Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pooch, D. Pegden (eds.)

221

SIMULATION OPTIMIZATION FOR DECISION SUPPORT IN
OPERATING A ROBOTIC MANUFACTURING SYSTEM

C.C., Chu and J.J. Talavage
School of Industrial Engineering, Purdue University
West Lafayette, Indiana #7907

ABSTRACT

The operation of a robotic manufacturing system can be

a complex task for which 1little experience is now
available, Simulation has often been used as a means
of modeling large complex systems, Optimization

methods use such models to make good choices for system
parameters, This paper describes a simulation-
optimization approach combined with pattern recognition
to develop an operating procedure for a manufacturing
system which contains robots, This procedure is

adaptive in the sense that it is updated on a periodic
basis to account for changing shop load and pending
orders,

INTRODUCTION

An automated manufacturing system usually consists of
three major components - machine tools, material
handling devices, and computers to perform control
functions, The application of automation to
manufacturing systems has lead to Dbetter product

quality, and faster production.
offset by the technological complexity in
operation of these manufacturing systems.

These improvements are
design and

Computer simulations have been applied to such complex
system analysis problems for a long time. The reason
for using simulation in automated manufacturing is its
capability to model the behavior of nonlinear
discrete-parameter dynamic systems. Recently, in the
control of Computer Integrated Manufacturing Systems
(CIMS), research efforts have been directed toward
making simulation a significant part of the decision
support system. This avoids direct trial~and-error
experiments which would be prohibitively expensive and
time consuming in order to control a CIM system.

In general, simulation is used for systems where great
detail of modeling 1is necessary to make correct
decisions., A disadvantage of using simulation is that

the modeler must provide large amounts of data, some of
which are system parameters ¢that are difficult to
specify, Thus, one of the current developments for
simulation is to integrate other software to make
simulation more powerful and easier to use, Among
those software types, stochastic optimization has been
integrated with simulation, Simulation by itself is
not an optimizing method. A production controller who
would use simulation to, e.g., maximize number of parts
produced, often finds that he must iteratively specify
many alternative configurations and operating policies
by using his intuition without any assurance of
approaching an optimal or even satisfactory solution.
Combining  optimization  algorithms  together with
simulation (either on-line or off-line) can ease the
controller's burden by automatically performing some of
his search tasks in a fast and efficient method.

Law and Kelton [4] discussed the use
experimental design and optimization techniques in a
computer simulation model. They pointed out that
carefully "thought—out" or "designed" experiments can
be much more efficient than a "hit-or-miss" sequence of

of statistical

unsystematic simulation runs. The technique suggested
by them is known as response-surface methodologies
(RSM) . The  unembellished RSM has a couple of

disadvantages. First, the RSM method is generally used
with a simulation model to evaluate an objective
function several times for each finite difference
required along each factor or variable. This may lead
to long computation times if each evaluation involves
running a large simulation model., Secondly, Law and
Kelton indicated that there can be no guarantee that
the result of a RSM procedure will always identify a
truly optimal system design,

In order to improve the efficiency of the combined
optimization and simulation approach, Azadivar and
Talavage [1] developed an algorithm called SAMOPT. The
algorithm will optimize the response function of
simulation models, even for systems that exhibit
stochastic behavior, Unlike RSM, SAMOPT evaluates the
objective function via a stochastic simulation only
once for each finite difference, Secondly, wunder
certain weak conditions, SAMOPT provides convergence to
the optimum, Comparison of results has also shown that

SAMOPT provides better solutions with less computation
time in more cases than commonly used RSM.
In this paper, the SAMOPT optimization procedure will

be used in conjunction with a SLAM simulation model of
a CIM system, which contains such automatic devices as
robots, to develop a control procedure for the system
operating parameters. These control parameters include
the robot movement speeds, the robot picking policies,
and the speed of assembly,

THE INTEGRATION OF SIMULATION

OF AND OPTIMIZATION TO
DERIVE A CONTROL PROCEDURE

The Real System

The real CIM system considered in this paper was
designed for an automatic material handling function
which can link the production and assembly functions of
an overall CIM system in the future. The physical
facility intended for this system is still under
development, The major hardware components include
full scale electric robots, a CNC machining center, a
bi-directional free flow conveyor, a carousel conveyor,

two bar code automatic identification systems, and
links from some of this equipment to a remote
supervisor computer, Figure 1 shows the CIM system
configuration.
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Figure 1: The Schematic Diagram of the
Example CIM System

