Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradéttir, K. J. Healy, D. H. Withers. and B. L. Nelson

CHECKPOINT AND RECOVERY METHODS IN THE ParaSor SIMULATION SYSTEM

Edward Mascarenhas

Silicon Graphics Computer Systems
2011 N. Shoreline Blvd. MS 510
Mountain View, CA 94043
US.A.

ABSTRACT

State-saving operations are a major source of over-
heads in optimistic and adaptive parallel discrete-
event simulations. We present some techniques for
saving state in the the context of the PARASOL mul-
tithreaded parallel simulation system. In this system,
threads are used to implement both logical processes
and active transactions which access passive simula-
tion objects. Hence, system state is a combination
of thread-state and object-state. We introduce a new
save-if-modified method for incremental checkpoint-
ing of threads and objects. Because of the PARA-
SoL system’s domain-oriented support, checkpoint-
ing is transparent to the user. Application-level ob-
jects that are foreign to a domain may be saved via
invocations to primitives in the system’s ParaState
module.

1 INTRODUCTION

PARASOL is a parallel discrete-event simulation
system based on the process-oriented and active-
transaction view. In the queueing domain, for ex-
ample, servers are implemented as passive objects
and transactions are active (threads). As a customer
(thread) moves through the system, its execution
may require suspension. When a customer acquires
a server (object), execution of the thread represent-
ing the customer is suspended until the customer’s
(simulated) service-time has elapsed. When service is
complete, the thread resumes execution from its point
of suspension. At this instant, both object-state and
thread-state may undergo change. The thread contin-
ues to execute until it either suspends itself again, or
leaves the system. Thus, as control is passed between
transactions which suspend themselves for some sim-
ulation time, the simulator’s clock advances.
PARASOL uses well-known optimistic synchro-
nization (Fujimoto 1990) and novel adaptive synchro-
nization methods (Mascarenhas 1996). A key ad-

Felipe Knop

452

Reuben Pasquini
Vernon Rego

IBM Corporation
522 South Road, MS P963
Poughkeepsie, NY 12601
U.S.A.

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907, U.S.A.

vantage of optimistic synchronization is that it en-
ables reduced programming effort. That is, applica-
tion level programs can be developed without explicit
synchronization directives; this is a highly attractive
feature, considering that a major source of distributed
program complexity lies in efforts to synchronize pro-
cessors. This advantage, however, comes at a poten-
tially high price. Each processor is free to run along
a simulation trajectory at its own pace, stopping to
correct its trajectory only when a causality error is
detected. When detected, a causality error forces
PaRrRASoL-kernel-supported rollback to a checkpoint,
state-recovery, and coast-forward to be invoked.

A causality error is said to occur when a logical
process (LP) with simulation time ¢, receives a (late,
or “straggler”) transaction with timestamp t, < t,.
The computation is rolled back and restarted from a
previously checkpointed and error-free state, valid at
some simulation time ¢, < t,. During rollback, anti-
transaction messages cancel transactions that were
already sent to other LPs, but invalidated by the
straggler’s arrival. To support rollback, optimistic
simulations must checkpoint their state periodically.
After an error-free state is restored, the LP coasts
forward (i.e., retraces simulation steps) to simula-
tion time ¢, and then processes the straggler. Dur-
ing the coast-forward phase, user-code is re-executed
but simulator-code is only selectively executed. The
idea is is to rebuild application-state at time t, as
rapidly as possible, using state checkpointed at time
t;. Checkpoint and rollback overheads can have a
serious impact on execution efficiency.

