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Abstract

When faced with categorical predictors and a continuous response, the objective of

analysis often consists of two tasks: Finding which factors are important and determining

which levels of the factors differ significantly from one another. Often times these tasks are

done separately using Analysis of Variance (ANOVA) followed by a post-hoc hypothesis

testing procedure such as Tukey’s Honestly Significant Difference test. When interactions

between factors are included in the model the collapsing of levels of a factor becomes a

more difficult problem. For interpretability, when collapsing two levels of a factor it may

not make sense to collapse the main effect difference to zero while still having interaction

differences between those levels nonzero. This structure between the main effects and

interactions in a model is similar to the idea of heredity used in regression models. This

paper introduces a new method for accomplishing both of the common analysis tasks si-

multaneously in an interaction model while also adhering to the heredity-type constraint on

the model. A group norm penalty is placed on parameters that encourages levels of factors

to collapse and entire factors to be set to zero. The procedure is called GASH-ANOVA for

grouping and selection using heredity in ANOVA. It is shown that the procedure has the

oracle property implying that asymptotically it performs as well as if the exact structure

were known beforehand. We also discuss the application of a modified GASH-ANOVA

estimator for estimating interactions in the unreplicated case. Simulation studies show that

the GASH-ANOVA procedure outperforms post hoc hypothesis testing procedures as well

as similar methods that do not include a structural constraint. The method is also illustrated

using a real data example.
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1 Introduction

Consider the common case of a continuous response variable and categorical predictors

(factors). A conventional way to judge the importance of these factors is to use Analysis of

Variance (ANOVA). Once factors are deemed important, to check which levels of the fac-

tors differ from one another the next step is often to do a post hoc analysis such as Tukey’s

honestly significantly different test, Fisher’s least significant difference test, or pairwise

comparisons of levels using a Bonferroni adjustment or a Benjamini-Hochberg (Benjamini

and Hochberg, 1995) type adjustment. Rather than carry out these two tasks separately,

a technique called CAS-ANOVA, for collapsing and shrinkage in ANOVA (Bondell and

Reich, 2009), has been developed to perform these actions simultaneously. This procedure

is a constrained or penalized regression technique. Much of the recent variable selection

literature is of this form and examples include the least absolute shrinkage and selection

operator (LASSO) (Tibshirani, 1996), the Elastic Net (EN) (Zou and Hastie, 2005), the

Smoothly Clipped Absolute Deviation penalty (SCAD) (Fan and Li, 2001), and the Octag-

onal Shrinkage and Clustering Algorithm for Regression (OSCAR) (Bondell and Reich,

2008). The CAS-ANOVA procedure places an L1 constraint directly on the pairwise dif-

ferences in each factor allowing an entire factor to be zeroed out while also allowing levels

within a factor to collapse (be set equal) into groups. Not only does the CAS-ANOVA

procedure accomplish both tasks at once, the nature of the penalty requires the levels of

each factor to be collapsed into non-overlapping groups. This method was shown to have

the oracle property, implying that its performance is asymptotically equivalent to having

the true grouping structure known beforehand and performing the standard least squares

ANOVA fit to this collapsed design.

A limitation of the CAS-ANOVA method is that it was developed assuming a main ef-

fect only model and often an interaction model is more realistic. In the interaction ANOVA

model, when determining whether two levels of a factor should collapse we must look at

more than just their respective main effects. It is not appropriate to claim the two levels

should collapse if there is an interaction term that differs between the two levels for any

given level of another factor. This leads to the idea that only levels whose interaction ef-

fects are all identical, should have their main effects also collapsed together. Thus, if we

can enforce this type of structure on our model we will be able to accomplish both tasks of
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our analysis. The notion of this model structure is similar to the idea of heredity often used

in regression models when higher order terms are involved. For a regression model such

asE(yi) = β0+β1xi1+β2xi2+β3xi1xi2+β4x
2
i1, where yi is a continuous response with

xi1 and xi2 continuous predictors, strong heredity implies x2i1 should only appear in the

model if xi1 appears in the model and the interaction term xi1xi2 should only appear in the

model if both xi1 and xi2 appear in the model. The heredity principle is important because

it aids in interpretation of the model and ensures that the model makes sense structurally.

This type of constraint on the structure of the predictors in a regression model has seen

much use. For example, Choi, N., Li,W. and Zhu, J. (2010) used heredity to extend the

LASSO variable selection technique to include interaction terms, Yuan, M., Joseph, V. and

Zou, H. (2009) used heredity in variable selection with the non-negative garrote, Yuan, M.,

Joseph, V. and Lin, Y. (2007) used the constraint with the LARS algorithm, and Chipman

(1996) used the constraint in the Bayesian variable selection context. However, all of these

approaches deal with continuous predictors, in that an interaction is a single term derived

from the product of two other predictors. In the interaction ANOVA model, interaction

terms are not single terms, they arise as products of groups of variables, and thus need to

be treated differently.

This paper develops a method for use in the interaction ANOVA model to simultane-

ously perform the two main goals of analysis. The method utilizes a weighted penalty

that enforces the heredity-type structure on the model. The new method is called GASH-

ANOVA for Grouping And Selection using Heredity in ANOVA. We show that the oracle

property holds for the GASH-ANOVA procedure, in that asymptotically it performs as

well as if the exact structure were known beforehand. This property also implies that, even

after the possible dimension reduction, asymptotic inference can be based on standard

ANOVA theory. We also discuss the use of an unweighted version of the GASH-ANOVA

estimator to estimate interaction terms in the unreplicated ANOVA model.

The rest of the article is organized as follows: In section 2, notation is introduced

and the related CAS-ANOVA procedure is reviewed. In section 3.1, the GASH-ANOVA

procedure is introduced. The extension to the unreplicated case is discussed in section

3.2. In section 4, the asymptotic properties of the GASH-ANOVA solution are presented.

Section 5 discusses computation and tuning for the GASH-ANOVA method. To illustrate

the method, section 6 gives simulation studies and their results and section 7 shows the
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method’s usefulness on a real data example. Finally, section 8 gives a discussion.

