On the Design of Dynamic Reconfiguration Policies for Broadcast WDM Networks *

Ilia Baldine George N. Rouskas

TR-98-06

June 2, 1998

Abstract

We study the issues arising when considering the problem of reconfiguring broadcast optical networks in response to changes in the traffic patterns. Although the ability to dynamically optimize the network under changing traffic conditions has been recognized as one of the key features of multiwavelength optical networks, this is the first in-depth study of the tradeoffs involved in carrying out the reconfiguration process. Our contribution is three-fold. First, we identify the degree of load balancing and the number of retunings as two important, albeit conflicting, objectives in the design of reconfiguration policies. Second, we formulate the problem as a Markovian Decision Process and we develop a systematic and flexible framework in which to view and contrast reconfiguration policies. Third, we also show how an appropriate selection of reward and cost functions can be used to achieve the desired balance among various performance criteria of interest. Our work demonstrates that it is practical to apply Markov Decision Process theory to obtain optimal reconfiguration policies even for networks of large size. The advantages of optimal policies over a class of threshold-based policies are also illustrated through numerical results.

Keywords: Broadcast optical networks, Wavelength division multiplexing (WDM), Reconfiguration policies, Markov decision process

*This work was supported by the NSF under grant NCR-9701113.
1 Introduction

One of the key features of multiwavelength optical networks is rearrangeability [?], i.e., the ability to dynamically optimize the network for changing traffic patterns, or to cope with failure of network equipment. This ability arises as a consequence of the independence between the logical connectivity and the underlying physical infrastructure of fiber glass. By employing tunable optical devices, the assignment of transmitting or receiving wavelengths to the various network nodes may be updated on the fly, allowing the network to closely track changing traffic conditions.

While the rearrangeability property makes it possible to design traffic-adaptive, self-healing networks, the reconfiguration phase will interfere with existing traffic and disrupt network performance, causing a degradation of the quality of service perceived by the users. The issues that arise in reconfiguring a lightwave network by retuning a set of slowly tunable transmitters or receivers have been studied in the context of multihop networks in [?, ?, ?]. In [?] the problem of obtaining a virtual topology that minimizes the maximum link flow, given a set of traffic demands, was studied, while in [?] algorithms were developed for minimizing the number of branch-exchange operations required to take the network from an initial to a target virtual topology, once the traffic pattern changes. The objective of [?], on the other hand, was to obtain near-optimal policies to dynamically determine when and how to reconfigure the network.

In this paper we study the reconfiguration issues arising in single-hop lightwave networks, an architecture suitable for Local and Metropolitan Area Networks (LANs and MANs) [?]. The single-hop architecture employs wavelength division multiplexing (WDM) to provide connectivity among the network nodes. The various channels are dynamically shared by the attached nodes, and the logical connections change on a packet-by-packet basis creating all-optical paths between sources and destinations. Thus single-hop networks require the use of rapidly tunable optical lasers and/or filters that can switch between channels at high speeds.

When tunability only at one end, say, at the transmitters, is employed, each fixed receiver is permanently assigned to one of the wavelengths used for packet transmissions. In a typical near-term WDM environment, the number of channels supported within the optical medium is expected to be smaller than the number of attached nodes. As a result, each channel will have to be shared by multiple receivers, and the problem of assigning receive wavelengths arises. Intuitively, a wavelength assignment (hereafter referred to as WLA) must be somehow based on the prevailing traffic conditions. More specifically, the stability condition, derived in [?], for the HiPeR-? reservation protocol for broadcast WDM networks suggests that, in determining an appropriate WLA, the objective should be to balance the offered load across all channels, such that each channel carries an approximately equal portion of the overall traffic 1. But with fixed receivers, any WLA is permanent and cannot be updated in response to changes in the traffic pattern.

Alternatively, one can use slowly tunable, rather than fixed, receivers. We will say that an optical laser or filter is rapidly tunable if its tuning latency (i.e., the time it takes to switch from one wavelength to another)

1This result is intuitive and has been accepted by the research community for years. However, by deriving a stability condition for HiPeR-? [?], our study was the first to quantify the effect of load balancing on the performance of broadcast optical networks.
is in the order of a packet transmission time at the high-speed rates at which optical networks are expected to operate. Slowly tunable devices, on the other hand, have tuning times that can be significantly longer. As a result, these devices cannot be assumed “tunable” at the media access level (i.e., for the purposes of scheduling packet transmissions), as this requires fast tunability. Motivation for the use of slowly tunable lasers or filters is provided by two factors. First, they can be significantly less expensive than rapidly tunable devices, making it possible to design lightwave network architectures that can be realized cost effectively. Second, the variation in traffic demands is expected to take place over larger time scales (several orders of magnitude larger than a single packet transmission time). Hence, even very slow tunable devices will be adequate for updating the WLA over time to accommodate varying traffic demands.

Assuming an existing WLA and some information about the new traffic demands, a new WLA, optimized for the new traffic pattern, must be determined. We considered this problem in [7], and we proposed an approach to reconfiguring the network that is minimally disruptive to existing traffic. Specifically, we devised the GLPT algorithm for obtaining a new WLA such that (a) the new traffic load is balanced across the channels, and (b) the number of receivers that need to be retuned to take the network from the old to the new WLA is minimized. The specifications of GLPT include a knob parameter which provides for tradeoff selection between load balancing and number of retunings. In terms of load balancing, the WLA obtained by GLPT is guaranteed to be no more than 50% away from the optimal one, in the worst case, regardless of the knob value used. GLPT also leads to a scalable approach to reconfiguring the network since it tends to select the less utilized receivers for retuning, and since for certain values of the knob parameter the expected number of retunings scales with the number of channels, not the number of nodes in the network. For more details on the operation and performance of the GLPT algorithm, the reader is referred to [7].

During the reconfiguration phase, while the network makes a transition from one WLA to another, some cost is incurred in terms of packet delay, packet loss, packet desequencing, and the control resources involved in receiver retuning. Clearly, receiver retunings should not be very frequent, since unnecessary retunings affect the performance encountered by the users. Hence, it is desirable to minimize the number of network reconfigurations. However, postponing a necessary reconfiguration also has adverse effects on the overall performance. Since the network does not operate at an optimal point in terms of load balancing, it takes longer to clear a given set of traffic demands, causing longer delays and/or buffer overflows, as well as a decrease in the network’s traffic carrying capacity (refer also to the stability condition in [7]). Similarly, if the decisions are made merely by considering the degree of load balancing, even tiny changes in the traffic demands can lead to constant reconfiguration, thereby significantly hurting network performance. Consequently, it is important to have a performance criterion which can capture the above tradeoffs in an appropriate manner and allow their simultaneous optimization.

