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Abstract

When faced with categorical predictors and a continuous response, the objective of
analysis often consists of two tasks: Finding which factors are important and determining
which levels of the factors differ significantly from one another. Often times these tasks are
done separately using Analysis of Variance (ANOVA) followed by a post-hoc hypothesis
testing procedure such as Tukey’s Honestly Significant Difference test. When interactions
between factors are included in the model the collapsing of levels of a factor becomes a
more difficult problem. For interpretability, when collapsing two levels of a factor it may
not make sense to collapse the main effect difference to zero while still having interaction
differences between those levels nonzero. This structure between the main effects and
interactions in a model is similar to the idea of heredity used in regression models. This
paper introduces a new method for accomplishing both of the common analysis tasks si-
multaneously in an interaction model while also adhering to the heredity-type constraint on
the model. A group norm penalty is placed on parameters that encourages levels of factors
to collapse and entire factors to be set to zero. The procedure is called GASH-ANOVA for
grouping and selection using heredity in ANOVA. It is shown that the procedure has the
oracle property implying that asymptotically it performs as well as if the exact structure
were known beforehand. We also discuss the application of a modified GASH-ANOVA
estimator for estimating interactions in the unreplicated case. Simulation studies show that
the GASH-ANOVA procedure outperforms post hoc hypothesis testing procedures as well
as similar methods that do not include a structural constraint. The method is also illustrated

using a real data example.



1 Introduction

Consider the common case of a continuous response variable and categorical predictors
(factors). A conventional way to judge the importance of these factors is to use Analysis of
Variance (ANOVA). Once factors are deemed important, to check which levels of the fac-
tors differ from one another the next step is often to do a post hoc analysis such as Tukey’s
honestly significantly different test, Fisher’s least significant difference test, or pairwise
comparisons of levels using a Bonferroni adjustment or a Benjamini-Hochberg (Benjamini
and Hochberg, 1995) type adjustment. Rather than carry out these two tasks separately,
a technique called CAS-ANOVA, for collapsing and shrinkage in ANOVA (Bondell and
Reich, 2009), has been developed to perform these actions simultaneously. This procedure
is a constrained or penalized regression technique. Much of the recent variable selection
literature is of this form and examples include the least absolute shrinkage and selection
operator (LASSO) (Tibshirani, 1996), the Elastic Net (EN) (Zou and Hastie, 2005), the
Smoothly Clipped Absolute Deviation penalty (SCAD) (Fan and Li, 2001), and the Octag-
onal Shrinkage and Clustering Algorithm for Regression (OSCAR) (Bondell and Reich,
2008). The CAS-ANOVA procedure places an L; constraint directly on the pairwise dif-
ferences in each factor allowing an entire factor to be zeroed out while also allowing levels
within a factor to collapse (be set equal) into groups. Not only does the CAS-ANOVA
procedure accomplish both tasks at once, the nature of the penalty requires the levels of
each factor to be collapsed into non-overlapping groups. This method was shown to have
the oracle property, implying that its performance is asymptotically equivalent to having
the true grouping structure known beforehand and performing the standard least squares
ANOVA fit to this collapsed design.

A limitation of the CAS-ANOVA method is that it was developed assuming a main ef-
fect only model and often an interaction model is more realistic. In the interaction ANOVA
model, when determining whether two levels of a factor should collapse we must look at
more than just their respective main effects. It is not appropriate to claim the two levels
should collapse if there is an interaction term that differs between the two levels for any
given level of another factor. This leads to the idea that only levels whose interaction ef-
fects are all identical, should have their main effects also collapsed together. Thus, if we

can enforce this type of structure on our model we will be able to accomplish both tasks of



our analysis. The notion of this model structure is similar to the idea of heredity often used
in regression models when higher order terms are involved. For a regression model such
as E(y;) = Bo+ Brxi1 + Bazia + Bz i + Baxd, where y; is a continuous response with
x;1 and z;5 continuous predictors, strong heredity implies 55121 should only appear in the
model if x;; appears in the model and the interaction term x;; x;2 should only appear in the
model if both z;; and ;5 appear in the model. The heredity principle is important because
it aids in interpretation of the model and ensures that the model makes sense structurally.
This type of constraint on the structure of the predictors in a regression model has seen
much use. For example, Choi, N., Li,W. and Zhu, J. (2010) used heredity to extend the
LASSO variable selection technique to include interaction terms, Yuan, M., Joseph, V. and
Zou, H. (2009) used heredity in variable selection with the non-negative garrote, Yuan, M.,
Joseph, V. and Lin, Y. (2007) used the constraint with the LARS algorithm, and Chipman
(1996) used the constraint in the Bayesian variable selection context. However, all of these
approaches deal with continuous predictors, in that an interaction is a single term derived
from the product of two other predictors. In the interaction ANOVA model, interaction
terms are not single terms, they arise as products of groups of variables, and thus need to
be treated differently.

This paper develops a method for use in the interaction ANOVA model to simultane-
ously perform the two main goals of analysis. The method utilizes a weighted penalty
that enforces the heredity-type structure on the model. The new method is called GASH-
ANOVA for Grouping And Selection using Heredity in ANOVA. We show that the oracle
property holds for the GASH-ANOVA procedure, in that asymptotically it performs as
well as if the exact structure were known beforehand. This property also implies that, even
after the possible dimension reduction, asymptotic inference can be based on standard
ANOVA theory. We also discuss the use of an unweighted version of the GASH-ANOVA
estimator to estimate interaction terms in the unreplicated ANOVA model.

The rest of the article is organized as follows: In section 2, notation is introduced
and the related CAS-ANOVA procedure is reviewed. In section 3.1, the GASH-ANOVA
procedure is introduced. The extension to the unreplicated case is discussed in section
3.2. In section 4, the asymptotic properties of the GASH-ANOVA solution are presented.
Section 5 discusses computation and tuning for the GASH-ANOVA method. To illustrate

the method, section 6 gives simulation studies and their results and section 7 shows the



method’s usefulness on a real data example. Finally, section 8 gives a discussion.