2 Notation and CAS-ANOVA

2.1 Notation

To simplify notation, consider the two factor ANOVA model with factor A and factor

B having a and b levels respectively. The extension to more than two factors is straight-

forward and will be discussed shortly. We denote the number of observations at each

level combination by nij and denote the total sample size by n =
∑

i,j nij . Note that

for a balanced design we have n = abnij . We use the matrix representation of the

linear model, y = Xθ + ε, where y is the n × 1 vector of responses, X is the typical

n× p overparameterized ANOVA design matrix consisting of zeros and ones correspond-

ing to the combination of levels for each observation (where p = 1 + a + b + ab), θ

is a p × 1 vector of parameters, and ε is a n × 1 vector of error terms. The parame-

ter vector consists of the mean and three stacked vectors, θ = (µ,αT ,βT , (αβ)T )T ,

where µ is the intercept, αT = (α1, α2, ...αa), βT = (β1, β2, ...βb), and (αβ)T =

((αβ)11, (αβ)12, ...(αβ)1b, (αβ)21, ..., (αβ)2b, ..., (αβ)ab). Here, αi corresponds to the

main effect of level i of factor A, βj corresponds to the main effect of level j of factor B,

and (αβ)ij corresponds to the interaction effect of level i of factor A and level j of factor

B. The ordinary least squares (OLS) solution can be written as follows:

θ̂OLS = argminθ ||y− Xθ||2 (1)

subject to
a∑
i=1

αi = 0,
a∑
i=1

(αβ)ij = 0 for all j,

b∑
j=1

βj = 0,

b∑
j=1

(αβ)ij = 0 for all i,

where the constraints on the parameters are aptly named the sum to zero constraints. Note

that nij must be at least two in order to estimate the interaction terms when using OLS.

2.2 CAS-ANOVA

In order to shrink the coefficients and to perform variable selection in the additive

model, the (adaptive) CAS-ANOVA (Bondell and Reich, 2009) procedure places a weighted

constraint directly on the pairwise differences of the levels of each factor. In the two factor
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main effect only model, which has the same set up as the above model ignoring the inter-

action terms and constraints on the interaction terms, the CAS-ANOVA procedure adds a

constraint that is of the form

∑
1≤k<m≤a

w
(km)
α,CAS |αk − αm|+

∑
1≤k<m≤b

w
(km)
β,CAS |βk − βm| ≤ t,

where t > 0 is a tuning constant and w(km)
α,CAS and w(km)

β,CAS are scaled adaptive LASSO

(Zou, 2006) type weights for the pair of levels k and m of each factor.

2.3 No Heredity Method

We denote the extension of the CAS-ANOVA procedure to the interaction ANOVA

model as the ‘No Heredity’ (NH) method. Let α̂i,OLS , β̂j,OLS , and (̂αβ)ij,OLS be the OLS

estimates of the corresponding parameters found using equation (1). The NH method’s

penalty is given by

∑
1≤k<m≤a

w
(km)
α,NH |αk − αm|+

∑
1≤k<m≤b

w
(km)
β,NH |βk − βm|

+
∑

1≤m≤b

∑
1≤k<l≤a

w
(km,lm)
αβ,NH |(αβ)km − (αβ)lm|

+
∑

1≤k≤a

∑
1≤m≤l<b

w
(km,kl)
αβ,NH |(αβ)km − (αβ)kl| ≤ t,

where the weights on the main effect differences are given by

w
(km)
α,NH = |α̂k,OLS − α̂m,OLS |−1 and w(km)

β,NH =
∣∣∣β̂k,OLS − β̂m,OLS∣∣∣−1

and the weights placed on the interaction differences are given by

w
(km,kl)
αβ,NH =

∣∣∣(̂αβ)km,OLS − (̂αβ)kl,OLS

∣∣∣−1
and

w
(km,lm)
αβ,NH =

∣∣∣(̂αβ)km,OLS − (̂αβ)lm,OLS

∣∣∣−1 .
Asymptotically the NH method may perform well, although it is unlikely to perform

well at the two main tasks of choosing significant factors and collapsing levels in small

samples because of the lack of important heredity-type structure discussed in section

1. In problems where the factors have a large number of levels, the NH method will

have difficulty collapsing levels due to the sizable number of interaction differences that
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need to be set to zero. Using our notation we can now describe the procedure for col-

lapsing two levels of a factor when interactions are present in more detail. In the two

factor situation considered here, our procedure implies that level k of factor A should

only be collapsed to level m of factor A if the main effect difference, αm − αk, and all

the interaction differences between factor A and B involving level k and m of factor A,

(αβ)m1−(αβ)k1, (αβ)m2−(αβ)k2, ..., (αβ)mb−(αβ)kb, have been set to zero. There is a

chance for the NH method to select factors and collapse levels but nothing forces this to be

the case, a stray nonzero interaction difference can prevent the collapsing from occurring.

Thus, for interpretability of the model and to accomplish our two main tasks of analysis

simultaneously, this extension of the CAS-ANOVA procedure is not ideal with interactions

present. In section 6 and 7, the NH method is compared to the GASH-ANOVA procedure.

3 GASH-ANOVA

3.1 Method

For computation and the statement of the theoretical results of the GASH-ANOVA

estimator it is more convenient to reparametrize to a full rank design matrix using a ref-

erence level as a baseline. This lessens the number of parameters and constraints needed.

Thus, from this point forward we will use the full rank design. We choose the first level

of each factor as the reference level, although this choice is arbitrary as the levels can

be relabeled. Define the new design matrix by X∗ and the new parameter vector by

θ∗ = (µ∗,α∗T ,β∗T , (αβ)∗T )T , where µ∗ = µ+ α1 + β1 + (αβ)11,

α∗T = (α∗2, ..., α
∗
a) = (α2 − α1, ..., αa − α1),

β∗ is a (b− 1)× 1 vector defined similarly for factor B, and

(αβ)∗T = ((αβ)∗22, (αβ)∗23, ..., (αβ)∗2b, (αβ)∗32, ..., (αβ)∗3b, ..., (αβ)∗ab),

where (αβ∗)ij = (αβ)ij − (αβ)11.

To achieve the automatic factor selection and collapsing of levels in the interaction

model the GASH-ANOVA approach uses a weighted heredity-type constraint. To en-

courage the collapsing of levels, an infinity norm constraint is placed on (overlapping)

groups of pairwise differences belonging to different levels of each factor. In detail, we

form G =
(
a
2

)
+
(
b
2

)
groups where each group contains a main effect difference be-

tween two levels of a factor along with all interaction differences that involve those same
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two levels. We denote each group of parameters by either φα,ij , 1 ≤ i < j ≤ a or

φβ,ij , 1 ≤ i < j ≤ b, where φα,1j = (α∗j , (αβ)∗j2, (αβ)∗j3, ..., (αβ)∗jb) for 2 ≤ j ≤ a and

φα,ij = (α∗j − α∗i , (αβ)∗j2 − (αβ)∗i2, (αβ)∗j3 − (αβ)∗i3, ..., (αβ)∗jb − (αβ)∗ib) for 1 < i <

j ≤ a and φβ,ij is defined similarly. Note that these groups share some interaction terms.

By judicious choice of overlapping groups, two main effects of a factor can be set equal

to one another only if all of the interactions for those two levels are also set equal and,

with probability one, an interaction difference is only present if the corresponding main

effect differences are also present. Thus, the GASH-ANOVA procedure adheres to our

heredity-type structure which encourags levels of each factor to be estimated with exact

equality and entire factors to be set to zero. This overlapping group penalty on the differ-

ences is related to the family of Composite Absolute Penalties (CAP) (Zhang, P., Rocha,

G. and Yu, B., 2009). However, the CAP treats coefficients themselves as groups, not the

differences of coefficients as groups.