In this paper we develop a novel, systematic, and flexible framework in which to view and contrast reconfiguration policies. Specifically, we formulate the problem as a Markovian Decision Process and we show how an appropriate selection of reward and cost functions can achieve the desired balance between various performance criteria of interest. However, because of the huge state space of the underlying Markov process, it is impossible to directly apply appropriate numerical methods to obtain an optimal policy. We
then develop an approximate model with a manageable state space, which captures the pertinent properties
of the original model. We propose practical ways of applying these methods in a real network environment.

The rest of this paper is organized as follows. In Section 2 we present a model of the broadcast WDM
network under study. In Section 3 we formulate the reconfiguration problem as a Markovian Decision Process,
and we discuss the issues of obtaining an optimal policy. We present numerical results in Section 4, where
we also compare the optimal policy against simple threshold policies, and we conclude the paper in Section
5.

2 The Broadcast WDM Network

We consider a packet-switched single-hop lightwave network with N nodes, and one transmitter-receiver pair
per node. The nodes are physically connected to a passive broadcast optical medium that supports $C < N$
wavelengths, $\lambda_1, \cdots, \lambda_C$. Both the transmitter and the receiver at each node are tunable over the entire
range of available wavelengths. However, the transmitters are rapidly tunable, while the receivers are slowly
tunable. We will refer to this tunability configuration as rapidly tunable transmitter, slowly tunable receiver
(RTT-STR). Although we will only consider RTT-STR networks in this paper, we note that all our results
can be easily adapted to the dual configuration, STT-RTR.

We represent the current traffic conditions in the network by a $N \times N$ traffic demand matrix $T = [t_{ij}]$.
Quantity t_{ij} could be a measure of the average traffic originating at node i and terminating at node j, or
it could be the effective bandwidth $[?]$ of the traffic from i to j. As traffic varies over time, the elements of
matrix T will change. This variation in traffic takes place at larger scales in time, for instance, we assume
that changes in the traffic matrix T occur at connection request arrival or termination instants. We also
assume that the current matrix T completely summarizes the entire history of traffic changes, so that future
changes only depend on the current values of the elements of T.

During normal operation, each of the slowly tunable receivers is assumed to be fixed to a particular
wavelength. Let $\lambda(j) \in \{\lambda_1, \cdots, \lambda_C\}$ be the wavelength currently assigned to receiver j. A WLA is a partition
$\mathcal{R} = \{R_c, \ c = 1, \cdots, C\}$ of the set $\mathcal{N} = \{1, \cdots, N\}$ of nodes, such that $R_c = \{j \mid \lambda(j) = \lambda_c\}$, $c = 1, \cdots, C$,
is the subset of nodes currently receiving on wavelength λ_c. This WLA is known to the network nodes, and
it is used to determine the target channel for a packet, given the packet’s destination. The network operates
by having each node employ a media access protocol, such as HiPeR-ℓ, that requires tunability only at the
transmitting end. Nodes use HiPeR-ℓ to make reservations, and can schedule packets for transmission using
algorithms that can effectively mask the (relatively short) latency of tunable transmitters $[?]$.

We now define the degree of load balancing (DLB) $\phi(\mathcal{R}, T)$ for a network with traffic matrix T operating
under WLA \mathcal{R} as:

$$
(1 + \phi(\mathcal{R}, T)) \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} t_{ij}}{C} = \max_{c=1,\cdots,C} \left\{ \sum_{i=1}^{N} \sum_{j \in R_c} t_{ij} \right\}
$$

(1)

The right hand side of (1) represents the bandwidth requirement of the dominant (i.e., most loaded) channel,
while the second term in the left hand side of (1) represents the lower bound, with respect to load balancing, for any WLA for traffic matrix \mathbf{T}. Thus, the DLB is a measure of how far away WLA \mathcal{R} is from the lower bound. If $\phi = 0$, then the load is perfectly balanced, and each channel carries an equal portion of the offered traffic, while when $\phi > 0$, the channels are not equally loaded. In other words, the DLB characterizes the efficiency of the network in meeting the traffic demands denoted by matrix \mathbf{T} while operating under WLA \mathcal{R}: the higher the value of ϕ, the less efficient the WLA is.

2.1 The Transition Phase

In order to more efficiently utilize the bandwidth of the optical medium as traffic varies over time, a new WLA may be sought that distributes the new load more equally among the channels. We will refer to the transition of the network from one WLA to another as reconfiguration. In general, we assume that reconfiguration is triggered by changes in the traffic matrix \mathbf{T}. When such a change occurs, the following actions must be taken:

1. a new WLA for the new traffic matrix must be determined,

2. a decision must be made on whether or not to reconfigure the network by adopting the new WLA, and

3. if the decision is to reconfigure, the actual retuning of receivers must take place.

The first issue was addressed in [?], where we developed the GLPT algorithm which takes as input the current WLA \mathcal{R} and the new traffic matrix \mathbf{T}', and determines the new WLA. The rest of the paper addresses the second problem of determining whether the changes in traffic conditions warrant the reconfiguration of the network to the new WLA. We now discuss the third issue of receiver retuning.

Let \mathcal{R} and \mathbf{T} be the current WLA and traffic matrix, respectively, and let \mathbf{T}' be the new traffic matrix. Let \mathcal{R}' be the new WLA computed by the GLPT algorithm with \mathcal{R} and \mathbf{T}' as input. Assuming that a decision has been made to reconfigure, there will be a transition phase during which a set of receivers is retuned to take the network from the current WLA \mathcal{R} to the new WLA \mathcal{R}'. Let us define the distance \mathcal{D} between the two WLAs \mathcal{R} and \mathcal{R}' as:

$$\mathcal{D}(\mathcal{R}, \mathcal{R}') = N - \sum_{c=1}^{C} |R_c \cap R'_c|$$

The distance $\mathcal{D}(\mathcal{R}, \mathcal{R}')$ represents the number of receivers that need to be taken off-line for retuning during the transition phase.