2 Notation and CAS-ANOVA

2.1 Notation

To simplify notation, consider the two factor ANOVA model with factor A and factor
B having a and b levels respectively. The extension to more than two factors is straight-
forward and will be discussed shortly. We denote the number of observations at each
level combination by n;; and denote the total sample size by n = Zz ; Mij- Note that
for a balanced design we have n = abn;;. We use the matrix representation of the
linear model, y = X0 + €, where y is the n x 1 vector of responses, X is the typical
n x p overparameterized ANOVA design matrix consisting of zeros and ones correspond-
ing to the combination of levels for each observation (where p = 1 + a + b + ab), 0
is a p x 1 vector of parameters, and € is a n x 1 vector of error terms. The parame-
ter vector consists of the mean and three stacked vectors, 8 = (u,a”, 37, (aB8)")7,
where 1 is the intercept, o = (ai,as9,...aq), BT = (B1,F2,...5), and (aB)T =
((af)11, (@B)12, ---(af)1p, (B)21y vy (AB) b,y -, () ap). Here, «; corresponds to the
main effect of level 7 of factor A, 3; corresponds to the main effect of level j of factor B,
and (af3);; corresponds to the interaction effect of level i of factor A and level j of factor

B. The ordinary least squares (OLS) solution can be written as follows:
§OLS = argming ||y — XOH2 (H

a

a
subject to Z a; =0, Z(aﬁ)ij = 0 for all j,

=1 1=1

b b
Z 5j = 0, Z(aﬁ)z] = 0 for all i,
J=1 J=1

where the constraints on the parameters are aptly named the sum to zero constraints. Note

that n;; must be at least two in order to estimate the interaction terms when using OLS.

2.2 CAS-ANOVA

In order to shrink the coefficients and to perform variable selection in the additive
model, the (adaptive) CAS-ANOVA (Bondell and Reich, 2009) procedure places a weighted

constraint directly on the pairwise differences of the levels of each factor. In the two factor
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main effect only model, which has the same set up as the above model ignoring the inter-
action terms and constraints on the interaction terms, the CAS-ANOVA procedure adds a
constraint that is of the form
(km) (km)
Z waCAs‘ak_am‘+ Z UJB’CAs‘Bk_ﬁm’ <t,
1<k<m<a 1<k<m<b

where £ > 0 is a tuning constant and wgkgnj)él g and wékg% g are scaled adaptive LASSO

(Zou, 2006) type weights for the pair of levels k and m of each factor.

2.3 No Heredity Method

We denote the extension of the CAS-ANOVA procedure to the interaction ANOVA
model as the ‘No Heredity’ (NH) method. Let &; o1, ij Ls»and @i jorg be the OLS
estimates of the corresponding parameters found using equation (1). The NH method’s
penalty is given by

S W len —aml+ S0 w18k — Bl

1<k<m<a 1<k<m<b

+ Z Z gz?ml\;nHl 5>km - (aﬁ)lm‘

1<m<b 1<k<i<a

t Z Z OzkﬁmeI? (aB)km — (aB)u| < t,

1<k<a 1<m<I<b

where the weights on the main effect differences are given by

(km) (kmn

—1
Wo, Ny = |0k0Ls — am,ors|”" and wy NH = ‘Bk oLs — Bm OLS‘

and the weights placed on the interaction differences are given by

(kmkl)
Wag, NH ’0‘5 km,OLS — («a ﬁ)kLOLS

Fraons|”

and

(kmm) |7 5 =
Wop NH = (aﬁ)km,OLs - (aﬁ)lm,OLs

‘—1

Asymptotically the NH method may perform well, although it is unlikely to perform
well at the two main tasks of choosing significant factors and collapsing levels in small
samples because of the lack of important heredity-type structure discussed in section

1. In problems where the factors have a large number of levels, the NH method will

have difficulty collapsing levels due to the sizable number of interaction differences that



need to be set to zero. Using our notation we can now describe the procedure for col-
lapsing two levels of a factor when interactions are present in more detail. In the two
factor situation considered here, our procedure implies that level k of factor A should
only be collapsed to level m of factor A if the main effect difference, o, — i, and all
the interaction differences between factor A and B involving level k& and m of factor A,
(af)m1—(aB)k1, (aB)ma—(aB)k2, -y (B)mb— (f) kb, have been set to zero. There is a
chance for the NH method to select factors and collapse levels but nothing forces this to be
the case, a stray nonzero interaction difference can prevent the collapsing from occurring.
Thus, for interpretability of the model and to accomplish our two main tasks of analysis
simultaneously, this extension of the CAS-ANOVA procedure is not ideal with interactions

present. In section 6 and 7, the NH method is compared to the GASH-ANOVA procedure.

3 GASH-ANOVA

3.1 Method

For computation and the statement of the theoretical results of the GASH-ANOVA
estimator it is more convenient to reparametrize to a full rank design matrix using a ref-
erence level as a baseline. This lessens the number of parameters and constraints needed.
Thus, from this point forward we will use the full rank design. We choose the first level
of each factor as the reference level, although this choice is arbitrary as the levels can
be relabeled. Define the new design matrix by X* and the new parameter vector by
6* = (u*,a*”, B*7, (aB)* "), where i* = i+ a1 + B1 + ()11,

a*T = (Oé;, ...,O(:;) = (OQ — a1, ..., 0q — 051)7

B*isa (b— 1) x 1 vector defined similarly for factor B, and
(alB>*T = ((066);2, (aﬁ);?n 3] (aﬁ)§b7 (a6)§2, ) (aﬁ)§b7 ) (aﬁ);;b)?
where (a3*);; = (af)ij — (af)11.

