVAL AT ($TIME + EXP(SEEDI,MAT));

34 IF # QUEUE = 0O THEN DO;

35 TIDT = TIDT + (STIME - LAST EVENT TIME);
36 ? CAUSE SERVICE AT ($TIME + EXP(SEED2,MST));
37 END;

38 TQL = TQL + #_QUEUE;

39 ## _SAMPLES = # SAMPLES + 1;

40 # QUEUE = # QUEUE + 1;

41 LAST EVENT TIME = $TIME;

42 RETURN; .

43 END ARRIVAL;

6 January 14-16, 1974

44 SERVICE: PROCEDURE; /* END OF SERVICE ACTIVITY */

45 TQL = TQL + #_QUEUE;

46 ##_SAMPLES = # SAMPLES + 1;

47 # QUEUE = # QUEUE - 1;

48 IF # QUEUE == 0 THEN DO; /#* — MEANS 'NOT' */

49 ? CAUSE SERVICE AT $TIME + EXP(SEED2,MST);
50 END; .

51 LAST EVENT TIME = $TIME;

52 RETURN;

53 END SERVICE;

54 EXP: PROCEDURE (SEED, MFEAN TIME) RETURNS (FIXED BIN);
55 /* DRAWS AN OBSERVATION FROM EXPONENTTAL DISTRIBUTION WITH MEAN 'MEAN TIME' %/
56 DCL MEAN TIME FIXED BIN(15),

57 SEED FIXED BIN(31), .

58 X FIXED BIN(15) STATIC,

59 RNUM FLOAT STATIC;

60 CALL TRANDOM (SEED, RNUM);

61 X = -MEAN_TIME * LOG(RNUM);

62 RETURN (X);

63 END EXP;

64 (NOFIXEDOVERFLOW) : -

65 TIRANDOM: PROCEDURE (SEED, RNUM); /* GENERATES A PSEUDO-RANDOM */
66 DCL SEED FIXED BIN(31), /% NUMBER FROM A UNIFORM 0-1 */
67 RNUM FLOAT; /* DISTRIBUTION. %/
68 SEED = SEED * 65539;

69 IF SEED<O THEN SEED = SEED + 2147483647 + 1;

70 RNUM = SEED * 0.4656613E~9;

71 RETURN;

72 END IRANDOM;

73 STOPSIM: PROCEDURE;

74 AQL = TQL / #_SAMPLES;

75 UTILIZATION = 1 - (TIDT / SIM PERIOD);

76 PUT SKIP DATA (# ARRIVALS, # QUEUE, # SAMPLES);
77 PUT SKIP DATA (TQL, AQL);

78 PUT SKIP DATA (UTILIZATION);

79 PUT SKIP(4);

80 GO TO BEGIN;

81 END STOPSIM;

82 FINI: END EXAMPLE 1;

Winter Simulation Conferenée

Initiating the service activity means that an event
marking the end of the service activity must be
scheduled at some future time (line 36). The other
statements in the procedure are for the purpose of
updating the state description of the system.

ARRIVAL and SERVICE events are intermixed in simu~-
lated time in an order randomly determined by the
exponential distributions of the inter-arrival and
service times, respectively. The procedure EXP
draws a random sample from one of two different
exponential distributions, depending on the value
of its second parameter.

The STOPSIM event is scheduled for a time later
than SIM PERIOD, but they will be ignored. Thus,
the simulation may end with a customer being ser-
viced but never finishing service. In the STOPSIM
procedure we calculate the average queue length and
the facility utilization factor and print them
along with some of the cumulative statistics. Then
we branch back to the GET DATA statement in line 23
to possibly perform another iteration with one or
more different parameters.

EXAMPLE 2 (Exhibit 4) is a simulation of the same
single-server, single channel queueing system as
was treated in the preceding program. It is essen-
tially the same’as EXAMPLE 1, but, in additiom, it
illustrates the use of entities and sets. Hope—
fully, it also demonstrates that these concepts
allow a more natural expression of the processes
under study.

In line 22, the entity 'customer' is declared to
have a single attribute, 'arrival time' (which is
stored as a fixed binary number), and to belong to
two sets, 'queue' and ‘bay’. Unlike the previous
example, we now consider the waiting queue to be
exclusive of the entity which is being serviced.
Note, too, that set membership is a permissive
concept; the entity may belong to either set, both
sets, or neither set at any point in simulated
time. Line 24 declares the entity 'system', whose
only purpose is to be the owner of the two sets.
Line 26 then creates, or brings into existence,
the 'system' and that entity stays in existence
for the remainder of the simulation.