There is a wide range of strategies for retuning the receivers, mainly differing in the tradeoff between the length of the transition period and the portion of the network that becomes unavailable during this period (see [?] for a discussion of similar issues in multihop networks). One extreme approach would be to simultaneously retune all the receivers which are assigned new channels under \mathcal{R}'. The duration of the transition phase is minimized under this approach (it becomes equal to the receiver tuning latency), but
A significant fraction of the network may be unusable during this time. At the other extreme, a strategy that returns one receiver at a time minimizes the portion of the network unavailable at any given instant during the transition phase, but it maximizes the length of this phase (which now becomes equal to the receiver tuning latency times the distance $D(R, R')$). Between these two ends of the spectrum lie a range of strategies in which two or more receivers are returned simultaneously.

While the receiver of, say, node j, is being returned to a new wavelength, it cannot receive data, and thus, any packets sent to node j are lost. If, on the other hand, the network nodes are aware that node j is in the process of returning its receiver, they can refrain from transmitting packets to it. In this case, packets destined to node j will experience longer delays while waiting for the node to become ready for receiving again. Moreover, packets for j arriving to the various transmitters during this time cannot be serviced, and may cause buffer overflows. This increase in delay and/or packet loss is the penalty incurred for reconfiguring the network.

We note that, in general, the reconfiguration penalty associated with returning a given number D of receivers will depend on the actual returning strategy employed (e.g., simultaneously returning all D receivers versus returning one receiver at a time). Furthermore, the relative penalty of the various returning strategies is a function of system parameters such as the receiver tuning latency and the offered load. Determining the best returning strategy for a given region of network operation is beyond the scope of this paper. In our work, we instead develop an abstract model that includes a cost function to account for the reconfiguration penalty. Our model is flexible in that the cost function can be appropriately selected to fit any given strategy.

3 Markov Decision Process Formulation

3.1 Reconfiguration Policies

We define the state of the network as a tuple (R, T). R is the current WLA, and T is a matrix representing the prevailing traffic conditions. Changes in the network state occur at instants when the matrix T is updated. Since we have assumed that future traffic changes only depend on the current values of the elements of T, the process (R, T) is a semi-Markov process. Let M be the process embedded at instants when the traffic matrix changes. Then, M is a discrete-time Markov process. Our formulation is in terms of the Markov process M.

A network in state (R, T) will enter state (R', T') if the traffic matrix changes to T'. Implicit in the state transition is that the system makes a decision to reconfigure to WLA R'. In order to completely define the Markovian state transitions associated with our model, we need to establish next WLA decisions. The decision is a function of the current state and is denoted by $d[(R, T)]$. Setting $d[(R, T)] = R_{next}$ implies that if the system is in state (R, T) and the traffic demands change, the network should be reconfigured into WLA R_{next}. Note that WLA R_{next} can be the same as R, in which case the decision is not to reconfigure. Therefore, for each state (R, T) there are two alternatives: either the network reconfigures to WLA R' obtained by the GLPT algorithm with R and T' as inputs (in which case the new state will be (R', T')),
or it maintains the current WLA (in which case the new state will be \((R', T')\)). The set of decisions for all network states defines a reconfiguration policy.

To formulate the problem as a Markov Decision Process, we need to specify reward and cost functions associated with each transition. Consider a network in state \((R, T)\) that makes a transition to state \((R', T')\). The network acquires an immediate expected reward equal to \(\alpha[\phi(R', T')]\), where \(\alpha()\) is a non-increasing function of \(\phi(R', T')\), the DLB of WLA \(R'\) with respect to the new traffic matrix \(T'\). Also, if \(R' \neq R\), a reconfiguration cost equal to \(\beta[D(R, R')]\) is incurred, where \(\beta()\) is an non-decreasing function of the number of receivers that have to be retuned to take the network to the new WLA \(R'\). In other words, a switching cost is incurred each time the network makes a decision to reconfigure. We assume that the rewards and costs are bounded, i.e.:

\[
\alpha_{\text{min}} \leq \alpha[\phi(R', T')] \leq \alpha_{\text{max}} \quad \text{and} \quad 0 \leq \beta_{\text{min}} \leq \beta[D(R, R')] \leq \beta_{\text{max}} \quad (3)
\]

where \(\alpha_{\text{min}}, \alpha_{\text{max}}, \beta_{\text{min}}\) and \(\beta_{\text{max}}\) are real numbers.

The problem is how to reconfigure the network sequentially in time, so as to maximize the expected reward minus the reconfiguration cost over an infinite horizon. Let \((R^{(k)}, T^{(k)})\) denote the state of the network immediately after the \(k\)-th transition, \(k = 1, 2, \cdots\). Let also \(Z\) be the set of admissible policies. The network reconfiguration problem can then be formally stated as follows (note that \(D(R, R) = 0\):

\textbf{Problem 3.1} Find an optimal policy \(z^* \in Z\) that maximizes the expected reward

\[
F = \lim_{k \to \infty} \frac{1}{k} E \left\{ \sum_{l=1}^{k} \alpha[\phi(R^{(l)}, T^{(l)})] - \beta[D(R^{(l-1)}, R^{(l)})] \right\} \quad (4)
\]

The first term in the right hand side of (4) is the reward obtained by using a particular WLA, and the second term is the cost incurred at each instant of time that reconfiguration is performed. The presence of a reward which increases as the DLB \(\phi\) decreases (i.e., as the load is better balanced across the channels) provides the network with an incentive to associate with a WLA that performs well for the current traffic load. On the other hand, the introduction of a cost incurred at each reconfiguration instant discourages frequent reconfigurations. Thus, the overall reward function captures the fundamental tradeoff between the DLB and frequent retunings involved in the reconfiguration problem.

\subsection{3.2 Motivation}

We now motivate the above formulation by showing how an appropriate selection of reward and cost functions yields various performance criteria of interest. Typically, such selection can be based on either measurements of an existing network or simulations.

One important performance objective is to minimize the probability that the network will not be able to handle the offered traffic load. This is equivalent to minimizing the probability that the DLB increases beyond a maximum value \(\phi_{\text{max}}\). Let \(\gamma_{\text{max}}\) be the maximum traffic load (in packets per packet transmission
time) that will ever be allowed into the network. By definition of the DLB in (1), the load offered to the dominant channel when the DLB is ϕ will be $(1 + \phi)\gamma_{\text{max}}/C$. Since each channel can clear at most one packet per packet time, we have that $1 + \phi_{\text{max}} \leq C/\gamma_{\text{max}}$. Therefore, this objective can be achieved by selecting $\alpha(\cdot)$ a function as shown in Figure 1 and β_{max} small.