The material flow within the defined CIM system can be
deseribed as a fixed route. The incoming parts consist
of several part types with an associated priority for
each type. The interarrival time and product-mix may
vary over time. As a part is entering the system, it
will first be deposited at the auto~identification
system which verifies its identity. After it is
identified, the part enters the turn table and waits
until the first robot is available to move it to the
free-flow conveyor. It should be noted that each part
type requests different robot ‘handling movements, A
path of robot movements can be generated by retrieving
and executing the specific cyecle for +that particular
part type. This cyele is defined by predetermined
movement in space. After the part is on the free~flow
conveyor, it moves to the other end and waits for the
second robot to move it to the automatic assembly
carousel, After it is on the assembly carousel, an
assembly operation will be performed on that part. The
assembled part is called an assembly and is assumed to
be a different part type from its original, Thus, this
assembly will require different robot movements for its
handling. The assembly then follows the reverse
sequence of robot handling and flows 1in opposite
direction to leave the system.

Control of the Real System

It is desired to produce as many parts from the example
system as possible without excessive wear on the
robots, To do so, the robot speeds, assembly speed,
and robot picking policies will be varied from time to
time based on the system state in order to maximize
production, The choice of those parameters will be
based on off-line results obtained from simulation
optimization,

The Simulation

A simulation model based on SLAM simulation language
was developed to represent the system. The simulation
model wutilizes network, discrete, and continuous
modeling  concepts. In order to consider the
interactions among material handling equipment in this
model, the detailed movements of both robots and
conveyors are simulated in continuous modes. That is,
a robot loading/unloading operation is described by
using a continuous path (i.e,, trajectory) which is
formed by a set of points, The overall configuration
and many complex logical decisions of the simulated CIM
are described by using the associated discrete and
network model, For more information about the model
see [31.

In the following, several factors associated with
optimizing the simulation model of the CIM system for
purposes of control will be discussed.

System Objective. A system objective represents a
desired goal of operating a system for a given time
interval. There are many possibilities for setting
this objective such as to minimize the average time in
system for a specific part type, or to maximize the
utilization for certain equipment types, or others, Our
objective will be to maximize production and robot
utilization,

Control Interval, As mentioned, the system objective

is measured over a given time interval., This time
interval is called a control interval in this paper.
If +this interval is too long, the system may not react
as quickly as the changing environment. If the
interval is too short, the system may not be stable
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enough for making an estimation of the system
performance. The general rule, which is suggested
here, is to choose a sufficiently long period, but one
for which the system will still be in its transient
state, (For purposes of pattern recognition, we want
the system to "remember" its initial state.)

Decision Variables. The decision variables are the
parameters that govern the operation of the CIM system,
These variables can be any factors which affect the
operation of the system, For example, they are robot
picking rules, assembly speed, and robot speeds in this

paper. Generally, the more variables one uses, the
more time and expense associated with the control
decision, Therefore, it 1is better to consider only

major factors.

System Status. The status of the system is based on an
instantaneous measurement from many of its components
(i.e., equipment). One specific example of system
status can Dbe described by the initial status for
resources, the initial contents of queues, and the
initial events in the event calendar. 1In this paper,
the system status is assumed given entirely by the
queue contents (so, e.g., the status of the robots when
a decision is implemented is assumed to be unimportant
to later operation over the control interval),

The SAMOPT Optimization Algorithm

The optimization algorithm (SAMOPT), wused in this
research, was developed by Azadivar [2]. The basic
idea of SAMOPT is to optimize the response function of
a simulated system by using a stochastic approximation
method. For more details about the algorithm, the
reader is referred to [1,2].