State-management is a major source of overheads
in PArRASoL. Checkpointing, rollback, and polling
(i.e., the simulator must repeatedly poll the network
for incoming transactions) can be expensive. An ex-
ample of such costs is shown in Table 1, to make
the relative impact of these operations clear. These
costs pertain to a queueing simulation on a SPARC 5
cluster and on an Intel Paragon; checkpointing over-
heads can be seen to be as high as 18% and 29%

Checkpoint and Recovery Methods in the PARASOL Simulation System 453

Table 1: An Example of PARASOL Overheads (Percentages)

Execution St. Save Rollback Poll Net Schedule GVT Other Idle
Cluster 24.99 18.40 21.43 24 .48 0.93 0.86 8.68 0.21
Paragon 19.26 29.55 21.60 17.49 0.83 0.22 10.68 0.34

of total cost, respectively. In this paper, we discuss
present PARASOL’s checkpoint and recover mecha-
nisms, emphasizing that system state consists of both
object-state and thread-state. We employ a save-
if-modified method for incremental checkpointing of
threads and objects. Through appropriate domain-
layering, PARASOL provides the user with transpar-
ent checkpoint and recovery mechanisms. Applica-
tion level objects that are foreign to a domain may
also be checkpointed and recovered, but this requires
user-level invocations to a special ParaState module.
The PARASOL system’s state changes each time
a transaction is processed. Any object modified by
the executing transaction also changes state. Check-
pointing can be done after each transaction runs
to suspension, or after every x transactions run to
suspension; the quantity x defines the interval be-
tween checkpoints, in units of transaction-executions
or events. Increasing x has the effect of reduc-
ing checkpoint frequency and thus state-saving costs,
while simultaneously increasing the cost of the coast-
forward phase. To enable efficient operation, we de-
velop a strategy that minimizes the sum of check-
point and coast-forward costs. The proposed model
is implemented in PARASOL and marginally improves
upon a method proposed earlier (Rongren and Ayani
1994), with similar motivation. More details of this
method can be found in Mascarenhas (1996).

2 RELATED WORK

Optimistic synchronization methods operate in con-
junction with mechanisms for state-saving and
restoration. Various methods for efficient checkpoint-
ing of objects have been proposed. These include
copy state-saving — complete state is saved, incremen-
tal state-saving — only modified state is saved (Stein-
man 1993), hardware-based state-saving (Fujimoto,
Tsai, and Gop-alakrishnan 1988), and language ex-
tensions for state-saving (Gomes, Unger, and Cleary
1996). Efficient schemes for incremental state-saving,
such as those employed by Steinmain (1993), require
user-intervention for checkpointing and state-saving.
Users need to get involved because the state to be
checkpointed depends on the type of event executed.

In PARASOL, the idea is to achieve both user-
level transparency as well as efficiency in checkpoint

and recovery. To checkpoint object-state at any given
time, we perform copy-state saving of the read-write
state of all objects that were modified after the last
checkpoint. In PARASoOL, this requires checkpoint-
ing both object-state (passive components) as well as
thread-state (active components). Thus, both com-
putation state as well as object-state are saved in
a way that is user-transparent. Checkpointing op-
erations are managed by the runtime system, and
enabled at a frequency that minimizes overall cost.
The save-if-modified method that we propose is effi-
cient because it transparently saves only that state
which is modified between consecutive checkpoints.
We achieve this by associating a timestamp with each
checkpoint, and use this timestamp to decide what
must be saved or restored at any given point in time.

3 OVERVIEW OF THE ParaSoL SYSTEM

PARASOL is a process-oriented parallel simulation
system based on the active-transactions paradigm.
In contrast to existing event-based systems in which
LPs communicate and synchronize with timestamped
messages, PARASOL enables communication and syn-
chronization between LPs via transparent thread mi-
gration. Indeed, this transparency leads to greatly
simplified model development at the application level
and was an important design consideration (Mas-
carenhas, Knop, and Rego 1995).

PARASOL presents the user with an environment
that offers transactions (i.e., dynamic, computational
units with some private data) and a set of domain-
dependent global objects. All transactions and ob-
jects are distributed among the physical processors
hosting a simulation. In execution, transactions ei-
ther perform local computations or access objects.
When a transaction accesses an object at a remote
host, PARASOL transparently enables the transaction
to migrate to the remote host, thus enhancing local-
ity.