Another performance measure of interest is the probability of unnecessary reconfigurations. By making β_{min} and β_{max} large, and letting $\alpha(\cdot)$ a slowly decreasing function as ϕ increases, minimizing the probability of unnecessary reconfigurations becomes equivalent to maximizing (4). Similarly, the objective to minimize the probability that the portion of the network that becomes unavailable due to reconfiguration is greater than a certain threshold D_{max} can be achieved by letting β_{min} small, β_{max} large, and selecting $\beta(\cdot)$ a function as shown in Figure 2.

It is also possible to select rewards and costs that reflect performance measures such as throughput, delay, packet loss, or the control resources involved in receiver retuning. For example, a reward function of the form $A/(1 + \phi)$ may, depending on the value of parameter A, capture either the throughput or average packet delay experienced while the network operates with a DLB equal to ϕ. On the other hand, using a
cost which is proportional to the number $D = D(R, R')$ of retunings (i.e., $\beta(D(R, R')) = BD$) can account for the control requirements for retuning the receivers, or for the data loss incurred during reconfiguration. Furthermore, parameter B can be chosen based on which of the retuning strategies discussed in Section 2.1 is employed. Thus, network designers can select in a unified fashion appropriate rewards and costs to achieve the desired balance among the various performance criteria of interest.

For the case $\beta_{max} = 0$, the problem of finding an optimal policy is trivial, since it is optimal for the network to associate with the WLA which best balances the offered load at each instant in time. This is because the evolution of the traffic matrix T is not affected by the network’s actions and reconfigurations are free. However, when $\beta_{max} > 0$, there is a conflict between future reconfiguration costs incurred and current reward obtained, and it is not obvious as to what constitutes an optimal policy. We also note that as $\beta_{min} \to \infty$, the optimal policy would be to never reconfigure, since this is the only policy for which the expected reward in (4) would be non-negative. Again, however, the point (i.e., the smallest value of β_{min}) at which this policy becomes optimal is not easy to determine, as it depends on the transition probabilities of the underlying Markov chain.

Consider an ergodic, discrete-space discrete-time Markov process with rewards and a set of alternatives per state that affect the probabilities and rewards governing the process. The policy-iteration algorithm in [?] can be used to obtain a policy that maximizes the long-term reward in (4) for such a process. Initially, an arbitrary policy is specified from which all state transition rates are determined. The algorithm then enters its basic iteration cycle which consists of two stages. The first stage is the value-determination operation which evaluates the current policy. In the second stage, the policy-improvement routine uses a set of criteria to modify the decisions at each state and obtain a new policy with a higher reward than the original policy. This new policy is used as the starting point for the next iteration. The cycle continues until the policies in two successive iterations are identical. At this point the algorithm has converged, and the final policy is guaranteed to be optimal with respect to maximizing the reward in (4).

A difficulty in applying the policy-iteration algorithm to the Markov process \mathcal{M} is that its running time per iteration is dominated by the complexity of solving a number of linear equations in the order of the number of states in the Markov chain. Even if we restrict the elements of traffic matrix T to be integers \(^2\) and impose an upper bound on the values they can take, the potential number of states (R, T) is so large that the policy-iteration algorithm cannot be directly applied to anything but networks of trivial size. In the next subsection we show how to overcome this problem by making some simplifying assumptions that will allow us to set up a new Markov process whose state space is manageable.

3.3 Alternative Formulation

Consider a network in state (R, T), and a new traffic matrix T' for which the WLA obtained with the GLPT algorithm is R'. A closer examination of the reward function in (4) reveals that the immediate

\(^2\)If the elements of T are real numbers, then \mathcal{M} becomes a continuous-state process and the policy-iteration algorithm cannot be applied.
reward acquired when the network makes a transition does not depend on the actual values of the traffic elements or the actual WLAs involved, but only on the values of the DLBs $\phi(R, T')$ and $\phi(R', T')$, and the distance $D(R, R')$. Thus, we make the simplifying assumption that the decision to reconfigure will also depend on the DLBs and the distance only. This is a reasonable assumption, since it is the DLB, not the actual traffic matrix or WLA that determine the efficiency of the network in satisfying the offered load. Similarly, it is the number of retunings that determines the reconfiguration cost, not the actual WLAs involved.

Based on these observations, we now introduce a new process embedded, as Markov process M, at instants when the traffic matrix changes. The state of this process is defined to be the tuple (ϕ, D), where ϕ is the DLB achieved by the current WLA with respect to the current traffic matrix, and D is the number of retunings required if the network were to reconfigure. Transitions in the new process have the Markovian property, since they are due to changes in the traffic matrix which, in turn, are Markovian. However, as defined, the process is a continuous-state process since, in general, the DLB ϕ is a real number. In order to apply Howard's algorithm we need a discrete-state process. We obtain such a process by using discrete values for random variable ϕ as follows.

By definition (refer to expression (1)), the DLB ϕ can take any real value between 0 and $C - 1$, where C is the number of channels in the network. We now divide the interval $[0, C - 1]$ into a number $K + 1$ of non-overlapping intervals $[\phi_k^{(l)}, \phi_k^{(u)}]$, where $\phi_k^{(l)}$ and $\phi_k^{(u)}$ are the lower and upper values of interval k, $k = 0, \cdots, K$, and: $\phi_k^{(l)} < \phi_k^{(u)}$, $\phi_0^{(l)} = 0$, $\phi_K^{(u)} = C - 1$, and $\phi_k^{(u)} = C - 1$. Let ϕ_k denote the midpoint of interval k. We now define a new discrete-state process M' with state (ϕ_k, D). We will use state (ϕ_k, D) to represent any state (ϕ, D) of the continuous-state process such that $\phi_k^{(l)} \leq \phi < \phi_k^{(u)}$. Clearly, the larger the number K of intervals, the better the approximation.

Before we proceed, we make one further refinement to the new discrete-state process M'. We note that the GLPT algorithm in [?] is an approximation algorithm for the load balancing problem, and it guarantees that the DLB of the WLA obtained using the algorithm will never be more than 50% away from the degree of load balancing of the optimal WLA. The importance of this result is as follows. Consider a network in which the traffic matrix changes in such a way that the current WLA provides a DLB ϕ for the new traffic matrix such that $\phi < 0.5$. Based on the guarantee provided by algorithm GLPT, we can safely assume that the load is well balanced and avoid a reconfiguration. This is because the network will incur a cost for reconfiguring, without any assurance that the new DLB will be less than ϕ. Therefore, we choose to let $\phi_0^{(u)} = 0.5$, and therefore the midpoint for the first interval is $\phi_0 = 0.25$. We will call any state (ϕ_0, D) as a balanced state since the offered load is balanced within the guarantees of the GLPT algorithm.