To achieve the automatic factor selection and collapsing of levels in the interaction
model the GASH-ANOVA approach uses a weighted heredity-type constraint. To en-
courage the collapsing of levels, an infinity norm constraint is placed on (overlapping)
groups of pairwise differences belonging to different levels of each factor. In detail, we
form G = (9) + () groups where each group contains a main effect difference be-

tween two levels of a factor along with all interaction differences that involve those same
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two levels. We denote each group of parameters by either ¢ ;5,1 < ¢ < 7 < a or
$pij: 1 < i < j < b, where ¢a,15 = (af, (@B)]a, (aB)]ss -y (@B)F) for 2 < j < a and
baij = (= af, (aB)5y — (@Bl (aB)ly — (aB)fys o (@B)Yy — (@)} for 1 < i <
J < a and ¢g ;; is defined similarly. Note that these groups share some interaction terms.
By judicious choice of overlapping groups, two main effects of a factor can be set equal
to one another only if all of the interactions for those two levels are also set equal and,
with probability one, an interaction difference is only present if the corresponding main
effect differences are also present. Thus, the GASH-ANOVA procedure adheres to our
heredity-type structure which encourags levels of each factor to be estimated with exact
equality and entire factors to be set to zero. This overlapping group penalty on the differ-
ences is related to the family of Composite Absolute Penalties (CAP) (Zhang, P., Rocha,
G. and Yu, B., 2009). However, the CAP treats coefficients themselves as groups, not the
differences of coefficients as groups.

The GASH-ANOVA solution can be written in detail as follows:

0* = argming- ||y — X*é’*”2 2)

subject t0 Y ;<o Wi max {|daij|} + Y1 <iesep wl max {|dg]} < t,

where wgfj ) and w(ﬁij ) are adaptive weights, ¢ > 0 is a tuning constant,

|Gaisl = (5], [(@B)hal, [(@B)fal, oy [(@B) 5 )T
for2 < j <aand
(65051 = (o — of ] [(@B)f — (@B)ial, [(@B) 55 — (aB)is], oy [(aB)y — (aB)i)T

for 1 <i < j < a, and |¢g ;| is similarly defined. Using equation (1) to obtain the OLS

solution, the weight w(()fj ) is given by (max{

aa,iijS’})_l, where (anij,OLS denotes
the use of the OLS estimate for the differences and the form of the weight ng ) is given
similarly. The adaptive weights allow for the asymptotic properties of the GASH-ANOVA
procedure given in section 4.

It may be of interest to not only be able to collapse entire levels of a factor, but to
also be able to collapse individual interaction differences. If all interaction differences

for all factors are set to zero then we are left with the additive model. To accomplish the



collapsing of individual interaction differences we can explicitly add these terms to the
penalty. The new penalty would be given by

ST wlimax {gasl} + Y wimax {|g.(}

1<i<j<a 1<i<j<b

+ 303 W (B — (@B

1<m<b 1<k<I<a

+ Z Z akﬁme;I) (aB)km — (@Bl < t,

1<k<a 1<m<I<b

where the weights are as defined previously. The asymptotic theory for this penalty given
in section 4 should still hold. If one desired even more control of the interaction differences
we could leave the original GASH-ANOVA penalty alone and create a second penalty with
its own tuning parameter, say to, that involved only the interaction differences (explicitly
given by the last two sums of the previous penalty). However, in this case we would need
to fit a lattice of points over our tuning parameters to find a solution. This greatly increases
the number of GASH-ANOVA solutions to compute.

When more than two factors are included in the model the method follows directly.
With more than two factors the idea of collapsing two levels of a factor remains the same.
In order to collapse two levels, we need the main effect difference and any interaction
differences that involve those two levels to be set to zero. Thus, we need only augment
the ¢ vectors with all interaction differences necessary for collapsing the two levels of the
given factor. If we assume interactions of order three or greater are null, the ¢ vectors need
only be augmented with all two-way interaction differences that involve the given levels
of the factor. If we allow for all higher order interactions, the ¢ vector needs to include all

higher order interaction differences between the levels.

3.2 Investigating Interactions in the Unreplicated Case

Assume there is only one observation for each level combination, i.e. n;; = 1 for all
1,7. This is common case when using a Randomized Complete Block Design (RCBD).
Using OLS for this case one usually assumes there is no interaction between the factors
(or the factor and the block) as there are not enough degrees of freedom to investigate and
test interaction effects. A number of solutions have been proposed to investigate the inter-
action when no replication is present (see Franck, C., Osborne, J., and Nielsen, D. (2011)

for a detailed review and comparison of methods).



We can use a modified GASH-ANOVA procedure to investigate interactions in the un-
replicated case. This modified version uses an unweighted penalty enabling us to estimate
our model fits. The optional penalty that includes explicit penalization of the interaction
differences discussed in the previous section could also be applied here.

One issue of note for the unweighted GASH-ANOVA procedure is that of scaling. In
penalized regression procedures, having the effects on a comparable scale is important to
ensure the penalization is done equally. In most penalization methods, the design matrix
is scaled as to have unit Lo norm. However, since we have differences of parameters in
our penalty, the way to standardize the variables is not clear. The usual GASH-ANOVA
procedure remedies this issue by using adaptive weights, essentially placing the penalized

terms on the same scale.

4 Asymptotic Properties

When investigating the asymptotic properties of the GASH-ANOVA estimator we as-
sume that each ¢ group is either truly all zero (collapsed) or all differences in that group
are truly nonzero. This implies that if a main effect difference in a ¢ group is truly nonzero
then, provided the other factor has at least two distinct levels, the corresponding interaction
differences in that ¢ group must all be nonzero as well.

Let Ay = {(4,)) : s # a;} and Ag = {(4, ) : B; # B} be defined as the set of in-
dices for the main effect differences of each factor that are truly nonzero and let A, , =
{(1,7) : 64 # &;} and Ag,, = {(z’,j) . B; # BJ} be defined as the set of indices for
each factor whose main effect differences are estimated as nonzero. For the pairwise
differences indexed by A, and Ag, let 1y 4 , be the vector of those pairwise differ-
ences along with their corresponding interaction differences. Notice that the sets A,
and Ag contain the indices for the truly significant level and factor structure. If this in-
formation were known a priori, the solution would be estimated by collapsing down to
this structure and then conducting the usual ANOVA analysis. Define 7, 4 , as this
so called ‘oracle” estimator of 74, 4 . It is well known that under standard conditions
n~1/2 (ﬁAa,A/; - nAmAﬁ) — N(0,X). Let 7y, 4, denote the GASH-ANOVA estimator
0of 114, 4,- Theorem 1 given below shows that the GASH-ANOVA obtains the oracle prop-
erty.