The GASH-ANOVA solution can be written in detail as follows:

θ̂∗ = argminθ∗ ||y− X∗θ∗||2 (2)

subject to
∑

1≤i<j≤aw
(ij)
α max {|φα,ij |}+

∑
1≤i<j≤bw

(ij)
β max {|φβ,ij |} ≤ t,

where w(ij)
α and w(ij)

β are adaptive weights, t > 0 is a tuning constant,

|φα,ij | = (|α∗j |, |(αβ)∗j2|, |(αβ)∗j3|, ..., |(αβ)∗jb|)T

for 2 ≤ j ≤ a and

|φ∗α,ij | = (|α∗j − α∗i |, |(αβ)∗j2 − (αβ)∗i2|, |(αβ)∗j3 − (αβ)∗i3|, ..., |(αβ)∗jb − (αβ)∗ib|)T

for 1 < i < j ≤ a, and |φβ,ij | is similarly defined. Using equation (1) to obtain the OLS

solution, the weight w(ij)
α is given by (max

{∣∣∣φ̂α,ij,OLS∣∣∣})−1, where φ̂α,ij,OLS denotes

the use of the OLS estimate for the differences and the form of the weight w(ij)
β is given

similarly. The adaptive weights allow for the asymptotic properties of the GASH-ANOVA

procedure given in section 4.

It may be of interest to not only be able to collapse entire levels of a factor, but to

also be able to collapse individual interaction differences. If all interaction differences

for all factors are set to zero then we are left with the additive model. To accomplish the
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collapsing of individual interaction differences we can explicitly add these terms to the

penalty. The new penalty would be given by

∑
1≤i<j≤a

w(ij)
α max {|φα,ij |}+

∑
1≤i<j≤b

w
(ij)
β max {|φβ,ij |}

+
∑

1≤m≤b

∑
1≤k<l≤a

w
(km,lm)
αβ,NH |(αβ)km − (αβ)lm|

+
∑

1≤k≤a

∑
1≤m≤l<b

w
(km,kl)
αβ,NH |(αβ)km − (αβ)kl| ≤ t,

where the weights are as defined previously. The asymptotic theory for this penalty given

in section 4 should still hold. If one desired even more control of the interaction differences

we could leave the original GASH-ANOVA penalty alone and create a second penalty with

its own tuning parameter, say t2, that involved only the interaction differences (explicitly

given by the last two sums of the previous penalty). However, in this case we would need

to fit a lattice of points over our tuning parameters to find a solution. This greatly increases

the number of GASH-ANOVA solutions to compute.

When more than two factors are included in the model the method follows directly.

With more than two factors the idea of collapsing two levels of a factor remains the same.

In order to collapse two levels, we need the main effect difference and any interaction

differences that involve those two levels to be set to zero. Thus, we need only augment

the φ vectors with all interaction differences necessary for collapsing the two levels of the

given factor. If we assume interactions of order three or greater are null, the φ vectors need

only be augmented with all two-way interaction differences that involve the given levels

of the factor. If we allow for all higher order interactions, the φ vector needs to include all

higher order interaction differences between the levels.

3.2 Investigating Interactions in the Unreplicated Case

Assume there is only one observation for each level combination, i.e. nij = 1 for all

i, j. This is common case when using a Randomized Complete Block Design (RCBD).

Using OLS for this case one usually assumes there is no interaction between the factors

(or the factor and the block) as there are not enough degrees of freedom to investigate and

test interaction effects. A number of solutions have been proposed to investigate the inter-

action when no replication is present (see Franck, C., Osborne, J., and Nielsen, D. (2011)

for a detailed review and comparison of methods).
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We can use a modified GASH-ANOVA procedure to investigate interactions in the un-

replicated case. This modified version uses an unweighted penalty enabling us to estimate

our model fits. The optional penalty that includes explicit penalization of the interaction

differences discussed in the previous section could also be applied here.

One issue of note for the unweighted GASH-ANOVA procedure is that of scaling. In

penalized regression procedures, having the effects on a comparable scale is important to

ensure the penalization is done equally. In most penalization methods, the design matrix

is scaled as to have unit L2 norm. However, since we have differences of parameters in

our penalty, the way to standardize the variables is not clear. The usual GASH-ANOVA

procedure remedies this issue by using adaptive weights, essentially placing the penalized

terms on the same scale.

4 Asymptotic Properties

When investigating the asymptotic properties of the GASH-ANOVA estimator we as-

sume that each φ group is either truly all zero (collapsed) or all differences in that group

are truly nonzero. This implies that if a main effect difference in a φ group is truly nonzero

then, provided the other factor has at least two distinct levels, the corresponding interaction

differences in that φ group must all be nonzero as well.

Let Aα = {(i, j) : αi 6= αj} and Aβ = {(i, j) : βi 6= βj} be defined as the set of in-

dices for the main effect differences of each factor that are truly nonzero and let Aα,n =

{(i, j) : α̂i 6= α̂j} and Aβ,n =
{

(i, j) : β̂i 6= β̂j

}
be defined as the set of indices for

each factor whose main effect differences are estimated as nonzero. For the pairwise

differences indexed by Aα and Aβ , let ηAα,Aβ be the vector of those pairwise differ-

ences along with their corresponding interaction differences. Notice that the sets Aα

and Aβ contain the indices for the truly significant level and factor structure. If this in-

formation were known a priori, the solution would be estimated by collapsing down to

this structure and then conducting the usual ANOVA analysis. Define η̃Aα,Aβ as this

so called ‘oracle’ estimator of ηAα,Aβ . It is well known that under standard conditions

n−1/2
(
η̃Aα,Aβ − ηAα,Aβ

)
→ N (0,Σ). Let η̂Aα,Aβ denote the GASH-ANOVA estimator

of ηAα,Aβ . Theorem 1 given below shows that the GASH-ANOVA obtains the oracle prop-

erty.

The theorem is most easily stated when we rewrite the GASH-ANOVA criterion in its

9



corresponding Lagrangian formulation:

θ̂
∗

= argminθ∗

||y− X∗θ∗||2 + λn
∑

1≤i<j≤a
w

(ij)
α√
n

max {|φα,ij |}

+λn
∑

1≤i<j≤b
w

(ij)
β√
n

max {|φβ,ij |}

 .

Note that there is a one-to-one correspondence with the tuning parameter t and λn.

Theorem 1: Suppose that λn → ∞ and λn√
n
→ 0. The GASH-ANOVA estimator θ̂

and its corresponding estimator of the pairwise differences η̂ has the following properties:

a) P (Aα,n = Aα)→ 1 and P (Aβ,n = Aβ)→ 1

b) n−1/2(η̂Aα,Aβ − ηAα,Aβ )→ N(0,Σ)

The proof of Theorem 1 is given in the appendix.