We now specify decision alternatives, as well as reward and cost functions associated with each transition in the new process M'. Consider a network in state (ϕ_k, D). At the instant the traffic matrix changes, the

3The value $\phi = 0$ is achieved when the load is perfectly balanced across the C channels, in which case the expression in the right hand side of (1) becomes equal to $\sum_{i=1}^{N} \sum_{j=1}^{N} t_{ij}$. The value $\phi = C - 1$ corresponds to the worst case scenario where one channel carries all the traffic; in this case, the right hand side of (1) becomes equal to $\sum_{i=1}^{N} \sum_{j=1}^{N} t_{ij}$.
network has two options. It may maintain the current WLA, in which case it will make a transition into state \((\phi_t, D')\), where \(\phi_t\) is the DLB of the current WLA with respect to the new traffic matrix, and \(D'\) is the new distance. Or, it will reconfigure into a new WLA. In the latter case, the network will move into state \((\phi_c, D'')\), since its new DLB is guaranteed to be less than 0.5. When the network makes a transition into state \((\phi_t, D'), l \geq 0\), it acquires an immediate expected reward which is equal to \(\alpha(\phi_t)\). In addition, if \((\phi_t, D')\) is a balanced state (i.e., if \(l = 0\)), a reconfiguration cost equal to \(\beta(D)\) is incurred.

The transitions out of state \((\phi_k, D)\) and the corresponding rewards are illustrated in Figure 3. If the decision of the policy is not to reconfigure, then the process will take one of the transitions indicated by the solid arrows in Figure 3. Since the network does not incur any reconfiguration cost, the immediate reward acquired is a function of the new DLB in the new state. If, on the other hand, the decision is to reconfigure, the transition out of state \((\phi_k, D)\) will always take the network to a balanced state with a DLB equal to \(\phi_c\). These transitions are shown in dotted lines in Figure 3. A reconfiguration cost is incurred in this case, making the immediate reward equal to \(\alpha(\phi_c) - \beta(D)\).

The new process \(\mathcal{M}'\) is a discrete-space, discrete-time Markov process with rewards and two alternatives per state, and we can use the policy-iteration algorithm \([?]\) to obtain an optimal policy off-line and cache its decisions. The optimal policy decisions can then be applied to a real network environment in the following way. Consider a network with traffic matrix \(\mathbf{T}\) operating under WLA \(\mathcal{R}\). Let \(\mathbf{T}'\) be the new traffic matrix and \(\mathcal{R}'\) be the WLA constructed by algorithm GLPT \([?]\) with \(\mathcal{R}\) and \(\mathbf{T}\) as inputs. Let also \(D = D(\mathcal{R}, \mathcal{R}')\) be the number of receivers that need to be returned to obtain WLA \(\mathcal{R}'\) from WLA \(\mathcal{R}\). To determine whether the network should reconfigure to the new WLA \(\mathcal{R}'\), let \(\phi(\mathcal{R}, \mathbf{T})\) be the current DLB for the network, and suppose that \(\phi(\mathcal{R}, \mathbf{T})\) falls within the \(k\)-th interval, \(0 \leq k \leq K\). By definition of the Markov process \(\mathcal{M}'\), the

Figure 3: Transitions and rewards out of state \((\phi_k, D)\) of process \(\mathcal{M}'\) under the two decision alternatives

Note: the labels along the transitions represent rewards, *not* transition probabilities.
current network state is modeled by state (ϕ_k, D) of this process. If, under the optimal policy, the decision associated with this state is to reconfigure, then the network must make a transition to the new WLA \mathcal{R}'; otherwise, the network will continue operating under the current WLA \mathcal{R}.

We note that the discrete-space Markov process (ϕ_k, D) is an approximation of the continuous-space process (ϕ, D), since, as discussed above, in general the DLB ϕ is a real number between 0 and $C - 1$. We also note that as the number of intervals $K \to \infty$, the discrete-state process approaches the continuous-state one. Therefore, we expect that as the number of intervals K increases, the accuracy of the approximation will also increase and the decisions of the optimal policy obtained through the process (ϕ_k, D) will “converge.” This issue will be discussed in more detail in the next section, where numerical results to be presented will show that the decisions of the optimal policy “converge” for relatively small values of K. This is an important observation since the size of the state space of Markov process \mathcal{M}' increases exponentially with K. By using a relatively small value for K we can keep the state space of the process to a reasonable size, making it possible to apply the policy-iteration algorithm [?].

4 Numerical Results

In this section we demonstrate the properties of the optimal policies obtained by applying the policy-iteration algorithm [?] to the Markov decision process developed in the previous section. We also show how the optimal policy is affected by the choice of reward and cost functions, and we compare the long-term reward acquired by the network when the optimal policy is employed to the reward acquired by other simple policies. All the results presented in this section are for the approximate Markov process \mathcal{M}' with state space (ϕ_k, D).

In this study, we consider a near-neighbor traffic model ⁴. More specifically, we make the assumption that, if the network currently operates with a DLB equal to ϕ_k and no reconfiguration occurs, the next transition is more likely to take the network to the same DLB or its two nearest neighbors ϕ_{k-1} and ϕ_{k+1}, than to a DLB further away from ϕ_k. Specifically, we assume that

$$P[\phi_l | \phi_k] = \begin{cases} 0.3, & k = 1, \ldots, K - 1, \ l = k - 1, k, k + 1 \\ 0.1/(K - 2), & k = 1, \ldots, K - 1, \ l \neq k - 1, k, k + 1 \\ 0.45, & k = 0, l = 1 \text{ or } k = K, l = K - 1 \\ 0.1/(K - 2), & k = 0, l = 2, \ldots, K \text{ or } k = K, l = 0, \ldots, K - 2 \end{cases}$$

This behavior is illustrated in Figure 4 which plots the conditional probability $P[\phi_l | \phi_k]$ that the next DLB will be ϕ_l given that the current DLB is ϕ_k, for $K = 20$ intervals. The near-neighbor model captures the behavior of networks in which the traffic matrix T slowly changes over time and abrupt changes in the traffic pattern have a low probability of occurring.