In contrast to the unchanging nature of the entity
'system', there may be several customer entities
in existence at the same time and each one will be
created and later destroyed as the simulation pro-
gresses. As one would expect, each ARRIVAL event
occasions the creation of a customer (line 38),
and each SERVICE event entails the destruction of
the customer who has been serviced (line 59).

Immediately after creating the customer, the time
of his arrival is stored in his attribute
'arrival time' (line 39). 1In line 34, we check
to see if the bay of the system is empty; if so,
we file the newly arrived, i.e., created, custo-
mer in the bay and cause a service event to occur
at some future time. If the service bay is not
empty, we file the customer in the last position
of the queue and increment the queue length
counter by 1. 1In either case, we add the queue
length to the cumulative queue length for later
use in calculating the average queue length (line
50).

8 Janiary 14-16, 1974

Because each customer entity carries its arrival
time as an attribute, the calculation of the average
waiting time (lines 57-58, 87) is direct and exacec,
in .contrast to the circumspect method that would be
required in the first example. Similarly, the use
of sets allows a conceptually explicit 'movement'
of entities from the waiting queue to the service
bay rather than just a numerical accounting for
them. We conjecture that this explicitness has
pedagogical advantages and is probably less error -
prone than implicit methods of monitoring the state
of the system.

V. DESIGN OF THE TRANSLATOR

The SIMPL/1 translator is written in PL/1 and makes
extensive use of the PL/1 character manipulation
facilities. Essentially, the .SIMPL/1 source pro-
gram is input to the translator as a single charac-
ter string and the PL/1 target code is output as a
character string. PL/1 stateménts in the input
string are transferred unaltered to the output
string. SIMPL/l statements ‘in the input string are
replaced by the appropriate PL/1 statement(s), into
which the programmer-selected identifiers are sub-
stituted, as indicated in Exhibit 2. This transla-
tion process requires only a single pass through
the source string.

Actually, the first action taken by the translator
is the insertion in the output string of a number
of PL/1 statements immediately following the
PROCEDURE OPTIONS (MAIN) statement. These state-
ments provide the event list structure, the struc-
ture for event notices, the procedure (subroutine)
for filing notices in the event list, initializa-—
tion of variables, and so forth.

SIMPL/1 depends heavily on the list processing
facilities of PL/1. All event notices and entities
are BASED structures: Based variables and struc—
tures are allocated storage space dynamically by

an ALLOCATE statement in the program. The storage
location which is obtained by a particular alloca-
tion is assigned as a value to a particular POINTER
variable. The storage location obtained by a sub-
sequent allocation also will be assigned to that
pointer variable, so the programmer is responsible
for 'remembering' the location if he will want to
use the variable after ensuing allocations. That
is, he must assign the value of the particular
pointer variable to another pointer variable or to
a member of a pointer array, where it is available
for subsequent use. In the last line of Exhibit 2,
the variable 'entity' is a pointer variable whose
value is the location of the variable ‘entity STRUC-
TURE.attribute'. The '->' symbol means that entity
'points to' the locationm of entity STRUCTURE.attri-
bute. In line 4, entity PTR is the particular
pointer variable to which is assigned the location
obtained whenever the statement ALLOCATE entity_
STRUCTURE (line 19) is executed.

Obviously, the basic capabilities for dynamic sim-
ulation programming are contained in PL/1. How-
ever, the use of based variables in programs tends
to become rather complicated and error prone, par-
ticularly for novice programmers. SIMPL/1l provides
the dynamic mechanisms for the programmer so that
he can concentrate on describing in a rather direct
way the system he is modeling.

EXHIBIT 4
/* SIMPL/1 PROGRAM USING ENTITIES AND SETS AS WELL AS EVENTS */

EXAMPLE 2: PROCEDURE OPTIONS (MAIN);

DCL (TIDT, _
TWT, /* TOTAL WAITING TIME, INCL. SERVICE */
TQL, /* TOTAL (CUMULATIVE) QUEUE LENGTH */
LAST_EVENT TIME,
#_QUEUE, /* QUEUE LENGTH, EXCLUDING SERVICE BAY */
ARRIVALS,
SAMPLES) INIT(0) FIXED BIN(15),
(AWT, /* AVERAGE WAITING TIME */
AQL) FLOAT, /* AVERAGE QUEUE LENGTH */
SIM PERIOD INIT(20) FIXED BIN(15),
(SEED1 INIT(44444),
SEED2 INIT(33333)) FIXED BIN(31),
(MAT INIT(4), /* MEAN INTER-ARRIVAL TIME */
MST INIT(6)) FIXED BIN(15); /* MEAN SERVICE TIME */
DCL EXP ENTRY (FIXED BIN(31),FIXED BIN(15)) RETURNS(FIXED BIN(15)),