The theorem is most easily stated when we rewrite the GASH-ANOVA criterion in its



corresponding Lagrangian formulation:

9 ()
~ . ly — X*0%[|” + A\ Zl§i<j§a “’Wmax {I@aisl}
0 = argming~ i)

w

+An D 1<ici<h %max {51}
Note that there is a one-to-one correspondence with the tuning parameter ¢ and \,,.
Theorem 1: Suppose that A,, — oo and % —5 0. The GASH-ANOVA estimator 6
and its corresponding estimator of the pairwise differences 7} has the following properties:
a) P(Aon = As) — land P(Ag, =Ag) — 1
b) ”_I/Q(ﬁAa,Aﬁ — Na,.a,) = N0, X)
The proof of Theorem 1 is given in the appendix.
The oracle property states that the method determines the correct structure of the model
with probability tending to one. Additionally, it tells us that one can create a new design
matrix corresponding to the reduced model structure selected and conduct inference using

the standard asymptotic variance obtained from OLS estimation on that design. Note that

this second level of inference may not be necessary, depending on the goals of one’s study.

S Computation and Tuning

The GASH-ANOVA problem can be expressed as a quadratic programming problem.
Define

C = Me* = (,LL*, a*T7 557 IB*Ta 557 (a/B)*Ta €£ﬁ7A7 EEB,B)T7

where &, and £ are vectors containing the main effect pairwise differences for each fac-
tor that do not involve the baseline level and &5 4 and &, p are vectors containing the
interaction pairwise differences of interest for factor A and factor B, respectively, that do

not involve the baseline levels. The matrix

(1 0 o0 o0 |

OM;, 0 O
M:

0 0 My 0

(000 0 M|

needed to create this new parameter vector is block diagonal. The first block (a scalar)
T

corresponds to p*. The second block corresponds to factor A, M; = [Ia—l DlT] , and

consists of an identity matrix of size @ — 1 and a matrix D; of £1 that creates £, that is

of dimension (agl) X (a — 1) . The third block, Mg, is defined likewise for factor B. The
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fourth block, M3, is also defined similarly except that two difference matrices are needed.
Define D3 as the matrix of 1 needed to obtain §,5 4 and define Dy as the matrix of +1
needed to obtain £, g, then Ms = [I(,_1);—1) Dj DﬂT.

Next, we set a* = a* " — o*~ with both * and o*~ being nonnegative (referred
to respectively as the positive and negative parts of a™). We also perform this action for
all other parts of the ¢ vector except p*. Define the parameter vector that includes the

positive and negative parts by 7. We split the groups of pairwise differences of parameters

into positive and negative parts, denoted by qﬁii i d’; ;; and P i ngE ;> Tespectively. In
detail, examples of these groups are ¢;“’1j = (a}f+, (aﬁ);;, (aﬁ)}f;, . (aﬂ);;')T for

2<j<aand

0a = (@ =), ((@B)jy — (aB)) T, ooy ((aB)fy, — (aB)}y) )T
for 1 < ¢ < 7 < a. We create a new design matrix corresponding to the main effects of
factor A by Z,, = {X; -X7 0nX2(a;1)] , where X? denotes the columns of the design
matrix corresponding to factor A. Likewise, we create a new design matrix for the main ef-
fect of factor B, Z 3. A new design matrix is created similarly for the interactions with two
zero matrices appended, Z,5 = [Xzﬁ — X} 5 Onx2ry Onxar, |, wherer; = (b—1) (“;1)
andre = (a—1) (bgl) are the number of pairwise interaction differences corresponding to

factor A and factor B, respectively. Let Z = [Z, Zg Z,p] be the new full design matrix,

implying ZT = X*6*. The optimization problem can be written as follows:
7 = argming |ly — Z7|? 3)

subject to LT = 0,

(DF 15+ Pais) < Saj, forall1 <i < j<a,
(¢E,z'j + d)g’ij) < sggj,forall 1 <i<j<b,
di<i<i<a w&msa,ij + D 1<i<i<b ng)sﬁ,ij <t,

and 53;7 52.’_7 (—;37 557 557 5;57 SOU S,B 2 07
where s, ;; and sg;; are slack variables, s, and sg represent the set of a and /3 slack

variables respectively, and

[0 0 0 0|

0L 0 0
L=

00 Ly, 0

(0 0 0 Ly |
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is a block diagonal matrix with four blocks that ensures the estimated parameters maintain
their relationships. The first block (a scalar) corresponds to the mean. The second block

corresponds to the factor A main effect differences,

Li= (D Dy Iy Te)-

2 2

The third block corresponds to the factor B main effect difference and is defined similarly.
The fourth block corresponds to the interaction differences is given by

D3 _D3 _Irl Irl 02 02

Dy -Dy 0,1 0p1 -1 I

Ly =

Note that ¢ . and ¢

i are vectors of length b and for any given 7j pair s, ;; is a con-

a,t)
+

stant. Hence, by the inequality (¢, ;; + @, ;;) < Sa,ij we really mean each element being
less than the slack variable. This is now a quadratic objective function with linear con-
straints, and hence can be solved by standard quadratic programming methods. Note that
the GASH-ANOVA computation remains a quadratic programming problem when more
than two factors are included in the model.