⁴Other traffic models, including one derived experimentally from a client-server communication pattern, have been considered in [?]. Although the optimal policy decisions obviously depend on the actual traffic patterns in the network, the overall results regarding the convergence of the optimal policy, the effects of different reward and cost functions, and the comparison to other policies are very similar to those shown here for the near-neighbor model.
Given the probabilities in (5), we let the transition probability, when no reconfiguration occurs, from state \((\phi_k, D)\) to state \((\phi_l, D')\) be equal to:

\[
P[(\phi_l, D') \mid (\phi_k, D)] = \frac{P[\phi_l \mid \phi_k]}{(N - C)}
\]

where \(N - C\) is the total number of possible values for random variable \(D\). In other words, we have made the assumption that, for a given \(\phi_l\), all values for variable \(D'\) have the same probability of occurring independent of the previous state of the network.

We note that we need to obtain two different transition probabilities out of each state \([?]\), one for each of the two possible options: the do-not-reconfigure option and the reconfigure option. The above discussion explains how to obtain the transition probability matrix for the do-not-reconfigure option. The transition probability matrix for the reconfigure option is easy to determine since we know that regardless of the value \(\phi_k\) of the current state, the next state will always be a balanced state, i.e., its DLB will be \(\phi_0\). The individual transition probabilities from a state \((\phi_k, D)\) to a state \((\phi_l, D')\) are then obtained by making the same assumption that all values of \(D\) have an equal probability of occurring. Therefore, the transition probabilities under the reconfigure option are:

\[
P[(\phi_l, D') \mid (\phi_k, D)] = \begin{cases}
\frac{1}{N - C}, & l = 0 \\
0, & \text{otherwise}
\end{cases}
\]
4.1 Convergence of the Optimal Policy

Let us first consider the following reward and cost functions

\[
\alpha(\phi_k, D) = \frac{A}{1 + \phi_k}, \quad \beta(D) = BD
\]

(8)
discussed in Section 3.2, where \(A\) and \(B\) are weights assigned to the rewards and costs. We apply Howard’s algorithm [?] to a network with \(N = 20\) nodes and \(C = 5\) wavelengths with a near-neighbor traffic model similar to the one shown in Figure 4. Our objective is to study the effect that the number of intervals \(K\) in the range \([0, C - 1]\) of possible values of DLB \(\phi\) has on the decisions of the optimal policy. As we mentioned in Section 3.3, we expect the decisions of the optimal policy to “converge” as \(K \to \infty\). More formally, let \(\varphi\) be a real number such that \(0 \leq \varphi \leq C - 1\), and let \(k_K\) be the interval in which \(\varphi\) falls when the total number of intervals is \(K\). Also let \(d^{(K)}[\phi_k, D]\) be the decision of the optimal policy for state \((\phi_k, D)\) of Markov process \(\mathcal{M}'\) when the number of intervals is \(K\). We will say that the decisions of the optimal policy converge if

\[
\lim_{K \to \infty} d^{(K)}[\phi_k, D] = d(\varphi, D) \quad \forall \varphi, D
\]

(9)

In Figures 5 to 7 we plot the decisions of the optimal policy for the 20-node, 5-wavelength network with a near-neighbor traffic model, and for three different values of \(K\); the weights used in the functions of (8) were set to \(A = 30\) and \(B = 1\). Figure 5 corresponds to the optimal policy for \(K = 20\) intervals, while in Figures 6 and 7 we increase \(K\) to 30 and 40, respectively. The histograms shown in Figures 5 to 7, as well as in the remaining figures in this section, should be interpreted as follows. In each figure, the \(x\) axis represents the DLB \(\phi_k\) (with a number of intervals equal to the corresponding value of \(K\)), while the \(y\) axis represents the possible values of \(D\). The vertical bar at a particular DLB value \(\phi_k\) has a height equal to \(D_k^{thr}\) such that:

\[
d^{(K)}[\phi_k, D] = \begin{cases}
\text{reconfigure}, & D \leq D_k^{thr} \\
\text{do not reconfigure}, & D > D_k^{thr}
\end{cases}
\]

(10)

In other words, for each value of \(\phi_k\), there exists a returning threshold value \(D_k^{thr}\) such that the decision is to reconfigure when the number of receivers to be returned is less than \(D_k^{thr}\), and not to reconfigure if it is greater than \(D_k^{thr}\). Since the optimal policy had similar behavior for all the different reward and cost functions we considered, its decisions will be plotted as a histogram similar to those in Figures 5 to 7 \(^5\).

As we can see in Figures 5 to 7, the decisions of the optimal policy do converge (in the sense of expression (9)) as \(K\) increases. For instance, let us consider a DLB of 1, which falls in the fourth interval when \(K = 20\) (in Figure 5), the sixth interval when \(K = 30\) (in Figure 6), and the seventh interval when \(K = 40\) (in Figure 7). In all three cases, the returning threshold is equal to 9 for these intervals, therefore, the decisions of the optimal policy for the three values of \(K\) are the same. On the other hand, for a DLB of 2, the returning

\(^5\)That the optimal policy was found to be a threshold policy (with a possibly different returning threshold) for each value of \(\phi_k\), can be explained by the fact that we only consider cost functions that are non-decreasing functions of random variable \(D\). As a result, if the decision of the optimal policy for a state \((\phi_k, D_1)\) is not to reconfigure, intuitively one expects the decision for state \((\phi_k, D_2)\), where \(D_2 > D_1\), to also be not to reconfigure since the reconfiguration cost \(\beta(D_2)\) for the latter state would be at least as large as the reconfiguration cost \(\beta(D_1)\) for the former.
threshold is 14 in Figure 5, but it drops to 13 in Figure 6, same as in Figure 7. In other words, for a DLB of 2, the decisions of the optimal policy are different when \(K = 20 \) than when \(K = 30 \) or 40 (in the former case, the decision is to reconfigure as long as the number of retunings is at most 14, while in the latter the decision is to reconfigure only when the number of retunings is at most 13). But the important observation is that the policy decisions do not change when the number \(K \) of intervals increases from 30 to 40, indicating convergence. In fact, there are no changes in the optimal policy for values of \(K \) greater than 40. We have observed similar behavior for a wide range of values for the weights \(A \) and \(B \), for different network sizes, as well as for other reward and cost functions. These results indicate that a relatively small number of intervals is sufficient for obtaining an optimal policy.