The basic system architecture is shown in Fig-
ure 1. The kernel provides basic support services,
and the domain libraries support application-level
functionality. The kernel insulates the upper layers
from all parallel simulation details, including trans-
action management, migration, communication, roll-
back, etc. The kernel is supported from below by

454 Mascarenhas, Knop, Pasquini, and Rego

Application Layer

Domain 1| Domain 2| . . .

Kernel Layer
Threads | Communication
System System

Figure 1: PARASOL’s Layered Architecture

the Ariadne threads system (Mascarenhas and Rego
1996) and a suitable communications substrate, e.g.,
PVM (Sunderam 1990). Thread migration is sup-
ported by the Ariadne threads system. The kernel
programming interface is represented by the public
methods of class PSol, the main simulation class in
ParASoL’s C++ interface.

Because the PARASOL project was motivated by
the need for parallel simulation in different domains,
its kernel layer is designed to support distinct do-
main libraries. For example, the queuing domain
provides functionality (e.g., operations on servers and
queues) that is different from the functionality pro-
vided by a particle-physics domain (e.g., grid defi-
nition, cluster generation, particle movement). Thus,
distinct domain-libraries provide interfaces to objects
and resources that are domain-specific. A domain
that provides high functionality can potentially re-
lieve the user of much programming detail. A user
may select domain-specific functions that suit an ap-
plication, eliminating nontrivial code redesign. Typ-
ical domain libraries may include switching systems,
particle physics, manufacturing systems, digital logic
circuits, and combat simulations. User-level code is
developed with the help of domain-layer and kernel-
layer functions.

4 STATE-SAVING AND RESTORATION

The State Module in the PARASOL kernel is respon-
sible for saving LP-state at a frequency which de-
pends on run-time data. System state is given by
the state of all threads (LP and active-transactions)
and objects (associated with LPs or transactions).
Thus, in checkpointing system-state, it is necessary
to save all data (object) and computation (thread)
state. The problems inherent to checkpointing thread
state differentiate PARASOL’s checkpointing mecha-
nisms from that of other existing parallel simulation
systems where only data is saved.

An advantage of our approach is that any data lo-
cally declared and modified by transactions is trans-
parently saved and restored as thread state. Objects

that are local to threads (stack-allocated local vari-
ables and data structures) are automatically saved -
as local thread state — whenever a thread is saved.
But global objects require explicit save actions. For
domain-supported objects, PARASOL’s checkpointing
mechanism is transparent to the user. Global objects
that are foreign to the domain layer must first be
registered for state-saving through an invocation to
the kernel’s objRegister() primitive. These user-
defined objects must also contain application-defined
and kernel-invocable save() and restore() class
methods. Because threads are automatically saved by
the kernel, the saving of computation state is handled
by PARASOL without user intervention. Domain-
level global objects come equipped with with state-
saving/restore functions. Thus, users developing code
at the application level are spared the expense of state
management.

State management overheads are known to have
a serious negative impact on the performance of opti-
mistic protocols (Fujimoto, Tsai, and Gopalakrishnan
1988). We describe a novel save-if-modified method
for state-saving in PARASOL. The pseudo-code for
this procedure is shown in Figure 2. In ParaSoL,
state-saving is performed incrementally and infre-
quently; incrementally, because instead of saving all
threads and objects within an LP at each checkpoint,
only those threads that ran, and those objects that
were modified during the last interval, are saved. In-
frequent state-saving is a result of intermittent check-
pointing, where frequency is fixed at a user-specified
event count, or varies in an adaptive manner, depend-
ing on run-time costs.

The State saving module in PARASOL (i.e., the
SSM class) provides a snapshot() class function
which saves the state of an LP. For each thread and
object, the system tracks any state that changes; this
is done with the help of a “dirty” flag which iden-
tifies all threads and objects that are modified af-
ter the last checkpoint (lines 6 and 24 of Figure 2).
Dirty threads trigger invocation of the saveThread()
primitive, enabling the saving of thread context in a
buffer. Clean threads or objects force a “reference
count”, contained in a previously saved state for the
same thread or object, to be incremented. This elimi-
nates repeated saving of state (lines 12 and 30). Dur-
ing memory reclamation (i.e., fossil collection), state
reference counts are decremented by one, and states
with counts of zero are reclaimed.

