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ABSTRACT
With the exponential growth of hand-held devices like smart
phones and tablet computers, a deep investigation of TCP
performance in cellular networks is becoming increasingly
important. In this paper, we conducted extensive measure-
ments over the 3G/4G networks of four major U.S. carriers
as well as the largest carrier in Korea and discovered a signif-
icant problem: the bufferbloat in cellular networks nullifies
loss-based congestion control and allows excessive growth
of the TCP congestion window, resulting in extremely long
delays and throughput degradation. To alleviate this issue,
smart phone vendors put an upper bound on the sender’s
congestion window by advertising a static receive window
smaller than the actual receive buffer size. This simple trick
helps mitigate the problem, but has fundamental limitations
due to its static nature. In this paper, we propose a dynamic
receive window adjustment (DRWA) algorithm to improve
TCP performance over bufferbloated cellular networks. Ac-
cording to our extensive real-world tests, DRWA may reduce
the delay by 25∼ 49% in general cases and increase TCP
throughput by up to 51% in some specific scenarios. Since
DRWA requires modification at the client side (e.g., smart
phones) only and is fully compatible with existing TCP pro-
tocol, it is immediately deployable.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Design, Measurement, Performance

Keywords
TCP, Cellular networks, Bufferbloat, Receive window ad-
justment

1. INTRODUCTION
TCP is the dominant transport layer protocol of the cur-

rent Internet, carrying around 90% of the total traffic [10,14].
Hence, the performance of TCP is of utmost importance to
the well-being of the Internet and has direct impacts on user
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Figure 1: Over-buffering has been widely observed in
the current Internet [6] but is especially severe in cellular
networks, resulting in up to several seconds of round trip
delay and even throughput degradation.

experience. Although TCP is well-studied in traditional net-
works, its performance over cellular networks has not been
given adequate attention.

According to our measurements, TCP has a number of
performance issues in this relatively new environment, in-
cluding extremely long delays and sub-optimal throughput
in certain scenarios. The reasons behind such performance
degradations are two-fold. First, most of the widely de-
ployed TCP implementations use loss-based congestion con-
trol where the sender will not slow down its sending rate
until it sees packet loss. Second, most cellular networks
are over-buffered to accommodate bursty traffic and channel
variability [6, 12] as depicted in Figure 1. The exception-
ally large buffer along with link layer retransmission con-
ceals packet losses from TCP senders. The combination of
these two facts leads to the following phenomenon: the TCP
sender continues to increase its sending rate even if it has al-
ready exceeded the bottleneck link capacity since all of the
overshot packets are absorbed by the buffers. This results in
up to several seconds of round trip delays.

To solve this problem, smart phone vendors have devised
with a small trick: they set a relatively small value for TCP
maximum receive buffer size although the physical buffer
size is much larger. Since the advertised receive window
(rwnd) cannot exceed the receive buffer size and the sender
cannot send more than what is allowed by the advertised re-
ceive window, this limit effectively prevents the TCP con-
gestion window (cwnd) from excessive growth and controls
the RTT (round trip time) experienced by the flow in a rea-
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sonable range. However, since the limit is statically con-
figured, it is sub-optimal in many scenarios, especially con-
sidering the dynamic nature of the wireless mobile environ-
ment. In high speed long distance networks (e.g., down-
loading from an overseas server over 4G LTE (Long Term
Evolution) network), the static value is too small to saturate
the link and results in severe throughput degradation. On
the other hand, in small bandwidth-delay product (BDP) net-
works, the static value is too large and the flow experiences
excessively long RTT.

There are many possible ways to solve this problem, rang-
ing from modifying TCP congestion control algorithm at the
sender to adopting Active Queue Management (AQM) at the
base station. However, all of them incur considerable de-
ployment cost. In this paper, we propose dynamic receive
window adjustment (DRWA), a light-weight, receiver-based
solution that is immediately deployable. Since DRWA re-
quires modification at the receiver side only and is fully com-
patible with existing TCP protocol, carriers or device man-
ufacturers can simply issue an OTA (over the air) update to
smart phones so that they can immediately enjoy better per-
formance even when interacting with existing TCP servers.