Another important observation from Figures 5 to 7 is that the retuning threshold increases with the DLB values. This behavior can be explained by noting that, because of the near-neighbor distribution (refer to Figure 4), when the network operates at states with high DLB values, it will tend to remain at states with high DLB values. Since the reward is inversely proportional to the DLB value, the network incurs small rewards by making transitions between such states. Therefore, the optimal policy is such that the network decides to reconfigure even when there is a large number of receivers to be retuned. By doing so, the network pays a high cost, which, however, is offset by the fact that the network makes a transition to the balanced state with a low DLB, reaping a high reward. On the other hand, when the network is at states with low DLB, it also tends to remain at such states where it obtains high rewards. Therefore, the network is less inclined to incur a high reconfiguration cost, and the retuning threshold for these states is lower.

4.2 The Effect of Reward and Cost Functions

In Figures 8 to 10 we apply Howard’s algorithm to a network with \(N = 100 \) nodes and \(C = 20 \) wavelengths, operating under a near-neighbor model similar to the one shown in Figure 4. For this network we used \(K = 20 \) intervals, and we varied the weights \(A \) and \(B \) in the reward and cost functions in (8) to study their effect on the optimal policy. Specifically, we let \(B = 1 \) and we varied \(A \) from 20 (in Figure 8) to 35 (in Figure 9) to 50 (in Figure 10). We first observe that the optimal policy is again a threshold policy for each value \(\phi_k \) of the DLB. However, as \(A \) increases, we see that the retuning threshold associated with each DLB value also increases. This behavior of the optimal policy is in agreement with intuition since, by increasing \(A \) we increase the reward obtained by taking the network to a balanced state relative to the cost of reconfiguration, making reconfigurations more attractive. Similarly, if we keep \(A \) constant and we increase \(B \) (a case not shown here), reconfiguring the network becomes less desirable, and thus the retuning threshold associated with each DLB value decreases. Overall, in our study we have found that one can obtain a wide variety of policies by varying the values of weights \(A \) and \(B \).

We now proceed to study the effect of different reward and cost functions. Let us first consider a new cost function \(\beta(D) \) as plotted in Figure 12, while the reward function is as in (8) with \(A = 50 \). This cost function is similar to the the one shown in Figure 2 with \(\beta_{min} = 1 \), \(\beta_{max} = 2 \), and \(D_{max} = 30 \). As we discussed in Section 3.2, maximizing the expected reward in this case will minimize the probability that more than \(D_{max} \) receivers will have to be retuned during reconfiguration. In Figure 12 we show the decisions
Figure 5: Optimal policy decisions for $N = 20, C = 5, K = 20, A = 30, B = 1$

Figure 6: Optimal policy decisions for $N = 20, C = 5, K = 30, A = 30, B = 1$

Figure 7: Optimal policy decisions for $N = 20, C = 5, K = 40, A = 30, B = 1$
Figure 8: Optimal policy decisions for $N = 100$, $C = 10$, $K = 20$, $A = 20$, $B = 1$

Figure 9: Optimal policy decisions for $N = 100$, $C = 10$, $K = 20$, $A = 35$, $B = 1$

Figure 10: Optimal policy decisions for $N = 100$, $C = 10$, $K = 20$, $A = 50$, $B = 1$
of the optimal policy for a network with \(N = 100 \), \(C = 20 \), and a near-neighbor traffic model, when \(K = 20 \). As we can see, the retuning threshold never exceeds the value \(D_{\text{max}} = 30 \), therefore, the network will never reconfigure when the number of retunings is greater than 30, as expected.

We also obtained the optimal policy for the same network as above, but with the reward function shown in Figure 13, and a cost function \(\beta(D) = BD \), with \(B = 1 \). This reward function is similar to that in Figure 1, with \(\alpha_{\text{min}} = -30 \), \(\alpha_{\text{max}} = 80 \), and \(\phi_{\text{max}} = 4.5 \). As the reader may recall, this reward function can be used in order to minimize the probability that the network will operate with a DLB greater than \(\phi_{\text{max}} \). The resulting policy is shown in Figure 14, where we can see that the retuning threshold is 100 for DLB values greater than 4.5. Since the maximum number of receivers that will ever need to be retuned is \(N - C = 90 [? \), a retuning threshold equal to 100 means that the network will always reconfigure when the DLB becomes greater than 4.5. Thus, although the network is not prohibited from entering a state with a DLB value greater than 4.5, once doing so, in the very next transition the network will reconfigure and will enter the balanced state. Subsequently, because of the nature of the near-neighbor traffic model, the network will tend to stay at states with low DLB values. In effect, therefore, the probability that the network will be operating at states with DLB values greater than 4.5 is very small when the reward function in Figure 13 is used.

4.3 Comparison to Threshold Policies

In this section we compare the optimal policy against three classes of threshold-based policies:

- **DLB-threshold policies.** There exists a threshold DLB value \(\phi_{\text{max}} \) such that, if the system is about to make a transition into a state \((k, D), \phi_k > \phi_{\text{max}}\), then the network will reconfigure and make a transition to a state with DLB \(\phi_k \), regardless of the reconfiguration cost involved. Otherwise, no reconfiguration occurs. This class of policies is not concerned with the reconfiguration cost incurred. Instead it ensures that the traffic carrying capacity of the network will never fall below the value \(\gamma_{\text{min}} = C/(1 + \phi_{\text{max}}) \).

- **Retuning-threshold policies.** This class of policies is in a sense a “dual” of the previous one, in that decisions are based solely on the number of retunings involved in the reconfiguration, not on the DLB. Specifically, if the network is about to make a transition, then the network will reconfigure only if the number \(D \) of receivers that must be retuned is less than or equal to a threshold \(D_{\text{max}} \). If \(D > D_{\text{max}} \), no reconfiguration takes place. This class of policies ensures that the portion of the network that becomes unavailable due to reconfiguration never exceeds \(D_{\text{max}} \).

- **Two-threshold policies.** This class of policies attempts to combine the objectives of the two classes of policies above. Specifically, there are two thresholds, \(\phi_{\text{max}} \) and \(D_{\text{max}} \). If the system is about to make a transition into a state \((k, D), \phi_k > \phi_{\text{max}}\), then the network will reconfigure if \(\phi_k > \phi_{\text{max}} \). Otherwise, if \(\phi_k \leq \phi_{\text{max}} \), the network will reconfigure if the number \(D \) of receivers that must be retuned is less than or equal to \(D_{\text{max}} \), and it will not reconfigure if \(D > D_{\text{max}} \). We note that if we let \(D_{\text{max}} = N - C \)
Figure 11: Cost function $\beta(D)$ used for the policy shown in Figure 12

Figure 12: Optimal policy decisions for $N = 100, C = 10, K = 20, A = 50$
Figure 13: Reward function $\alpha(\phi)$ used for the policy shown in Figure 14

Figure 14: Optimal policy decisions for $N = 100, C = 10, K = 20, B = 1$
(i.e., the maximum number of receiver that will ever need to be retuned [?]), these policies reduce to the class of DLB-threshold policies. Similarly, if we let $\phi_{\text{max}} = C - 1$ (i.e., the DLB threshold is equal to the maximum DLB value), these policies become simple retuning threshold policies. Therefore, the two-threshold policies are the most general class of policies, and include the DLB-threshold and retuning-threshold policies as special cases.