The oracle property states that the method determines the correct structure of the model

with probability tending to one. Additionally, it tells us that one can create a new design

matrix corresponding to the reduced model structure selected and conduct inference using

the standard asymptotic variance obtained from OLS estimation on that design. Note that

this second level of inference may not be necessary, depending on the goals of one’s study.

5 Computation and Tuning

The GASH-ANOVA problem can be expressed as a quadratic programming problem.

Define

ζ = Mθ∗ = (µ∗,α∗T , ξTα ,β
∗T , ξTβ , (αβ)∗T , ξTαβ,A, ξ

T
αβ,B)T ,

where ξα and ξβ are vectors containing the main effect pairwise differences for each fac-

tor that do not involve the baseline level and ξαβ,A and ξαβ,B are vectors containing the

interaction pairwise differences of interest for factor A and factor B, respectively, that do

not involve the baseline levels. The matrix

M =


1 0 0 0

0 M1 0 0

0 0 M2 0

0 0 0 M3


needed to create this new parameter vector is block diagonal. The first block (a scalar)

corresponds to µ∗. The second block corresponds to factor A, M1 =
[
Ia−1 DT

1

]T
, and

consists of an identity matrix of size a − 1 and a matrix D1 of ±1 that creates ξα that is

of dimension
(
a−1
2

)
× (a− 1) . The third block, M2, is defined likewise for factor B. The
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fourth block, M3, is also defined similarly except that two difference matrices are needed.

Define D3 as the matrix of ±1 needed to obtain ξαβ,A and define D4 as the matrix of ±1

needed to obtain ξαβ,B , then M3 =
[
I(a−1)(b−1) DT

3 DT
4

]T .

Next, we set α∗ = α∗+ − α∗− with both α∗+ and α∗− being nonnegative (referred

to respectively as the positive and negative parts of α∗). We also perform this action for

all other parts of the ζ vector except µ∗. Define the parameter vector that includes the

positive and negative parts by τ . We split the groups of pairwise differences of parameters

into positive and negative parts, denoted by φ+α,ij , φ
+
β,ij and φ−α,ij , φ

−
β,ij , respectively. In

detail, examples of these groups are φ+α,1j = (α∗+j , (αβ)∗+j2 , (αβ)∗+j3 , ..., (αβ)∗+jb )T for

2 ≤ j ≤ a and

φ+α,ij = ((α∗j − α∗i )+, ((αβ)∗j2 − (αβ)∗i2)
+, ..., ((αβ)∗jb − (αβ)∗ib)

+)T

for 1 < i < j ≤ a. We create a new design matrix corresponding to the main effects of

factor A by Zα =
[
X∗α − X∗α 0n×2(a−1

2 )

]
, where X∗α denotes the columns of the design

matrix corresponding to factor A. Likewise, we create a new design matrix for the main ef-

fect of factor B, Zβ . A new design matrix is created similarly for the interactions with two

zero matrices appended, Zαβ =
[
X∗αβ − X∗αβ 0n×2r1 0n×2r2

]
, where r1 = (b−1)

(
a−1
2

)
and r2 = (a−1)

(
b−1
2

)
are the number of pairwise interaction differences corresponding to

factor A and factor B, respectively. Let Z = [Zα Zβ Zαβ] be the new full design matrix,

implying Zτ = X∗θ∗. The optimization problem can be written as follows:

τ̂ = argminτ ||y− Zτ ||2 (3)

subject to Lτ = 0,

(φ+
α,ij + φ−α,ij) ≤ sα,ij , for all 1 ≤ i < j ≤ a,

(φ+
β,ij + φ−β,ij) ≤ sβ,ij , for all 1 ≤ i < j ≤ b,∑

1≤i<j≤aw
(ij)
α sα,ij +

∑
1≤i<j≤bw

(ij)
β sβ,ij ≤ t,

and ξ+α , ξ
+
β , ξ

+
αβ, ξ

−
α , ξ

−
β , ξ

−
αβ, sα, sβ ≥ 0,

where sα,ij and sβ,ij are slack variables, sα and sβ represent the set of α and β slack

variables respectively, and

L =


0 0 0 0

0 L1 0 0

0 0 L2 0

0 0 0 L3


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is a block diagonal matrix with four blocks that ensures the estimated parameters maintain

their relationships. The first block (a scalar) corresponds to the mean. The second block

corresponds to the factor A main effect differences,

L1 =
(

D1 −D1 −I(a−1
2 ) I(a−1

2 )

)
.

The third block corresponds to the factor B main effect difference and is defined similarly.

The fourth block corresponds to the interaction differences is given by

L3 =

D3 −D3 −Ir1 Ir1 0r2 0r2

D4 −D4 0r1 0r1 −Ir2 Ir2

 .

Note that φ+
α,ij and φ−α,ij are vectors of length b and for any given ij pair sα,ij is a con-

stant. Hence, by the inequality (φ+
α,ij +φ−α,ij) ≤ sα,ij we really mean each element being

less than the slack variable. This is now a quadratic objective function with linear con-

straints, and hence can be solved by standard quadratic programming methods. Note that

the GASH-ANOVA computation remains a quadratic programming problem when more

than two factors are included in the model.

The tuning parameter t can be chosen in a number of standard ways such as k-fold

cross-validation, generalized cross-validation, or by minimizing AIC or BIC. The method

recommended for use with the GASH-ANOVA procedure is minimizing BIC as it has

been shown that under general conditions BIC is consistent for model selection. In order

to compute BIC, an estimate of the degrees of freedom (df) of the model is needed. The

logical estimate for df in the two factor case is to add the number of unique parameter

estimates in each parameter group, such as α∗. Specifically,

d̂f = 1 + a∗ + b∗ + (ab)∗,

where we use one df for the mean, a∗ and b∗ denote the number of estimated unique

coefficients for factor A and B respectively, and (ab)∗ denotes the number of estimated

unique interaction coefficients.

6 Simulation Studies

In order to assess the performance of the GASH-ANOVA procedure two Monte Carlo

simulation studies were performed and analysis on a number of different criteria were

compared with two different types of competitors: constrained regression with no heredity-

type constraint and post hoc hypothesis testing procedures.
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6.1 Simulation Set-up

The simulation set-up consisted of a two factor design having eight levels for fac-

tor A and four levels for factor B. A balanced design was used with sample sizes of 64,

192, and 320, corresponding to two, six, and ten replications per treatment combination

respectively. The response was generated according to a normal distribution with an error

variance of one. Two different effect vectors, θ1 and θ2 were used and the table of cell

means corresponding to each vector are given in tables 1 and 2.