DRWA is similar in spirit to delay-based congestion con-
trol algorithms but runs on the receiver side. It modifies
the existing receive window adjustment algorithm of TCP
to indirectly control the sending rate.. Roughly speaking,
DRWA increases the advertised window when the current
RTT is close to the minimum RTT we have observed so far
and decreases it when RTT becomes larger due to queuing
delay. With proper parameter tuning, DRWA could keep
the queue size at the bottleneck link small yet not empty
so that throughput and delay experienced by the TCP flow
are both optimized. Our extensive experiments show that
DRWA keeps RTT 25∼ 49% lower than the current TCP im-
plementations in smart phones while achieving similar through-
put in ordinary cases. In large BDP networks, DRWA can
achieve up to 51% throughput improvement.

In summary, the key contributions of this paper include:

• We report extensive observations of TCP’s behavior in
a range of various cellular networks and point out its
negative impacts on user experience.

• We anatomize the TCP implementation in state-of-the-
art smart phones and locate the root causes of its per-
formance issue in cellular networks.

• We propose a simple and backward-compatible rem-
edy that is experimentally proven to be safe and effec-
tive. It provides substantial fixes to TCP performance
issues and is immediately deployable.

The rest of the paper is organized as follows. Section 2
introduces the bufferbloat problem in cellular networks and
the current TCP receive window adjustment algorithm. Sec-
tion 3 visualizes TCP’s performance issue in cellular net-
works via extensive measurements over the cellular networks

of the four major U.S. carriers as well as the largest cellular
carrier in Korea. We then anatomize the root causes of the
problem and propose our solution in Section 4. Finally, we
show the experimental performance of DRWA in compari-
son to the current implementation in Section 5 and conclude
our work in Section 6.

2. PRELIMINARIES

2.1 Bufferbloat in Cellular Networks
Bufferbloat, as termed by Gettys [6] in late 2010, is an

abnormal phenomenon in current Internet experience where
excessive buffering of packets causes unnecessarily high end-
to-end latency and jitter, as well as throughput degradation.
It is not specific to cellular networks but might be most promi-
nent in this environment. These excessive buffers were orig-
inally introduced into cellular networks for a number of rea-
sons. First, the channel status of cellular links fluctuates
rapidly and the corresponding channel rate varies from dozens
of Kbps to tens of Mbps. Second, the data traffic over such
links is highly bursty. To absorb such bursty traffic over such
a variable channel, the simple yet effective approach adopted
by current cellular networks is to provide large buffers. These
buffers smooth the bursty traffic and reduce the packet loss
rate in cellular networks. Further, due to the relatively high
bit error rate over the wireless channel, link layer retrans-
mission is typically performed in cellular networks, this also
requires large buffers in the routers or base stations to store
the unacknowledged packets. Finally, some carriers config-
ure middleboxes for the purpose of deep packet inspection.
A recent finding [15] pointed out that these middleboxes also
buffer a large amount of out-of-order packets.

Although providing large buffers seems to be a viable so-
lution at Layer 2, it has an undesirable interaction with TCP
congestion control at Layer 4. TCP relies mostly on packet
loss to detect network congestion. Although other variants
exist such as delay-based congestion control, most of the
widely deployed TCP implementations (e.g., Newreno [4],
BIC [16], CUBIC [7]) still use loss-based congestion control
[17]. Excessive buffers in cellular networks prevent packet
losses from occurring even if TCP’s sending rate far ex-
ceeds the bottleneck link capacity. This “hides” the network
congestion from the TCP sender and causes its congestion
control algorithm to malfunction. It eventually results ina
number of TCP performance degradations which we detail
in Section 3.

2.2 TCP Receive Window Adjustment (Auto-
tuning)

As we know, in TCP flow control, the receive window
was originally designed to prevent a fast sender from over-
whelming a slow receiver with limited buffer space. It re-
flects the available buffer size on the receiver side so that the
sender will not send more packets than the receiver can ac-
commodate. The combination of this flow control and TCP
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congestion control ensures that neither the receiver nor any
intermediate router along the path will be overloaded.

With the advancement in storage technology, memories
are becoming increasingly cheaper. Currently, it is not un-
common to find a computer equipped with several gigabytes
of memory and even smart phones are now equipped with
1GB of RAM (e.g. Motorola Droid Razr, Samsung Galaxy
S2). Hence, buffer space on the receiver side is hardly the
bottleneck in the current Internet. To improve TCP through-
put, a receive buffer auto-tuning technique called Dynamic
Right-Sizing (DRS [3]) was proposed. In DRS, instead of
determining the receive window based by the available buffer
size, the receive buffer size is dynamically adjusted in order
to suit the connection’s demand. Specifically, in each RTT,
the receiver estimates the sender’s congestion window and
then advertises a receive window which istwice the size of
the estimated congestion window. The fundamental goal of
DRS is to allocate enough buffer (as long as we can afford it)
so that the throughput of the TCP connection is never limited
by the receive window size but only constrained by network
congestion. Meanwhile, DRS tries to avoid allocating more
buffers than necessary.