The system also examines all objects registered
with a dirty thread for potential state-saving. The
flag of each registered object is examined; if found
dirty, the read-write state of the object is saved in
a buffer. Otherwise the object’s reference count is
incremented by one.

Checkpoint and Recovery Methods in the PARASOL Simulation System 455

/* save-if-modified method for saving state in 1
ParaSol SSM is the state saving module #*/
void SSM::snapshot() {
if (snapshot has not been taken at this time) {
for (each active thread in this LP) {
if (thread is dirty) { 6
savedThread = new SavedThread;
savedThread->saveThread (context) ;
hashQSavedThreads->
insert(savedThread) ;
} else {
savedThread =
hashQSavedThreads->lookup(id,time);
savedThread->incrementRefCount(); 12
}
list0fSavedThreads->
insert(savedThread) ;

}
}

void SavedThread::saveThread(context) {
imagePtr = context_save(); /* threads system
support */
threadContextPtr = context;
referenceCount = 1;
list0fSavedObjects = saveObjects(context); 20
}
SavedObjectsList*
SavedThread::saveObjects(context) {
for (each object registered with this context) {
if (object is dirty) { 24
savedObject = new SavedObject;
savedObject->saveObject(objectPtr);
hashQSavedObjects->insert(savedObject); }
else {
savedObject =
hashQSavedThreads->lookup(id, time);
savedThread->incrementRefCount(); 30

}

listOfSavedObjects->insert(savedThread);

}

State Saving Module

LP_Po / List of Pointers to Snapshots for ao LP
sapshoiLis] 05

B
lastSoapsbot —] g]
bashQSavedThreads N Vimual Time ==

bashQSavedObjects
Snapshot
HashQSavedThreads List of Pointers to Saved Threads
indexed CalendarEntryPur
by thread ideatificr listOfSavedThreadPus, \f‘ Rant
and time of ThreadContext
odificati
- . mustSave
—""__“\\\\\\\\ SavedThread //‘ \imeDirtied
imagePy ~____| .
X ThreadContextPr —_| .
HashQSavedOhjects ReferenceCount

Objects indexed

listOfSavedObjectPusy
by object ideatifier
and time of List of Pointers to Saved Objects
modification _.B_B_B_
R GlobalObject
musiSave
- - timeDirtied

imagePr —— | .
GlobalObjectPu —_| .
RefereaceCount

Figure 2: Algorithm and Data Structures Used for
Save-if-modified State Saving

In Figure 2 is also shown a summary of the state
management data structures and their relationships.
The data structures used for storing checkpointed
states include a linked list of “snapshots” (each point-
ing to a checkpointed state) and hash queues of
“saved-threads” and “saved-objects”, for quick ac-
cess. Snapshots on the linked list are stored in or-
der of increasing time-stamp. When a causality error
occurs, the linked list is traversed to locate the most
recent state saved prior to the arrival of the straggler.
Since LP states saved after a straggler’s timestamp
are invalid, these states are discarded during the roll-
back phase.

Each hash queue is indexed by a thread/object
identifier and the last time the thread/object was
modified. The hash queue organizations allow for
quick lookups. This is useful when a thread/object
state reference count is to be incremented or decre-
mented. The hash queues depict how thread and ob-
ject states evolve over time as the simulation pro-
gresses, capturing these states at the snapshot in-
stants.