IRANDOM ENTRY (FIXED BIN(31), FLOAT);

7DCL ARRIVAL EVENT;
?DCL SERVICE EVENT;
?DCL STOPSIM EVENT;

?DCL CUSTOMER ENTITY ATTRIBUTES (ARRIVAI, TIME FIXED BIN(15))
SET_MEMBERSHIP (QUEUE,BAY);
?DCL SYSTEM ENTITY SET_OWNERSHIP (QUEUE,BAY);

BEGIN:
? CREATE SYSTEM;
GET DATA (MAT, MST, SIM PERIOD, SEEDL, SEED2) COPY;
IF MAT = 0 THEN GO TO FINT;
$TIME = 0;
QUEUE, # ARRIVALS, # SAMPLES, TQL, TWT, TIDT = 0;
? CAUSE STOPSIM AT SIM PERIOD;
? CAUSE ARRIVAL AT $TIME;
LAST_EVENT TIME = $TIME;
? START SIMULATION;
ARRIVAL: PROCEDURE;

ARRIVALS = # ARRIVALS + 1;
CAUSE ARRIVAL AT $TIME + EXP(SEED1,MAT);
CREATE CUSTOMER;
ARRIVAL TIME(CUSTOMER) = $TIME;
IF BAY(SYSTEM) IS EMPTY
THEN DO;
TIDT = TIDT + ($TIME - LAST_EVENT TIME);
? FILE CUSTOMER LAST IN BAY(SYSTEM):
? CAUSE SERVICE AT $TIME + EXP(SEED2,MST);
END;
ELSE DO;
? FILE CUSTOMER LAST IN QUEUE(SYSTEM);
#_QUEUE = #_QUEUE + 1;
END;

D) e D

‘Winter Simulation Conference

SIMPL/1 ..

55 SERVICE:

56 7
57 ?

. Continued

TQL = TQL + # QUEUE;

SAMPLES = # SAMPLES + 1;
LAST_EVENT TIME = $TIME;
RETURN;

END ARRIVAL;

PROCEDURE;

REMOVE FIRST CUSTOMER FROM BAY(SYSTEM);
X = ARRIVAL TIME(CUSTOMER);
TWT = TWT + ($TIME - X)3;
DESTROY CUSTOMER;
TQL = TQL + #_QUEUE;
#_SAMPLES = # SAMPLES + 1;
IF QUEUE(SYSTEM) IS EMPTY THEN;
ELSE DO;
? REMOVE FIRST CUSTOMER FROM QUEUE (SYSTEM);
#_QUEUE = # QUEUE - 1;
? FILE CUSTOMER LAST IN BAY (SYSTEM);
? CAUSE SERVICE AT S$TIME + EXP(SEED2,MST);
END;
LAST_EVENT TIME = $TIME;
RETURN;
END SERVICE;

72 EXP: PROCEDURE (SEED, MEAN TIME); /% SEE EXAMPLE 1 FOR A

73 IRANDOM:
74 STOPSIM:

76 ?

97 FINI:

PROCEDURE (SEED, RNUM); /* LISTING OF THESE PROCEDURES
Id

PROCEDURE;
AQL = TQL / # SAMPLES;
IF BAY{(SYSTEM) IS EMPTY THEN;

ELSE DO;
? REMOVE FIRST CUSTOMER FROM BAY (SYSTEM);
? X = ARRIVAL TIME(CUSTOMER);
TWT = TWT + ($TIME - X);
END;,

DO I = 1 TO # QUEUE;

? REMOVE FIRST CUSTOMER FROM QUEUE(SYSTEM);

? X = ARRIVAL TIME(CUSTOMER);

TWT = IWT + (STIME - X);

END;
AWT = TWT / # ARRIVALS;
UTILIZATION = 1 ~ TIDT / SIM PERIOD;
PUT SKIP DATA (# ARRIVALS, # QUEUE, # SAMPLES);
PUT SKIP DATA (TQL, AQL);
PUT SKIP DATA (TWT, AWT);
PUT SKIP DATA (UTILIZATION);
PUT SKIP(4);

? DESTROY SYSTEM;

GO TO BEGIN;
END STOPSIM;

END EXAMPLE 2;

10 January 14-16, 1974

*/
*/

VI. GENERAL OBSERVATIONS CONCERNING SIMPL/1

SIMPL/1 does not offer many of the amenities which
are included in other simulation languages such as
SIMSCRIPT or GPSS. For example, it includes no
built-in facilities for statistical distribution
generation, gathering of descriptive information,
or report writing. However, it does provide those
mechanisms which are universally required for dis—
crete-time, event-oriented simulation programming,
which are also the most difficult for individual
programmers to construct for themselves. This is
particularly true for the non-professional program-
mer or student who is receiving his first exposure
to computer simulation.