The DLB-threshold and the general two-threshold policies above define Markov processes which are outside the class of Markovian Decision Processes considered in Section 3. In a Markovian Decision Process, there are several alternatives per state, but once an alternative has been selected for a state, then transitions from this state are always governed by the chosen alternative (refer also to Figure 3). In a DBL-threshold policy, on the other hand, the alternative selected does not depend on the current state, but rather on the next state. Therefore, the system may select different alternatives when at a particular state, depending on what the next state is. Similarly for the two-threshold policies. Since Howard’s algorithm [?] is optimal only within the class of Markovian Decision Processes, it is possible that these threshold policies obtain rewards higher than the optimal policy determined by the algorithm. Retuning-threshold policies, however, are such that there is a unique alternative per state, so we expect them to perform no better than the optimal policy.

All the results presented in this section are for a network with $N = 100$ nodes, $C = 20$ wavelengths, a near-neighbor traffic model, and $K = 20$ intervals. The reward and cost functions considered are those in expression (8). In Figure 15 we compare the optimal policy obtained by Howard’s algorithm [?] to a number of retuning-threshold policies. The figure plots the average long-term reward acquired by each of the policies against the retuning threshold D_{max}. The horizontal line corresponds to the reward of the optimal policy, which, clearly, is independent of the retuning threshold. Each point of the second line in the figure corresponds to the reward of a retuning-threshold policy with the stated threshold value. As we can see, retuning-threshold policies obtain a reward which is significantly less than that of the optimal policy, as expected. Furthermore, the reward of retuning-threshold policies varies depending on the actual threshold used. Since best threshold depends on system parameters such as the traffic patterns and the reward and cost functions and the associated weights, it is impossible to know the best threshold to use unless one experiments with a large number of threshold values.

In Figure 16 we compare the optimal policy to a DLB-threshold policy and a number of two-threshold policies. For these results, we used $A = 50$ and $B = 1$ as the values for the weights in the reward and cost functions, respectively, of (8). This time we plot the reward of each policy against the DLB threshold value; similar to Figure 15, the optimal policy is independent of the DLB threshold, resulting in a horizontal line in Figure 16. We also plot the reward of DLB-threshold policies with varying DLB thresholds, and of a family

6If the next state is one with a DLB less than the threshold, the alternative selected is not to reconfigure, otherwise the alternative selected is to reconfigure.

7As we have seen, the optimal policies are in fact threshold policies with a different retuning threshold for each DLB value. Therefore the optimal policy will in general perform better than a retuning policy with the same threshold for all DLB values.
of two-threshold policies. Each of the three plots of two-threshold policies corresponds to a different retuning threshold (namely, $D_{max} = 40, 32, \text{and } 24$) and varying DLB thresholds. Also, recall that the DLB-threshold policy is equivalent to a two-threshold policy with a retuning threshold equal to $N - C = 90$.

The most interesting observation from Figure 16 is that, for certain values of the DLB-threshold, the DLB-threshold policy and the 2-threshold policy with retuning threshold $D_{max} = 40$ achieve a higher reward than the optimal policy obtained through Howard’s algorithm. This result is possible because, as we discussed earlier, the class of two-threshold policies is more general than the class of policies for which Howard’s algorithm is optimal. On the other hand, we note that the reward of the DLB-threshold policy depends strongly on the DLB threshold used, and that the reward of the two-threshold policies depends on the values of both thresholds. Although within a certain range of these values the threshold policies perform better than the optimal policy, the latter outperforms the former for most threshold values. Therefore, threshold selection is of crucial importance for the threshold policies, but searching through the threshold space can be expensive. The optimal policy, however, guarantees a high overall reward and is also simpler to implement since the network does not need to look ahead to the next state to decide whether or not to reconfigure.

Figure 17 is similar to Figure 16 in that we again compare the optimal policy against a DLB-threshold and two-threshold policies. For these experiments, however, we have used $A = 20$ and $B = 1$ in the reward and cost functions, respectively, of (8). As we can see, the reward of the optimal policy is strictly higher than
that of threshold policies across all possible threshold values. These results demonstrate that DLB- or two-threshold policies do not always perform better than the optimal policy, and their performance depends on the system parameters and/or the reward and cost functions. Furthermore, it is not possible to know ahead of time under what circumstances the threshold policies will achieve a high reward. Equally important, if the network’s operating parameters change, threshold selection must be performed anew, since, for instance, the DLB threshold that maximizes the reward of the DLB-threshold policy in Figure 16 results in very poor performance in Figure 17, and vice versa.

Overall, the results presented in this section demonstrate that the optimal policy obtained through Howard’s algorithm can successfully balance the two conflicting objectives, namely the DLB and the number of retunings, and always achieves a high reward across the whole range of the network’s operating parameters. We have also shown that, by appropriately selecting the reward and cost functions, the optimal policy can be tailored to specific requirements set by the network designer. On the other hand, pure threshold policies, although they can sometimes achieve high reward, they are less flexible, and they introduce an additional degree of complexity, namely, the problem of threshold selection.

5 Concluding Remarks

We have studied the problem of reconfiguring broadcast multiwavelength optical networks so as to ensure that the traffic load remains balanced across the WDM channels under changing traffic conditions. We used Markov Decision Process theory to obtain optimal reconfiguration policies, and we showed how to select reward and cost functions to balance various performance objectives of interest. The formulation presented in this paper provides a unified framework for reconfiguration problems in optical networks, and provides further insight into the fundamental tradeoffs involved in the design of reconfiguration policies.
Figure 16: Policy comparison, $N = 100$, $C = 10$, $K = 20$, $A = 50$, $B = 1$

Figure 17: Policy comparison, $N = 100$, $C = 10$, $K = 20$, $A = 20$, $B = 1$
References