The tuning parameter ¢ can be chosen in a number of standard ways such as k-fold
cross-validation, generalized cross-validation, or by minimizing AIC or BIC. The method
recommended for use with the GASH-ANOVA procedure is minimizing BIC as it has
been shown that under general conditions BIC is consistent for model selection. In order
to compute BIC, an estimate of the degrees of freedom (df) of the model is needed. The

logical estimate for df in the two factor case is to add the number of unique parameter

estimates in each parameter group, such as a*. Specifically,
df =14 a* +b* + (ab)*,

where we use one df for the mean, a* and b* denote the number of estimated unique
coefficients for factor A and B respectively, and (ab)* denotes the number of estimated

unique interaction coefficients.

6 Simulation Studies

In order to assess the performance of the GASH-ANOVA procedure two Monte Carlo
simulation studies were performed and analysis on a number of different criteria were
compared with two different types of competitors: constrained regression with no heredity-

type constraint and post hoc hypothesis testing procedures.
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6.1 Simulation Set-up

The simulation set-up consisted of a two factor design having eight levels for fac-
tor A and four levels for factor B. A balanced design was used with sample sizes of 64,
192, and 320, corresponding to two, siX, and ten replications per treatment combination
respectively. The response was generated according to a normal distribution with an error
variance of one. Two different effect vectors, 61 and 65 were used and the table of cell

means corresponding to each vector are given in tables 1 and 2.

#HEFFIGURE 1 AND 2 GO HERE**##%*

We can see that in terms of the cell means table, a ¢, ;; group is zero only if column
i and j are equal and a ¢g;; group is zero only if row ¢ and j are equal. The vector ¢;
consisted of four distinct levels with 18 true nonzero differences between levels for factor
A and three distinct levels having five true nonzero differences between levels for factor B.
Using the full rank baseline reparametrization, there were 68 truly nonzero pairwise differ-
ences of interest and 71 truly zero pairwise differences of interest. The vector 65 consisted
of three distinct levels for both factors, with 13 and five true nonzero differences between
levels for factor A and B, respectively. In terms of pairwise differences of interest, there
were 61 truly nonzero differences and 78 truly zero differences. The analysis was run on
300 independent data sets at each setting of sample size and effect vector.

In order to inspect the control of the family-wise error rate (FWER), null model simu-
lations (all true parameter vectors set to zero) were also conducted. The simulation set-up

above was used with two, four, and eight replications and an error variance of 16.
6.2 Competitors and Methods of Evaluation

The GASH-ANOVA procedure was evaluated against four competitors. The first com-
petitor was the No Heredity method described in section 2.2. The other competitors were
post hoc hypothesis testing methods that tested pairwise comparisons of interest. The
p-values from these tests (HT method) along with p-values corrected for multiple com-
parisons using the conservative Bonferroni approach (Bon) and the false discovery rate
approach (BH) of Benjamini and Hochberg (Benjamini and Hochberg, 1995) were ob-

tained and groups of p-values that corresponded to tests of each member of ¢, ;; and ¢g ;;
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were evaluated at the 0.05 level. If none of the p-values in a ¢, ;; or ¢ ;; group were sig-
nificant then levels ¢ and j for the corresponding factor were considered collapsed. If any
of the p-values in a group were significant, then the corresponding levels were considered
to be significantly different. Note that these methods also do not encourage the collapsing
of levels the way we desire. For the GASH-ANOVA and the No Heredity methods, if all
of the differences in a ¢, ;; or ¢ ;; group were estimated at zero then levels ¢ and j of the
corresponding factor were considered collapsed. If any of the differences in a group were
nonzero then the corresponding levels were considered to be significantly different.

We use the sets Ay, Ann, Ag, and Ag,, to define the criteria that are used for compar-
isons of the procedures. Due to the different procedures for deciding if we collapse two
levels or deem them significantly different, we must extend our definitions of A, , and

Ag . Define A, ,, = {(i,j) : F(éa”) # 0} , where

. ]|¢A>aw |2 for GASH and NH methods
F ((z)oz,ij ) =
| i for hypothesis testing methods
«,1]
and 1 . is an indicator function that is one if any p-value in the gﬁaﬂj is deemed signifi-
a,i]

cant and zero otherwise. The set Ag ,, is defined similarly.
The GASH-ANOVA, NH, HT, Bon, and BH methods were all evaluated and compared
on a number of criteria. Let us consider the null hypothesis that we collapse two levels

of a factor against the alternative that those levels differ significantly. A ‘1-Typel’ error
NAGI+IAG N3]
IAG [ +1A5]

‘ c
a,n

criterion is defined as , where |A| is the cardinality of A. In words,

this is the number of collapsed level differences found that truly should have been col-

lapsed divided by the true total number of collapsed level differences. A ‘Power’ criterion

[Aa,nNAa|+]Ap.nNAg|
|Aal+|Ag]

was likewise defined as or the number of significantly different level
differences found that truly differed divided by the true total number of significantly dif-
ferent level differences. The number of collapsed differences between levels in each data
set (Collapsed) was found along with the false collapse rate (FCR), which is the num-

ber of incorrectly collapsed differences divided by the number of collapses found, i.e.
IAG, nMAa|+[AG ,,NAs]
IAG,n+1AG |

a,n

. The number of significant differences between levels in each data set
(Sig) was also found along with the false significance rate (FSR), which is the number

of incorrect significantly different level differences found divided by the total number of
[Aa,nNAG[+]Ag,nNAG|
‘Aa,n““‘Aﬁ,nl

significantly different level differences found, i.e. . Likewise, we de-
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fine these criteria for the pairwise differences of interest. All of the criteria were averaged
across the 300 data sets. These results are given in tables 3 and 4.

Table 5 was produced from the null model simulation. This table gives the oracle per-
cent. That is, the percent of datasets such that A, = A, and Ag = Ag,, which acts like
the FWER in this situation. The average number of significant differences found between

both levels and pairwise differences of interest was also reported.