Interfacing the SAMOPT algorithm with fthe simulation
model of our CIM required little effort; however, there
are a couple of details worth noting:

1. Inpub: SAMOPT can handle optimization problems
with up to 10 decision variables and 30 linear
constraints, (Our problem has five variables and
no constraints.) These limits may be increased by
increasing the dimensions of the arrays.,

2. Computer: In this paper, fthe optimizations were
performed on Ltwo computer systems - the CDC 6500
computer and CYBER 205 supercomputer, In the
Purdue CDC 6500 computer, there are restrictions
caused by the overlay structure of SLAM. It was
necessary to put the SAMOPT model in the PROGRAM
MAIN and the simulation model in the subroutines,
Thus, the execution of the simulation model is
called by SAMOPT from the main program, The
objective function was computed abt the end of each
simulation run and passed back to the main program
for comparison., However, in the CYBER 205, there
were no such constraints,

THE CONTROL PROCEDURE

The control procedure can be separated into two phases,
The first phase was performed off-line to create the
control database which contains the control information

for the real system operation, The second phase
performs on-line real time control of the real system
operation by applying the prestored information from

the first phase,

In the first phase, the
optimization approach was

integrated simulation and
used to create the control

database. Based on this integrated model, the
database was built in the following steps:

control

1. A subset of the state space for the model was
selected by observing "typical' state trajectories
as the model was exercised . for "gypical"
conditions,

2. The state space sample was analyzed by using a

clustering analysis to group the similar states
together, Then, a pattern merging algorithm was
used to select only several representative

patterns within each grouped cluster,

3. The optimal control values over the control
interval were found by simulation optimization for
each representative pattern in each  grouped
cluster.

After this control information is available, the second
phase of on-line control can proceed., The procedure of
this on-line real time control is as follows:

from
(e.g.,
conveyors,

1. Identify the current system status
measurement of theé specified variables
work-in-process at the turn table, the
and the carousel in this paper),

2. Perform the information retrieval by using a
nearest neighbor pattern recognition algorithm to
obtain the nearest representative state to the
current state,

3. Apply the control alternative, which is the set of
simulation-optimized decision variables associated
with the retrieved representative case, to the
real system,

y, At the end of the
step 1.

control interval, re-do from

RESULTS AND DISCUSSIONS

The developed control procedure has been
example CIM system,

used in the
The real time control function has

been validated in a computer controlled Puma robot.
The detailed results can be obtained from [3].
Table 1 shows an evaluation of the developed control

strategy, which 1is adaptive since it changes with the
state every control interval, to other non-adaptive
control strategies in the example CIM system.

This evaluation is based on the same simulation model
described previously where the simulation model was
tested for a 10 hour period which is equal to 36000
simulation time units. Here, a variable input
situation is assumed. That is, during the 36000
simulation time interval, the input rate of parts
changed every 600 time units. The primary criterion to
evaluate the different strategies 1is the total
throughput of all part types and the utilization of the
two robots,

There were four strategies compared in this evaluation.
The first strategy called "Fixed Fast" uses the fastest
robot speeds at all times. The second strategy, which
is also non-adaptive, uses a slightly slower robot 2
speed. The third strategy, which is the developed
adaptive strategy, will adaptively adjust its control
parameters every 600 time units to react to the
changing input situations, Finally, the fourth
strategy, which is non-adaptive, is based on the
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averaged results of the adaptive strabtegy.

In Table 1, when a varying input stream is used, the
developed adapbive strategy shows its superiority to
the other three non-adaptive strategies, For example,
based on +the similar throughput rate, the adaptive
strategy can handle as many parts as the fixed-fast
rule, which uses the fastest robot speed, but can
provide better robot utilization and slower average
robot speeds. On the other hand, if the comparison is
based on a similar robot wutilization, the adaptive
strategy provides more thorughput rate than the fixed
average strategy. Thus, it can be concluded that under
a varying input situation, the adaptive strategy can
find a good balance point among the throughput, robot
utilization, and robot speeds,

From this evaluation, we can see that the developed
control strategy can be particularly useful when a CIM
system is operated in a dynamic environment.

~

CONCLUSION

This paper has presented an integrated simulation and
optimization approach to create the control information
to support the operation of a robotic manufacturing
system, The same approach could be used to build a
decision support system for general computer integrated
manufacturing systems,

Table 1:
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