*****FIGURE 1 AND 2 GO HERE*****

We can see that in terms of the cell means table, a φα,ij group is zero only if column

i and j are equal and a φβ,ij group is zero only if row i and j are equal. The vector θ1

consisted of four distinct levels with 18 true nonzero differences between levels for factor

A and three distinct levels having five true nonzero differences between levels for factor B.

Using the full rank baseline reparametrization, there were 68 truly nonzero pairwise differ-

ences of interest and 71 truly zero pairwise differences of interest. The vector θ2 consisted

of three distinct levels for both factors, with 13 and five true nonzero differences between

levels for factor A and B, respectively. In terms of pairwise differences of interest, there

were 61 truly nonzero differences and 78 truly zero differences. The analysis was run on

300 independent data sets at each setting of sample size and effect vector.

In order to inspect the control of the family-wise error rate (FWER), null model simu-

lations (all true parameter vectors set to zero) were also conducted. The simulation set-up

above was used with two, four, and eight replications and an error variance of 16.

6.2 Competitors and Methods of Evaluation

The GASH-ANOVA procedure was evaluated against four competitors. The first com-

petitor was the No Heredity method described in section 2.2. The other competitors were

post hoc hypothesis testing methods that tested pairwise comparisons of interest. The

p-values from these tests (HT method) along with p-values corrected for multiple com-

parisons using the conservative Bonferroni approach (Bon) and the false discovery rate

approach (BH) of Benjamini and Hochberg (Benjamini and Hochberg, 1995) were ob-

tained and groups of p-values that corresponded to tests of each member of φα,ij and φβ,ij
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were evaluated at the 0.05 level. If none of the p-values in a φα,ij or φβ,ij group were sig-

nificant then levels i and j for the corresponding factor were considered collapsed. If any

of the p-values in a group were significant, then the corresponding levels were considered

to be significantly different. Note that these methods also do not encourage the collapsing

of levels the way we desire. For the GASH-ANOVA and the No Heredity methods, if all

of the differences in a φα,ij or φβ,ij group were estimated at zero then levels i and j of the

corresponding factor were considered collapsed. If any of the differences in a group were

nonzero then the corresponding levels were considered to be significantly different.

We use the sets Aα, Aα,n, Aβ, and Aβ,n to define the criteria that are used for compar-

isons of the procedures. Due to the different procedures for deciding if we collapse two

levels or deem them significantly different, we must extend our definitions of Aα,n and

Aβ,n. Define Aα,n =
{

(i, j) : F (φ̂α,ij) 6= 0
}
, where

F (φ̂α,ij) =


||φ̂α,ij ||2 for GASH and NH methods

1Iφ̂α,ij for hypothesis testing methods

and 1Iφ̂α,ij is an indicator function that is one if any p-value in the φ̂α,ij is deemed signifi-

cant and zero otherwise. The set Aβ,n is defined similarly.

The GASH-ANOVA, NH, HT, Bon, and BH methods were all evaluated and compared

on a number of criteria. Let us consider the null hypothesis that we collapse two levels

of a factor against the alternative that those levels differ significantly. A ‘1-TypeI’ error

criterion is defined as
|Acα,n∩Acα|+|Acβ,n∩Acβ |

|Acα|+|Acβ |
, where |A| is the cardinality of A. In words,

this is the number of collapsed level differences found that truly should have been col-

lapsed divided by the true total number of collapsed level differences. A ‘Power’ criterion

was likewise defined as |Aα,n∩Aα|+|Aβ,n∩Aβ |
|Aα|+|Aβ | or the number of significantly different level

differences found that truly differed divided by the true total number of significantly dif-

ferent level differences. The number of collapsed differences between levels in each data

set (Collapsed) was found along with the false collapse rate (FCR), which is the num-

ber of incorrectly collapsed differences divided by the number of collapses found, i.e.
|Acα,n∩Aα|+|Acβ,n∩Aβ |
|Acα,n|+|Acβ,n|

. The number of significant differences between levels in each data set

(Sig) was also found along with the false significance rate (FSR), which is the number

of incorrect significantly different level differences found divided by the total number of

significantly different level differences found, i.e.
|Aα,n∩Acα|+|Aβ,n∩Acβ |
|Aα,n|+|Aβ,n| . Likewise, we de-
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fine these criteria for the pairwise differences of interest. All of the criteria were averaged

across the 300 data sets. These results are given in tables 3 and 4.

Table 5 was produced from the null model simulation. This table gives the oracle per-

cent. That is, the percent of datasets such that Aα = Aα,n and Aβ = Aβ,n, which acts like

the FWER in this situation. The average number of significant differences found between

both levels and pairwise differences of interest was also reported.

6.3 Simulation Results

Looking at the ‘1-Type 1’ and ‘Power’ columns of tables 3 and 4, we see that the

GASH-ANOVA procedure is the only method that has high ‘power’ for finding both

the significant level differences and significant pairwise differences. This is due to the

heredity-type structure that the method requires its model to have. The other methods may

be able to find one or more of the pairwise differences of a truly nonzero level difference

significant (leading to high level power), but the GASH-ANOVA procedure’s structural

constraint forces all pairwise differences of interest for a level to be significant if the level

difference is significant. Thus, we see the advantage and usefulness of the constraint. The

GASH-ANOVA procedure also dominates the NH procedure in terms of the ‘1-Type 1’ cri-

terion for the levels for both effect vectors and for pairwise differences for effect vector θ2.

The corrected hypothesis testing procedures perform very well in this aspect, but lack the

power to find significant pairwise differences, especially compared to the GASH-ANOVA

procedure.

*****FIGURE 3 AND 4 GO HERE*****

We also see that the average number of significant level differences the GASH-ANOVA

procedure found is very close to the true number of significant level differences for both

effect vectors. The procedure does tend to find too many significant pairwise differences

on average for effect vector θ1, especially compared to the NH procedure, but performs

very well in that respect for effect vector θ2. The corrected hypothesis testing methods

perform very poorly in terms of average number of significant level differences found for

the more difficult sample size cases, but perform well with larger samples sizes. However,

we again see the usefulness of the structural constraint when we look at the average number

of significant pairwise differences found. For the corrected hypothesis testing procedures

the average number of significantly different level differences is very close to the correct
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number, but the average number of significant pairwise differences found is far too small

in every case.

*****FIGURE 5 GOES HERE*****

We are also interested in how each method does in terms of controlling the FWER.

Table 5 shows that the corrected hypothesis testing methods do as they are designed to,

hold the FWER approximately at 0.95. We can see that the NH method performs better

for this criterion as the sample size grows, but the GASH-ANOVA procedure performs

extremely well in all cases and that the FWER approaches one as the sample size grows.

Thus, we can see that not only does the GASH-ANOVA method tend to have the best

performance in terms of power, its control of the family-wise error rate is extremely good

as well.