6.3 Simulation Results

Looking at the ‘1-Type 1’ and ‘Power’ columns of tables 3 and 4, we see that the
GASH-ANOVA procedure is the only method that has high ‘power’ for finding both
the significant level differences and significant pairwise differences. This is due to the
heredity-type structure that the method requires its model to have. The other methods may
be able to find one or more of the pairwise differences of a truly nonzero level difference
significant (leading to high level power), but the GASH-ANOVA procedure’s structural
constraint forces all pairwise differences of interest for a level to be significant if the level
difference is significant. Thus, we see the advantage and usefulness of the constraint. The
GASH-ANOVA procedure also dominates the NH procedure in terms of the ‘1-Type 1 cri-
terion for the levels for both effect vectors and for pairwise differences for effect vector 5.
The corrected hypothesis testing procedures perform very well in this aspect, but lack the
power to find significant pairwise differences, especially compared to the GASH-ANOVA

procedure.
##¥%*¥F[GURE 3 AND 4 GO HERE***%%*

We also see that the average number of significant level differences the GASH-ANOVA
procedure found is very close to the true number of significant level differences for both
effect vectors. The procedure does tend to find too many significant pairwise differences
on average for effect vector 61, especially compared to the NH procedure, but performs
very well in that respect for effect vector 3. The corrected hypothesis testing methods
perform very poorly in terms of average number of significant level differences found for
the more difficult sample size cases, but perform well with larger samples sizes. However,
we again see the usefulness of the structural constraint when we look at the average number
of significant pairwise differences found. For the corrected hypothesis testing procedures

the average number of significantly different level differences is very close to the correct
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number, but the average number of significant pairwise differences found is far too small

in every case.
*#kk*F[GURE 5 GOES HERE®*#%*

We are also interested in how each method does in terms of controlling the FWER.
Table 5 shows that the corrected hypothesis testing methods do as they are designed to,
hold the FWER approximately at 0.95. We can see that the NH method performs better
for this criterion as the sample size grows, but the GASH-ANOVA procedure performs
extremely well in all cases and that the FWER approaches one as the sample size grows.
Thus, we can see that not only does the GASH-ANOVA method tend to have the best
performance in terms of power, its control of the family-wise error rate is extremely good

as well.

7 Real Data Example

The GASH-ANOVA procedure was applied to data from a memory trial done by
Eysenck (1974). The trial was designed to investigate the memory capacity of two ages
of people (Young and Old) by having them recall a categorized word list. There were 50
subjects in each age group that were randomly assigned to one of five learning groups:
Counting, Rhyming, Adjective, Imagery, and Intentional. The Counting group was to
count and record the number of letters in each word. The Rhyming group was told to
think of and say out loud a word that rhymed with each word given. The Adjective group
was to find a suitable modifying adjective for each word and to say each out loud. The
Imagery group was to create an image of the word in their mind. These learning groups
were increasing in the level of processing required with Counting being the lowest level
and Imagery being the highest. The subjects assigned to the first four learning groups were
not told they would need to recall the words given, but the Intentional group was told they
would be asked to recall the words.

The setup of this experiment is that of a balanced two-way ANOVA with replication
(10 per treatment combination), allowing for interactions to be investigated. The standard
analysis was run treating the Old age group and the Adjective learning group as the base-
line levels. The analysis showed that both main effects and the interaction effect were
significant at the 0.05 level. To get an idea about the data, the means for each treatment

combination are given in table 6. The GASH-ANOVA procedure, the NH method, and the
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BH and Bonferonni p-value correction methods were applied to the data and evaluated in

the same manner that was done in the simulation studies.

*##¥%*F[GURE 6 AND 7 GO HERE***%%*

As we can see from table 6, the GASH-ANOVA solution collapsed the Counting and
Rhyming treatment groups but did not collapse any other levels from either factor. The NH
method did not collapse any levels of either factor. It did collapse the main effects for the
Rhyming and Counting groups, but the corresponding interaction difference was estimated
as nonzero. This implies that Rhyming and Counting learning groups were collapsed for
the Old age group only. The BH and Bonferonni procedures found that the Counting
and Rhyming groups, the Adjective and Imagery groups, and the Imagery and Intentional
groups were not different. These two methods did happen to collapse the interactions
corresponding to those main effects.

Here we can see that the p-value correction methods form overlapping groups. The
NH method does create non-overlapping groups, however, it seems that the lack of model
structure may have prevented two levels from being collapsed. The p-value correction
methods do follow the level collapsing structure in this example, but this need not be the
case. Based on the simulation results, the p-value correction methods also suffer from
lack of power. We see this here as the GASH-ANOVA procedure is able to detect more
significant differences between the levels of the learning group factor. Thus, we can see the
advantages inherent in the GASH-ANOVA procedure. The GASH-ANOVA procedure’s
estimates are designed to encourage the collapsing of levels and they have the advantage

of automatically creating non-overlapping groups.

8 Discussion

In this paper we have proposed a constrained regression method that enforces a struc-
tural constraint on the model using an infinity norm penalty on groups of pairwise dif-
ferences of parameters. The method automatically selects important factors and forms
non-overlapping groups of levels within a factor. The method is shown to enjoy the ‘or-
acle’ property. Simulation studies and a real data example show the effectiveness of the
method and the benefit it gives over a similar method that does not impose a structural con-
straint and over post hoc hypothesis testing procedures. The simulation studies show that

in terms of identifying the correct structure of the model, finding the significant pairwise
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differences of interest, and maintaining high family wise error rate, the GASH-ANOVA
procedure performs the best of all the methods compared. The computation for the prob-
lem is shown to be a quadratic programming problem with linear constraints and is feasible

in most situations.

9 Appendix

Proof of Theorem 1:

Proof of a): Let B, ,, = Ay, NAY, and Bg,, = Ag,, N A% be the indices of the main
effect differences for factor A and B, respectively, that should be estimated at zero but were
incorrectly estimated as nonzero. We need to show that the true zeros will be set to zero
with probability tending to one or, equivalently, that both P(B,,» # () — 0and P(B,,, #
) — 0. Then we must show that P(Af, ,, N A, # ) — Oand P(AS,, NAg # 0) — 0,
i.e. that none of the nonzero differences are mistakenly set to zero. The second item to
show will follow directly from the /n-consistency of the estimators for the differences in
A, and Ag, which will be proved in part b of the theorem.