A snapshot consists of a list of pointers to saved-
threads, each of which may contain a list of pointers
to the saved state of objects that the thread has regis-
tered for state-saving. In the recovery phase, the list
is traversed and the saved state of a thread/object is
written over the existing state of the thread/object.
Saving a thread’s state amounts to saving its “image”
(context), done with the help of the Thread Inter-
face Module. The Thread Interface Module provides
a programming interface to the PARASOL kernel and
separates the threads system from the PARASOL sim-
ulator. Saving an object’s state amounts to lineariz-
ing its data; this is done by following its pointers and
copying data to a buffer with the help of the ParaS-
tate module.

PARASOL’s state restoration algorithm is further
optimized to restore only necessary threads and ob-
jects from a snapshot. The algorithm first checks
to determine if the current modification time on the
thread or object is different from that specified in the
snapshot. If these are different, state restoration oc-
curs; otherwise, the thread or object is not restored
because its current state is the same as that contained
in the snapshot.

4.1 The ParaState Module for State Manage-
ment

The ParaState module was engineered to make the
state saving and restoration of complex objects a sim-
ple task for domain-level or application-level code de-
velopers. The method is also amenable to the auto-
matic generation of routines for object state-saving

456 Mascarenhas, Knop, Pasquini, and Rego

and restoration. The module simplifies the task of
writing state management routines by unifying pro-
cedures for state saving and restoration. That is, the
same procedure that saves the state of an object also
restores the object’s state. A control object, passed
as a parameter, specifies whether state is to be saved
or restored.

The PARASTATE control object, shown in Figure 3,
provides a set of basic functions (actually a single
C++ template function paraState() suffices) that
can save and restore simple data objects like int,
float, char, etc. Based on these, an additional set
of functions operates on arrays, strings, pointers to
objects, etc. Using the complete set of routines, ob-
Jects that contain pointers to other objects, such as
singly linked lists, can also be saved and restored.
Objects that have circular references, however, can-
not be saved without additional effort. An example
of saving and restoring an object X which contains a
pointer to object Y is shown in Figure 3. The func-
tions paraStateX() and paraStateY() save and re-
store objects X and Y respectively, when invoked by
the save and restore() methods of class X. Simple
objects x and y are handled by the paraState() tem-
plate function. The parasPointer() call saves and
restores the object Y pointed to by object X.

5 PERFORMANCE

Performance measurements were conducted on two
different execution environments: an Intel Paragon
and a workstation cluster. The former consists of
the XP/S model 10 distributed memory environment,
with 142 nodes connected by a two-dimensional mesh
backplane topology. Each node has a 50MHz i860XP
compute processor with 32MB of memory, and an
1860XP message processor. The second execution en-
vironment consists of a SPARCstation 5 cluster, con-
nected by an Ethernet. These are TOMHZ SPARC
processors with 32 MB memory. For convenience, we
label these as the PGON and CLUS environments,
respectively.

To test the new methods, we chose two differ-
ent examples of closed queuing systems. Applications
consist of Facilities (where a Facility contains a server
and a queue, from the queuing domain) that are ini-
tialized with a given number of jobs. Upon complet-
ing service at a Facility, a job moves on to another
Facility in the network, depending on routing prob-
abilities and paths. In both examples, we assume
FIFO queueing at each Facility. Upon leaving a Fa-
cility, a job selects a destination Facility uniformly
randomly. The size of the configuration — the num-
ber of Facilities in the model read from an input file -
is a control parameter which is fixed over a run. The

enum paraStateOp {
NOOP = O, SAVE = 1, RESTORE = 2
}s

struct PARASTATE {
paraStateOp eOp; // operation
char* pPublic; // users buffer ptr
char* pBase; // next position
u_int uiSize; // total user Buffere size
PARASTATE(const u_int bufSize, const
paraStateOp op=SAVE);
PARASTATE(char *buf, const paraStateOp
op=RESTORE) ;
}s
template <class TYPE> Boolean
paraState(PARASTATE* pP, TYPE* pI);
extern Boolean parasPointer (PARASTATE*, char#s
ppObj, u_int objSize, const parasProcT
parasObjProc); /* save object pointed */
/#* other primitives are parasArray(),
parasBytes(), parasString(), etc. =/
/* Example of save()/restore() */
class Y {
private: int y;
public: Boolean paraStateY(PARASTATE®);
}s
class X : public GlobalObject {
private: int x;
Y* pY;
public: void *save(void);
void restore(void#);
Boolean paraStateX(PARASTATE=*);