7 Real Data Example

The GASH-ANOVA procedure was applied to data from a memory trial done by

Eysenck (1974). The trial was designed to investigate the memory capacity of two ages

of people (Young and Old) by having them recall a categorized word list. There were 50

subjects in each age group that were randomly assigned to one of five learning groups:

Counting, Rhyming, Adjective, Imagery, and Intentional. The Counting group was to

count and record the number of letters in each word. The Rhyming group was told to

think of and say out loud a word that rhymed with each word given. The Adjective group

was to find a suitable modifying adjective for each word and to say each out loud. The

Imagery group was to create an image of the word in their mind. These learning groups

were increasing in the level of processing required with Counting being the lowest level

and Imagery being the highest. The subjects assigned to the first four learning groups were

not told they would need to recall the words given, but the Intentional group was told they

would be asked to recall the words.

The setup of this experiment is that of a balanced two-way ANOVA with replication

(10 per treatment combination), allowing for interactions to be investigated. The standard

analysis was run treating the Old age group and the Adjective learning group as the base-

line levels. The analysis showed that both main effects and the interaction effect were

significant at the 0.05 level. To get an idea about the data, the means for each treatment

combination are given in table 6. The GASH-ANOVA procedure, the NH method, and the
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BH and Bonferonni p-value correction methods were applied to the data and evaluated in

the same manner that was done in the simulation studies.

*****FIGURE 6 AND 7 GO HERE*****

As we can see from table 6, the GASH-ANOVA solution collapsed the Counting and

Rhyming treatment groups but did not collapse any other levels from either factor. The NH

method did not collapse any levels of either factor. It did collapse the main effects for the

Rhyming and Counting groups, but the corresponding interaction difference was estimated

as nonzero. This implies that Rhyming and Counting learning groups were collapsed for

the Old age group only. The BH and Bonferonni procedures found that the Counting

and Rhyming groups, the Adjective and Imagery groups, and the Imagery and Intentional

groups were not different. These two methods did happen to collapse the interactions

corresponding to those main effects.

Here we can see that the p-value correction methods form overlapping groups. The

NH method does create non-overlapping groups, however, it seems that the lack of model

structure may have prevented two levels from being collapsed. The p-value correction

methods do follow the level collapsing structure in this example, but this need not be the

case. Based on the simulation results, the p-value correction methods also suffer from

lack of power. We see this here as the GASH-ANOVA procedure is able to detect more

significant differences between the levels of the learning group factor. Thus, we can see the

advantages inherent in the GASH-ANOVA procedure. The GASH-ANOVA procedure’s

estimates are designed to encourage the collapsing of levels and they have the advantage

of automatically creating non-overlapping groups.

8 Discussion

In this paper we have proposed a constrained regression method that enforces a struc-

tural constraint on the model using an infinity norm penalty on groups of pairwise dif-

ferences of parameters. The method automatically selects important factors and forms

non-overlapping groups of levels within a factor. The method is shown to enjoy the ‘or-

acle’ property. Simulation studies and a real data example show the effectiveness of the

method and the benefit it gives over a similar method that does not impose a structural con-

straint and over post hoc hypothesis testing procedures. The simulation studies show that

in terms of identifying the correct structure of the model, finding the significant pairwise
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differences of interest, and maintaining high family wise error rate, the GASH-ANOVA

procedure performs the best of all the methods compared. The computation for the prob-

lem is shown to be a quadratic programming problem with linear constraints and is feasible

in most situations.

9 Appendix

Proof of Theorem 1:

Proof of a): Let Bα,n = Aα,n ∩ Acα and Bβ,n = Aβ,n ∩ Acβ be the indices of the main

effect differences for factor A and B, respectively, that should be estimated at zero but were

incorrectly estimated as nonzero. We need to show that the true zeros will be set to zero

with probability tending to one or, equivalently, that both P (Bα,n 6= ∅)→ 0 and P (Bβ,n 6=

∅) → 0. Then we must show that P (Acα,n ∩ Aα 6= ∅) → 0 and P (Acβ,n ∩ Aβ 6= ∅) → 0,

i.e. that none of the nonzero differences are mistakenly set to zero. The second item to

show will follow directly from the
√
n-consistency of the estimators for the differences in

Aα and Aβ , which will be proved in part b of the theorem.

For the first item, we show that P (Bα,n 6= ∅)→ 0 and the proof for P (Bβ,n 6= ∅)→ 0

is done similarly. Assuming Bα,n is nonempty, there are two cases to consider: Case (i) A

pair of indices in Bα,n has its main effect difference as the maximum of its corresponding

φα,ij group. Case (ii) No pair of indices in Bα,n has its main effect difference as the

maximum of its corresponding φα,ij group.

Case (i): Because we have categorical factors we can sort the levels of factor A so that

α̂1 ≤ α̂2 ≤ ... ≤ α̂a. Let m be the largest index of any index pair in Bα,n that is also the

maximum of its φα,ij group, i.e.

m = max {j : (i, j) ∈ Bα,n for some i, αj − αi = max |φα,ij |} .

Let q be the smallest index such that the pair (q,m) ∈ Bα,n, so q < m. Now we reparam-

eterize to the full rank design matrix using level q of factor A and some arbitrary level, say

b, of factor B as our baseline. Thus, we define γ = µ+αq +βb+ (αβ)qb. We define γαk as

αk −αq for k 6= q, define γβj as βj − βb for j 6= b, and define γαβkj to be zero if and only if

both (αβ)kj − (αβ)kb = 0 and (αβ)kj − (αβ)qj = 0 for k 6= q, j 6= b. We create the new

full rank parameter vector, γ by stacking γ, the γα, the γβ , and the γαβ . By assumption

γαm = 0 and γ̂αm 6= 0. Also, by construction we have γ̂αm − γ̂αk ≥ 0 for all (k,m) ∈ Bα,n
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such that the main effect difference corresponding to (k,m) is the maximum of its φα,km

group. Due to the ordering of the levels chosen, for k < l at the GASH-ANOVA solution

we have

|αl − αk| =


γαl − γαk k 6= q, l 6= q

γαl k = q, l > q

−γαk k < q, l = q

Hence, we can rewrite the solution as

γ̂ = argminγ

[
||y− Zγ||2 + λnJ(γ)

]
, (4)

where

J(γ) =



∑
1≤k<q−1

w
(kq)
α√
n

max
{

(−γαk ,
∣∣∣Γαβk+∣∣∣)T}+∑

q<k≤a
w

(qk)
α√
n

max
{

(γαk ,
∣∣∣Γαβk+∣∣∣)T}+∑

1≤k<l≤a,k 6=q,l 6=q
w

(lk)
α√
n

max
{

((γαl − γαk ),
∣∣∣Γαβl+,k+∣∣∣)T}+∑

1≤k<b−1
w

(kb)
β√
n

max
{

(
∣∣∣γβk ∣∣∣ , ∣∣∣Γαβ+k∣∣∣)T}+∑

1≤k<l≤b−1
w

(kl)
β√
n

max
{

(
∣∣∣γβl − γβk ∣∣∣ , ∣∣∣Γαβ+l,+k∣∣∣)T}


, (5)