For the first item, we show that P (B, , # () — 0 and the proof for P(Bg,, # 0) — 0
is done similarly. Assuming B,, ,, is nonempty, there are two cases to consider: Case (i) A
pair of indices in B, ;, has its main effect difference as the maximum of its corresponding
®a,ij group. Case (ii) No pair of indices in B, , has its main effect difference as the
maximum of its corresponding ¢, ;; group.

Case (i): Because we have categorical factors we can sort the levels of factor A so that
a1 < az < ... < . Let m be the largest index of any index pair in B, that is also the

maximum of its ¢, ;; group, i.e.
m =max{j : (,j) € Ba,p, for some i, a; — o; = max |pq,ij|} -

Let g be the smallest index such that the pair (¢, m) € Bq p, s0 ¢ < m. Now we reparam-
eterize to the full rank design matrix using level g of factor A and some arbitrary level, say
b, of factor B as our baseline. Thus, we define v = p + oy + By + (3) p. We define 7} as
oy, — o for k # ¢, define yf as 3; — (3 for j # b, and define W?f to be zero if and only if
both (af)r; — (aB)ky = 0 and (af8)r; — (af)q; = 0 for k # q, j # b. We create the new
full rank parameter vector, by stacking ~, the ¥%, the v°, and the v*?. By assumption

75, = 0and 4%, # 0. Also, by construction we have 75, — 7% > 0 for all (k,m) € Ba
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such that the main effect difference corresponding to (k, m) is the maximum of its ¢q
group. Due to the ordering of the levels chosen, for & < [ at the GASH-ANOVA solution

we have
W=7 k#FelFq
o — | = o/a k=gq,l>q

Ve k<ql=q

Hence, we can rewrite the solution as

5 = argminy [|ly = 291 + AT (7)] | @
where
( (kQ) )
Zlgk<q 1 n { 71?7 Faﬂ >T} +
(qk)
Zq<k<a ax { T} +
(”“) af  |\T
J(v) = < Xoi<kei<aktqlriq { W=7 Fl+,k+‘) }+ : &)
Zl<k<b 1 max{ ‘Vk’ )T} +
B
21<kai<o-1 \f max{ ”Yz - ’Yk e, +k‘)T} )

Z 1is the typical design matrix for the parametrization that treats level g of factor A and

level b of factor B as the baseline and

\raﬂ = o)

T3l = (87 =5t | i =8| ity — 6 )
‘F ——b% Vo |+ oo [V i)

‘F?j%’ ”Yu _’71157 _'szf yene 7&61)1_7&31)14‘)'

To complete this part of the proof we will obtain a contradiction on a neighborhood
of our solution 7,,,. At the solution the optimization criterion above is differentiable with
respect to 7S, because 79, # 0. We investigate this derivative on a neighborhood of the
solution on which the differences that are estimated at zero remain at zero. On this neigh-
borhood, the terms involving (k,m) € Ag ,, N A, can be omitted since they will vanish
in the objective function. Because our criterion is differentiable on the neighborhood, our

solution 4 must satisfy

An Ilm<k]w (km) «
T 79) &2 ket (him)eaa (—1) [m< ]7\/5 I7] ©)
\f Zm\Y — &7 wlm )
]

An N
+7 Dkt (k) EBa v I,
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where 2! denotes the m*" column of Z and I[y%] is an indicator that is one if the maxi-
mum of |@q km| Was a main effect and zero otherwise.
By construction, all of the terms in the second sum on the right hand side are pos-

itive and, for this case, the second sum is nonempty. Note that for all (k,m) € B,

we have w((ka) = |Gm,0oLs — &k70LS|_1. Also for any (k,m) € A, the weight is of
— — -1
k ~ ~ _ k
the form wi™ = |@m.ons — Akows| ™t or wi™ = (@B)piors — (@B orLs

where [ is some level of factor B. Therefore, for all £ such that (k,m) € A, we have
w™ = 0,(1), while for (k,m) € A%, n=1/2w{™ = 0,(1) since the initial OLS esti-
mator is \/n-consistent. Thus, the first sum on the right hand side is O, (\,n"'/2) and the
terms in the second sum are O,(\,,). Since the second sum is nonempty, the entire right
hand side must be O, (\,,) since at least one term must be.

However, the left hand side is O, (1) and by assumption \,, — oo. This is a contradic-
tion, thus it must be that P (B, # 0) — 0.

Case (ii) The proof proceeds much like that for case (i). Find the pair (m, ¢) such that
forall j = 1,2,...,b, (/aﬁ\)mj — (/aﬁ\) 4 is the largest estimated difference of any pair in

B, . Thus, @mj — @ g;| 18 also the maximum of its corresponding @5 group.

Without loss of generality sort the levels of factor A so that (/04,6’\)1 j < (/ozﬁ\)2 y < <
(/aﬂ\)a 7 let ¢ < m, and assume j # b. As with case (i), we reparameterize to the full rank
design matrix using level ¢ of factor A and level b of factor B and form the new parameter
vector . Thus, (af)m; — (af)q; = 0 only if ygg = 0 and ﬁgg is positive and nonzero.

We will find a contradiction by taking the derivative of the full rank optimization crite-
rion with respect to 7 5 ona neighborhood of the solution where the differences that are

estimated at zero remain at zero. We can rewrite the optimization criterion with terms in

the penalty not involving fyf‘rg

omitted as follows:
5 = argminy [[ly = 291 + X (Qu7) + -+ Qo)) ™

where Q1(7), ..., Q¢(7y) are given by
wkD)

T
;ﬁ max{(l%ﬁ?l, o a7}
e
1<k<q—1
T
T 7max{ TRV B B i OO vy B )T}
g+1<k<a
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U}gb) 8 af aB aB\\T
Wmax{()vj | ‘,..., Vo |+ s | Vag |) },
e
1<Zk: ~rma (] = ot = g = i P =T
<k<j
and
e
R e T e B [
j<k<

respectively. Note that by choice of the baseline, the interaction parameters in the groups
corresponding to factor B do not contain any parameters where q is the first index (i.e. 735
does not appear in the groups for all 7).