}s
void * X::save(void)
{
PARASTATE=* pS;
char »pSaveBuf;
PS = new PARASTATE(YSAVESIZE, SAVE); /»*
controller */
if (paraStateX(pS) == FALSE) { delete pS;
return (void#+)0; }
pS->paraSaveDone(&pSaveBuf); // saved object
is in saveBuf
return pSaveBuf;
}
void X::restore(void* pBuf)
{
PARASTATE#* pS;
PS = new PARASTATE((char*)pBuf, RESTORE); /*
controller =/
if (paraStateX(pS) == FALSE) /* report error
*/;
}
Boolean Y::paraStateY(PARASTATE#* pS)
{
if (paraState(pS, &y) == FALSE) return FALSE;
return TRUE;
}
Boolean X::paraStateX(PARASTATE* pS)
{
if (paraState(pS, &x) == FALSE) return FALSE;
if (parasPointer(pS, (Y#*)&y, sizeof(Y),
paraStateY) == FALSE) return FALSE;
return TRUE;
}

Figure 3: The ParaState Object and Example of Sav-
ing and Restoring a Complex Object’s State

Checkpoint and Recovery Methods in the PARASOL Simulation System 457

Figure 4: Closed Queuing Network with N Switches
and @ Servers per Switch. The N Switches are
Mapped onto N LP’s, Numbered 0 through N — 1.
Each LP ¢ Contains @ Server Objects, Labeled as iQ
through iQ + @ — 1.

example configurations include:

CQN. This is a closed queuing network configuration,
as shown in Figure 4.

TORUS. A torus consists of Facilities arranged in a
two-dimensional mesh. Each Facility has four out-
going, and four incoming channels. The probabil-
ity of a job leaving a Facility on a given outgo-
ing channel can be defined via an input parame-
ter file. Thus, to reduce the number of channels
some outgoing probabilities may be set to zero.
Unless mentioned otherwise, we use a branching
probability of 0.25 on each Facility’s four outgoing
channels.

Besides application type and network size, other
parameters that can be varied include transaction
density, average service time, service distribution,
and run-length. The transaction density (denoted by
TD in the figures) is the ratio of the total number of
jobs to the total number of Facilities in the system.
Service-time distributions are changeable. In our ex-
amples, we use service times that are biased expo-
nentials, i.e., service time = rT + ezp((1 — r)(T +
factor * lpid)), where T = 10 is the average service
time, and r = 0.01. These parameters yield strictly
positive service times. The granularity factor in the
service time expression allows us to vary the mean
service time across LPs. Facilities hosted by an LP
with a larger Ipid will have a larger average service
time if factor is non-zero.

We chose simulation execution time (EXEC),
measured by the statistics module in the PARASOL
kernel, as our performance metric. Each simulation
run is terminated when the global virtual time (GVT)
exceeds a specified value. Results for the CLUS en-
vironments are averages over ten independent runs.
Because of very low variability, results on the PGON
environment are from single runs. Experiments were

run at times when interference from other users was
minimal. Standard errors were found to be low. For
example, for the experiments reported next, the stan-
dard errors in execution time were less than 1% for
the CLUS environment.

Models were partitioned equally across processors.
Objects in the model were assigned to processes in a
round robin fashion, moving from left to right across
the queuing network. The number of LPs per process
was set to one, except in the case of CQN, where no
more than one complete row of Facilities in a switch
was assigned to one LP.