Z is the typical design matrix for the parametrization that treats level q of factor A and

level b of factor B as the baseline and∣∣∣Γαβk+∣∣∣ = (
∣∣∣γαβk1 ∣∣∣ , ∣∣∣γαβk2 ∣∣∣ , ..., ∣∣∣γαβk(b−1)∣∣∣),∣∣∣Γαβl+,k+∣∣∣ = (

∣∣∣γαβl1 − γαβk1 ∣∣∣ , ∣∣∣γαβl2 − γαβk2 ∣∣∣ , ..., ∣∣∣γαβl(b−1) − γαβk(b−1)∣∣∣),∣∣∣Γαβ+k∣∣∣ = (
∣∣∣γαβ1k ∣∣∣ , ∣∣∣γαβ2k ∣∣∣ , ..., ∣∣∣γαβ(a−1)k∣∣∣),∣∣∣Γαβ+l,+k∣∣∣ = (

∣∣∣γαβ1l − γαβ1k ∣∣∣ , ∣∣∣γαβ2l − γαβ2k ∣∣∣ , ..., ∣∣∣γαβ(a−1)l − γαβ(a−1)k∣∣∣).

To complete this part of the proof we will obtain a contradiction on a neighborhood

of our solution γ̂m. At the solution the optimization criterion above is differentiable with

respect to γαm because γ̂αm 6= 0. We investigate this derivative on a neighborhood of the

solution on which the differences that are estimated at zero remain at zero. On this neigh-

borhood, the terms involving (k,m) ∈ Acα,n ∩ Acα can be omitted since they will vanish

in the objective function. Because our criterion is differentiable on the neighborhood, our

solution γ̂ must satisfy

2√
n
zTm(y − Zγ̂) =


λn√
n

∑
k 6=m,(k,m)∈Aα(−1)I[m<k]w

(km)
α√
n
I[γ̂αm]

+ λn√
n

∑
k 6=m,(k,m)∈Bα,n

w
(km)
α√
n
I[γ̂αm]

 , (6)
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where zTm denotes the mth column of Z and I[γ̂αm] is an indicator that is one if the maxi-

mum of |φα,km| was a main effect and zero otherwise.

By construction, all of the terms in the second sum on the right hand side are pos-

itive and, for this case, the second sum is nonempty. Note that for all (k,m) ∈ Bα,n

we have w(km)
α = |α̂m,OLS − α̂k,OLS |−1. Also for any (k,m) ∈ Aα the weight is of

the form w
(km)
α = |α̂m,OLS − α̂k,OLS |−1 or w(km)

α =
∣∣∣(̂αβ)ml,OLS − (̂αβ)kl,OLS

∣∣∣−1
where l is some level of factor B. Therefore, for all k such that (k,m) ∈ Aα we have

w
(km)
α = Op(1), while for (k,m) ∈ Acα, n

−1/2w
(km)
α = Op(1) since the initial OLS esti-

mator is
√
n-consistent. Thus, the first sum on the right hand side is Op(λnn−1/2) and the

terms in the second sum are Op(λn). Since the second sum is nonempty, the entire right

hand side must be Op(λn) since at least one term must be.

However, the left hand side is Op(1) and by assumption λn →∞. This is a contradic-

tion, thus it must be that P (Bα,n 6= ∅)→ 0.

Case (ii) The proof proceeds much like that for case (i). Find the pair (m, q) such that

for all j = 1, 2, ..., b, (̂αβ)mj − (̂αβ)qj is the largest estimated difference of any pair in

Bα,n. Thus,
∣∣∣(̂αβ)mj − (̂αβ)qj

∣∣∣ is also the maximum of its corresponding φα,ij group.

Without loss of generality sort the levels of factor A so that (̂αβ)1j ≤ (̂αβ)2j ≤ ... ≤

(̂αβ)aj , let q < m, and assume j 6= b. As with case (i), we reparameterize to the full rank

design matrix using level q of factor A and level b of factor B and form the new parameter

vector γ. Thus, (αβ)mj − (αβ)qj = 0 only if γαβmj = 0 and γ̂αβmj is positive and nonzero.

We will find a contradiction by taking the derivative of the full rank optimization crite-

rion with respect to γαβmj on a neighborhood of the solution where the differences that are

estimated at zero remain at zero. We can rewrite the optimization criterion with terms in

the penalty not involving γαβmj omitted as follows:

γ̂ = argminγ

[
||y− Zγ||2 + λn (Q1(γ) + ...+Q6(γ))

]
, (7)

where Q1(γ), ..., Q6(γ) are given by

w
(kq)
α√
n

max
{

(|γαm| ,
∣∣∣γαβm1

∣∣∣ , ..., ∣∣∣γαβmj∣∣∣ , ..., ∣∣∣γαβm,b−1∣∣∣)T} ,
∑

1≤k<q−1

w
(mk)
α√
n

max
{

(|γαm − γαk | ,
∣∣∣γαβm1 − γ

αβ
k1

∣∣∣ , ..., ∣∣∣γαβmj − γαβkj ∣∣∣ , ..., ∣∣∣γαβm,b−1 − γαβk,b−1∣∣∣)T} ,
∑

q+1<k≤a

w
(mk)
α√
n

max
{

(|γαk − γαm| ,
∣∣∣γαβk1 − γαβm1

∣∣∣ , ..., ∣∣∣γαβkj − γαβmj∣∣∣ , ..., ∣∣∣γαβk,b−1 − γαβm,b−1∣∣∣)T} ,
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w
(jb)
β√
n

max
{

(
∣∣∣γβj ∣∣∣ , ∣∣∣γαβ1j ∣∣∣ , ..., ∣∣∣γαβmj∣∣∣ , ..., ∣∣∣γαβaj ∣∣∣)T} ,

∑
1≤k<j

w
(jk)
β√
n

max
{

(
∣∣∣γβj − γβk ∣∣∣ , ∣∣∣γαβ1j − γαβ1k ∣∣∣ , ..., ∣∣∣γαβmj − γαβmk∣∣∣ , ..., ∣∣∣γαβaj − γαβak ∣∣∣)T} ,

and∑
j<k<b

w
(jk)
β√
n

max
{

(
∣∣∣γβk − γβj ∣∣∣ , ∣∣∣γαβ1k − γαβ1j ∣∣∣ , ..., ∣∣∣γαβmk − γαβmj∣∣∣ , ..., ∣∣∣γαβak − γαβaj ∣∣∣)T} ,

respectively. Note that by choice of the baseline, the interaction parameters in the groups

corresponding to factor B do not contain any parameters where q is the first index (i.e. γαβqj

does not appear in the groups for all j).