At the GASH-ANOVA solution we have

= fyfr’g and we know that fygg is the

]
731]‘
maximum of its corresponding ¢, ,,; group (the first group above). For the other groups
in the penalty that correspond to factor A, if the term with ’yﬁ‘g is the maximum of the

group we have that for all £ < gor k > m, (m, k) ¢ B, else a difference larger than

(aB),,; — (afB),; could be found and for all ¢ < k < m, 770;5 - ’yg‘f = fyf{rg — 'y,?f Note
that fygg > 'yﬁ‘l’i forall k,k = 1,2,...,b — 1. Thus, for the groups in the penalty that

involve differences of fyffg corresponding to factor B, if that difference is the maximum of

the group we have that

Vol = k] = O = ) or (55 + ).

On the neighborhood described we can differentiate our criterion to get an equation

similar to equation 6. In doing so we can use a similar argument as used in case (i) to show
our contradiction. The sums that involved indices in B, ;,, consist of only positive values,
are nonempty, and are of order Op,(\,,). Likewise, indices in Bg ,, consist only of positive
values and are of order O, (\,,). All other terms on the right hand side of the equation are
Op(Aun~1/2) implying the right hand side must be of order O,(),). However, the left
hand side is Op(1) and by assumption \,, — oo. This again is our contradiction, thus it
must be that P(Bq,,, # () — 0.
Proof of b): As with the proof of the CAS-ANOVA asymptotic normality, this proof
will closely follow that of Zou (2006). The proof given below is just a sketch of how
the proof is adapted to this setting, for full details please see Zou (2006). Let ~y, be the
true parameter vector for the full rank reparametrization and let & = /n(¥ — 7). Now,
@ = arg min,, V;,(u), where

1 Tz An
Va(w) =" (=27 Z)u — 26%u + J=P(),
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and

P(u) =
e w} u, Uk
S 1y e L+ | - . g+ 2] - o))
\f J \f J
k#q
(kl) (ha Ny Wi ‘ o ‘
10— Tko Yio — Vkol >
+ Z \/> fmax af Upj0 —Uk;0 T
1<k<I<ak#ql#q Dijorjo T~ |~ ‘sz'o,kjo‘)
Uy B af | Wi
+ Z fmax ( "'7 R Fi]0+ Jn ’FIJOD
1<j<b—1
j B B Up—u;
N Z wgm) - ("Ylo — Y0 + l\/ﬁj )
1<jlmery VT oo 0 + S0 — [T ijol)”

By the argument in Zou (2006), 2z P( ) will go to zero for the correct model structure
and diverge under the incorrect model structure. Let V.9 (up) be the value of the objective
function obtained using the ‘oracle’ structure determined by A, and Ag. This implies we
collapse Z to Zp by combining the columns of the columns of each pair in Af, and A%, in
the process forming a new . If ﬁAg,A% = 0, then V,,(u) = V.9 (uo).

Assuming constant variance, o, for our model we get %Zg Zo — C, where C'is a
positive definite matrix. Also we have that % — W = N(0,0%C). As in Zou (2006),
we get V,,(u) — V(u), where

Vi) = ubCuop — 2u5W e ac =0 .
00 otherwise
Since Vj,(u) is convex and the unique minimizer of V' (u) is (C~'W, 0)7, the asymptotic
normality follows. Therefore, ufa As N(0,02C~1). The result for all pairwise differ-

ences, 74, A PE follows after the (singular) transformation.
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Table 1: Table of Cell Means for 6,

Factor A
Level 1 2 314 5 6 7 8
1 21451 -11]0 2 2 2 2
2145185125345 /1451451|45
Factor B
3 3 5 210 3 3 3 3
4 3 5 210 3 3 3 3
Table 2: Table of Cell Means for 65
Factor A
Level | 1| 2| 3| 4| 5| 6| 7| 8
1 71212 2| 2] 2| 2| 2
2115 8] 8| 8| 8| 8| 8] 8
Factor B
31 3/ 0(-1-1/|-1]|-1]-1]-1
41 31 0|-1|-1]-1|-1]-1]-1
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Table 5: Null Model Simulation Results

Oracle Avg Sig Levels Avg Sig Pairwise

GASH 0.95 0.16 0.16

NH 0.66 7.24 14.86

Reps =2 HT 0.18 5.26 7.07
Bon 0.96 0.06 0.06

BH 0.96 0.15 0.17

GASH 0.95 0.18 0.18

NH 0.83 2.67 4.36

Reps =6 HT 0.11 5.72 7.68
Bon 0.97 0.07 0.07

BH 0.96 0.13 0.16

GASH 0.98 0.08 0.08

NH 0.92 1.16 1.81

Reps = 10 HT 0.09 5.44 7.18
Bon 0.96 0.05 0.05

BH 0.96 0.07 0.09
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Table 6: Treatment Combination Means and Distinct Levels

Age Group | Mean  SD | GASH NH BH/Bon
Young | Counting 6.5 143 | A A A
Young | Rhyming 7.6 196 | A B A
Young | Adjective | 148 349 | B C B
Young Imagery | 17.6 2.59 C D BC
Young | Intentional | 19.3 2.67 D E C

Old | Counting 7.0 1.83 D

Old | Rhyming 6.9 2.13 E D

Old | Adjective | 11.0 2.49 E

Old Imagery | 13.4 4.50 G EF

Old | Intentional | 12.0 3.74 H F

Table 7: Distinct Levels within Factors
Age | GASH/NH/BH/Bon Group | GASH | NH BH/Bon
Oold | A Counting | A A A
Young | B Rhyming | A B A
Adjective | B C B
Imagery C D BC
Intentional D C
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