A few technical observations might be of interest
to those who are familiar with SIMPL/1's progeni-
tor, SIMSCRIPT. SIMPL/1 utilizes a single heter-
ogenous event list rather than a separate list for
each event type. Also, event notices do not have
attributes; thus, all notices have the same form.
These two design factors make the processing of
the event list simpler and, at least for small
programs, more efficient (less overhead). However,
another consequence is that events which have the
same time of occurrence are executed in the order
in which they appear in the event list, i.e., no
tie~breaking is done. For example, if an arrival
event and a 'service event are scheduled for the
same time, the programmer has no way of specifying
that one type of event takes precedence over the
other type. Such a capability could be added, but
it does not currently exist.

Still another consequence of the single event list
is that the list is likely to become longer than
any one list in a multi-list system. The expected
time required for insertion of an event notice in
the list is, of course, proportional to the length
of the list. No measurement of the relative effi-
ciency of SIMPL/1 and other simulation languages
has been attempted, but one would expect that the
single event list mechanism of SIMPL/1 would be at
least as efficient as other types for small simu-
lations with only a few different types of events.
As the number of different kinds of events in-
creases, we would expect the number of event no-
tices filed in the list at any given time to in-
crease also.

Thus the factor which is critical to the efficiency
of SIMPL/1 is the length of the event list, which
in turn is a function of the number of different
event types and the degree of advanced scheduling
of those events. For instance, in the examples
discussed in this paper, there will be a maximum
of one service event notice and one arrival event
notice in the event list at any instant during the
simulation. For such cases where the length of
the list has a low limit (not necessarily as low
as 2, of course), SIMPL/1 should suffer no disadvan-
tage in comparative efficiency.

}
It is expected that all subroutines will be nested
within the main procedure. S$TIME and other iden-
tifiers used by the SIMPL/l-provided code are glo-
bal within the main procedure, but they do not have

the EXTERNAL attribute. Hence, the programmer
should recognize that use of external procedures
in addition to the main procedure will require
special care. Some users might want to alter the
translator toaccommodate external procedures.

$TIME and other identifiers used in the SIMPL/1
mechanisms have a $ as the initial character of the
identifier. They may be used as variables by the
programmer; however, care should be exercised in
doing so, and they should very seldom, if ever, be
assigned values by the user. In particular, the
declaration of these variables within an internal
procedure would render their scope local to that
procedure~—an action of unlikely benefit.

VII. PL/1 SIMULATION FEATURES

As mentioned earlier, PL/1 itself offers some fea-
tures which are quite helpful for simulation pro-
gramming. With Data-directed input (GET DATA) the
user may choose which and how many data items to
input. Fach data item in the input stream is self-
identifying, i.e., it may be of the form X=3, which
inputs a value of 3 for the variable X. Those var-
iables for which no values are input maintain the
values they had prior to execution of the GET DATA
statement. If the GET DATA is included in a loop,
several repetitions of the simulation may be made
easlly since the user needs to input only the para-
meters to be changed from case to case. Further-
more, the COPY verb in the GET DATA statement will
produce on the output file a copy of the input
stream so that the simulation output contains a re-
cord of which variables were changed from case to
case.

The CHECK facility is normally used to print out
the value of a variable in the check list each time
its value changes. Additionally, the programmer
may, via the ON CHECK statement, specify other ac—~
tions to be taken when the value of any variable is
altered. Using this feature, the programmer can
make the execution of a subroutine, which may rep-
resent an event, conditional upon either any alter-
ation of a particular variable or the attainment by
that variable of a certain value (to be tested in
the ON CHECK unit).

VIII. CONCLUDING REMARKS

It should be noted that the SIMPL/1l statement set
shown in this paper certainly should not be consi-
dered complete; other statements can and should be
added. Extension of the translator should be rela-
tively easy since much of the existing code could
be used either directly or as a pattern for the
additional code. Unfortunately, the author no long-
er has access to a PL/1l processor and cannot carry
out further development himself. However, copies
of the translator may be obtained by request to the
author.

Winter Simulation Conference

11

BIBLIOGRAPHY

1. International Business Machines Corporation,
PL/1 Reference Manual, Form No. C28-8201, 1968.

2. Kiviat, P.J., R. Villanueva, and H. M. Markowitz,
The SIMSCRIPT II ?rogramming Language, Prentice-
Hall, 1969.

3. Naylor, T.H., J.L. Balintfy, D. C. Burdick,
and K. Chu, Computer Simulation Techniques, John
Wiley & Sons, Inc., New York, 1966.

12 January 14-16, 1974