5.1 Performance of the Save-if-modified Al-
gorithm

Figures 5(a) and (c) show reductions achieved in
state-saving overhead when only dirty threads are
saved (instead of all threads being saved). Fig-
ures 5(b) and (d) show state-saving overhead reduc-
tion when only dirty objects are saved instead of all
objects being saved. Experiments for graphs (a) and
(b) were conducted on a PGON environment using a
torus, with factor = 5.0. When measurements were
made for threads, dirty object saving was turned on.
Similarly, when measurements were made for objects,
dirty thread saving was turned on. When the number
of objects in graph (b) is increased, transaction den-
sity is kept fixed. The effect is to increase the total
number of threads in the system as the number of ob-
jects increases. The figure shows that as the number
of threads (jobs) and/or objects in the simulation in-
creases, the amount of overhead reduction using the
save-if-modified method also increases. The graphs
clearly illustrate the efficacy of the save-if-modify al-
gorithm. In this example, the reduction in average
cost was as high as 34% with 64 objects per LP, and
as high as 89% with 16 transactions/Facility.
Similar results are observed in the CLUS environ-
ment, as shown in Figure 5(c) and (d). The results
shown in Figure 5(c) correspond to a TORUS with
factor = 0. A 79% reduction in average cost is ob-
served with a transaction density of 16. The results
shown in Figure 5(d) correspond to a CQN with 8
switches and a fixed total number of threads in the
system. As the number of objects is increased, the
effect on the average state-saving cost is the same
as seen earlier in the PGON environment. The re-
duction in average state-saving cost is 55% with 64
objects per switch. The execution time curve in Fig-
ure 5(d) for CQN is concave upwards, instead of being
concave downwards. For this case, as the number of
objects is increased, the computation granularity in-
creases and rollback overheads decrease. The result
is a reduction in total execution time. With the save-

458

Mascarenhas, Knop, Pasquini, and Rego

TORUS 8x8, PGON 4

TORUS 8x8, PGON 4

Execution time Average Cost of State Saving
2000 100
1800 90 -
1600 80
1400 2 70
§::gg' —o—Save All s o] —o-Save Al
§ 300 ~—Saveliry § 4] —o—Save Dirty
600 = 30
400 20
200 < 10
o T T) T L) L] T] T 0 T v T T L}] T LA)
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
No of Jobs/Server No of Jobs/Server
(a). Performance of save-if-modified method for saving threads (PGON)
TORUS, TD=4, PGON 4 TORUS, TD=4, PGON 4
Execution Time Average Cost of State Saving
1200
1000
800 '
g 600 —o— Save Dirty o= Save Dirty
§ —o—Save All 8 —o—Save All
9 400 6
4
200 2
o 1 T T L] T T T T T
0 T T T T T T T 0 8 16 24 32 40 48 56 64 72 80
0 8 16 24 32 40 48 56 64 72 80 Number of Objects/LP
Number of Objects/LP
(b). Performance of save-if-modified method for saving objects (PGON)
TORUS 8x8, CLUS 4 TORUS 8x8, CLUS 4
Execution Time Average cost of State Saving
800 500
400 4
600 3
[
2 —o—Save All §3°° b —o—Save All
3 —o—Save Dirty £200 - —o— Save Dirty
400 - H
100
m L] T L] L]]] 1)] 0 L} L] T L] L] T T T
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Transaction Density Transaction Density
(c). Performance of save-if-modified method for saving threads (CLUS)
CQN 8 Switches, Jobs/Switch=8, CLUS 4 CQN 8 Switches, Jobs/Switch=8, CLUS 4
Execution time Average Cost of State Saving
200 12
10
150
@ -"é 8 -
100 o= Save Al 3 6 -o—Save All
3 —o— Save Dirty _§ —o— Save Dirty
= 44
50 H
2-
0 T T T 1 T T T T T 0 T 1 T L] L} T 1 L] L)
0 8 16 24 32 40 48 56 64 72 80 0 8 16 24 32 40 48 56 64 72 80
Number of Objects Per Switch Number of Obj per

(d). Performance of save-if-modified method for saving objects (CLUS)

Figure 5: Performance of the Save-if-modified Method