At the GASH-ANOVA solution we have
∣∣∣γαβmj∣∣∣ = γαβmj and we know that γαβmj is the

maximum of its corresponding φα,mj group (the first group above). For the other groups

in the penalty that correspond to factor A, if the term with γαβmj is the maximum of the

group we have that for all k < q or k > m, (m, k) /∈ Bα,n, else a difference larger than

(̂αβ)mj− (̂αβ)qj could be found and for all q < k < m,
∣∣∣γαβmj − γαβkj ∣∣∣ = γαβmj−γ

αβ
kj . Note

that γαβmj ≥
∣∣∣γαβmk∣∣∣ for all k, k = 1, 2, ..., b − 1. Thus, for the groups in the penalty that

involve differences of γαβmj corresponding to factor B, if that difference is the maximum of

the group we have that
∣∣∣γαβmj − γαβmk∣∣∣ = (γαβmj − γ

αβ
mk) or (γαβmj + γαβmk).

On the neighborhood described we can differentiate our criterion to get an equation

similar to equation 6. In doing so we can use a similar argument as used in case (i) to show

our contradiction. The sums that involved indices in Bα,n consist of only positive values,

are nonempty, and are of order Op(λn). Likewise, indices in Bβ,n consist only of positive

values and are of order Op(λn). All other terms on the right hand side of the equation are

Op(λnn
−1/2) implying the right hand side must be of order Op(λn). However, the left

hand side is Op(1) and by assumption λn → ∞. This again is our contradiction, thus it

must be that P (Bα,n 6= ∅)→ 0.

Proof of b): As with the proof of the CAS-ANOVA asymptotic normality, this proof

will closely follow that of Zou (2006). The proof given below is just a sketch of how

the proof is adapted to this setting, for full details please see Zou (2006). Let γ0 be the

true parameter vector for the full rank reparametrization and let û =
√
n(γ̂ − γ0). Now,

û = arg minuVn(u), where

Vn(u) = uT (
1

n
ZTZ)u− 2

εTZ√
n
u+

λn√
n
P (u),
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and

P (u) =∑
k 6=q

(−1)I[k<q]
w

(kq)
α√
n

√
nmax

{
((

∣∣∣∣γαk0 +
uk√
n

∣∣∣∣− |γαk0|), (∣∣∣∣Γαβkj0 +
ukj√
n

∣∣∣∣− ∣∣∣Γαβkj0∣∣∣))T}

+
∑

1≤k<l≤a,k 6=q,l 6=q

w
(kl)
α√
n

√
nmax

(
∣∣∣γαl0 − γαk0 + ul−uk√

n

∣∣∣− |γαl0 − γαk0| ,∣∣∣Γαβlj0,kj0 +
ulj0−ukj0√

n

∣∣∣− ∣∣∣Γαβlj0,kj0∣∣∣)T


+
∑

1≤j<b−1

w
(jb)
β√
n

√
nmax

{
(

∣∣∣∣γβj0 +
uj√
n

∣∣∣∣− ∣∣∣γβj0∣∣∣ , ∣∣∣∣Γαβij0 +
uij√
n

∣∣∣∣− |Γij0|)T}

+
∑

1≤j<m≤b−1

w
(jm)
β√
n

√
nmax

 (
∣∣∣γβl0 − γβj0 +

ul−uj√
n

∣∣∣ ,∣∣∣Γαβim0,ij0 +
uim0−uij0√

n

∣∣∣− |Γim0,ij0|)T

 .

By the argument in Zou (2006), λn√
n
P (u) will go to zero for the correct model structure

and diverge under the incorrect model structure. Let V O
n (uO) be the value of the objective

function obtained using the ‘oracle’ structure determined by Aα and Aβ . This implies we

collapse Z to ZO by combining the columns of the columns of each pair in Acα and Acβ , in

the process forming a new γO. If η̂Acα,A
c
β

= 0, then Vn(u) = V O
n (uO).

Assuming constant variance, σ2, for our model we get 1
nZ

T
OZO → C, where C is a

positive definite matrix. Also we have that ε
TZO√
n
→ W = N(0, σ2C). As in Zou (2006),

we get Vn(u)→ V (u), where

V (u) =


uTOCuO − 2uTOW η̂Acα,A

c
α

= 0

∞ otherwise
.

Since Vn(u) is convex and the unique minimizer of V (u) is (C−1W, 0)T , the asymptotic

normality follows. Therefore, uTAα,Aβ → N(0, σ2C−1). The result for all pairwise differ-

ences, η̂Aα,Aβ , follows after the (singular) transformation.
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Table 1: Table of Cell Means for θ1
Factor A

Level 1 2 3 4 5 6 7 8

Factor B

1 2 4.5 -1 0 2 2 2 2

2 4.5 8.5 2.5 3 4.5 4.5 4.5 4.5

3 3 5 2 0 3 3 3 3

4 3 5 2 0 3 3 3 3

Table 2: Table of Cell Means for θ2
Factor A

Level 1 2 3 4 5 6 7 8

Factor B

1 7 -2 2 2 2 2 2 2

2 15 8 8 8 8 8 8 8

3 3 0 -1 -1 -1 -1 -1 -1

4 3 0 -1 -1 -1 -1 -1 -1
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Table 5: Null Model Simulation Results
Oracle Avg Sig Levels Avg Sig Pairwise

Reps = 2

GASH 0.95 0.16 0.16

NH 0.66 7.24 14.86

HT 0.18 5.26 7.07

Bon 0.96 0.06 0.06

BH 0.96 0.15 0.17

Reps = 6

GASH 0.95 0.18 0.18

NH 0.83 2.67 4.36

HT 0.11 5.72 7.68

Bon 0.97 0.07 0.07

BH 0.96 0.13 0.16

Reps = 10

GASH 0.98 0.08 0.08

NH 0.92 1.16 1.81

HT 0.09 5.44 7.18

Bon 0.96 0.05 0.05

BH 0.96 0.07 0.09
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Table 6: Treatment Combination Means and Distinct Levels
Age Group Mean SD GASH NH BH/Bon

Young Counting 6.5 1.43 A A A

Young Rhyming 7.6 1.96 A B A

Young Adjective 14.8 3.49 B C B

Young Imagery 17.6 2.59 C D BC

Young Intentional 19.3 2.67 D E C

Old Counting 7.0 1.83 E F D

Old Rhyming 6.9 2.13 E F D

Old Adjective 11.0 2.49 F G E

Old Imagery 13.4 4.50 G H EF

Old Intentional 12.0 3.74 H I F

Table 7: Distinct Levels within Factors
Age GASH/NH/BH/Bon Group GASH NH BH/Bon

Old A Counting A A A

Young B Rhyming A B A

Adjective B C B

Imagery C D BC

Intentional D E C
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