Linux adopted a receive buffer auto-tuning scheme simi-
lar to DRS since kernel 2.4.27. Since Android is based on
Linux, it inherits the same receive window adjustment algo-
rithm. Other major operating systems also implemented cus-
tomized TCP buffer auto-tuning (Windows since Vista, Mac
OS X since 10.5, FreeBSD since 7.0). This implies a sig-
nificant role change for the TCP receive window. Although
the functionality of flow control is still preserved, most of
the time the receive window as well as the receive buffer
size is undergoing dynamic adjustments. However, this dy-
namic adjustment is unidirectional: DRS increases the re-
ceive window size only when it might potentially limit the
congestion window growth but never decreases it. In this
paper, we modify the receive window adjustment algorithm
to be bidirectional in order to improve TCP performance in
bufferbloated cellular networks. Details of our algorithmcan
be found in Section 4.

3. OBSERVATIONS
In this section, we report several interesting findings in

our extensive real-world measurements of TCP over various
cellular networks. We then diagnose the their root causes
and point out their potential impacts on user experience.

3.1 Measurement Setup
Figure 2 gives an overview of our measurement setup.

We have both clients and servers in U.S. and Korea so that
we can evaluate different scenarios where clients download
files from nearby servers or remote servers over various cel-
lular networks operated by different carriers. Our servers
run Ubuntu 10.04 (with 2.6.35.13 kernel) and use its de-
fault TCP congestion control algorithm CUBIC unless other-
wise noted. The signal strength during our tests is between

(a) Experiment Architecture
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EVO Shift

Samsung
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Figure 2: Our test environment

-75dBm and -87dBm (typically considered as good signal
condition in daily life). We developed simple applications
on the client side to download files from servers with dif-
ferent traffic patterns. Different phone models are used for
different carriers. Refer to Table 1 for details.

3.2 TCP Anomaly in Cellular Networks
In the past few decades, TCP has been extensively studied

in traditional networks, especially wired networks. With the
exponential growth of hand-held devices like smart phones
and tablet computers, TCP performance in cellular networks
is becoming increasingly important. Unfortunately, TCP be-
havior of smart mobile devices over cellular networks lacks
deep investigation despite a number of measurement studies
[2,9,11,12]. During our extensive real-world measurements
over various cellular networks, we found that the current
TCP implementation exhibits abnormal behavior in bufferbloated
cellular networks leading to a number of performance issues
including long delays and sub-optimal throughput.

3.2.1 A Reality Check of Bufferbloat in Cellular Net-
works

The potential problem of over-buffering in cellular net-
works was first pointed out by Ludwig et al. [13] as early as
1999 when researchers were focusing on GPRS networks.
However, over-buffering still prevails in cellular networks
today. To estimate the buffer space in current cellular net-
works, we set up the following test: we used a laptop running
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Ubuntu 10.04 to download a large file from our U.S. server
over the 3G networks of the four major U.S. carriers. By
default, Ubuntu sets both maximum receive buffer size and
maximum send buffer size greater than 3MB so that the flow
will not be limited by the buffer size and server applies TCP
CUBIC. Figure 3 depicts the measurement results. As we
can see from Figure 3(a),cwnd probes to more than 600KB
across all cellular networks, which is far beyond the BDP of
the underlying network. For instance, the peak downlink rate
for EVDO is 3.1Mbps. If the RTT of the underlying path is
150ms (thats the minimum RTT we observed in Figure 3(b)),
the actual BDP is only around 58KB. With so much over-
shooting, it is not surprising that high end-to-end latency(up
to 10 seconds) is observed.
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(c) Bufferbloat with TCP NewReno

Figure 3: Bufferbloat prevails across the 3G networks of
all four major U.S. carriers, resulting in extremely long
RTT.

To further confirm that this anomaly is not unique to TCP
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Figure 4: TCP behavior over AT&T HSPA+ network:
(a) two patterns, namely “flat TCP” and “fat TCP” are
observed depending on the client platform. (b) The prob-
lem is not unique to TCP CUBIC.

CUBIC, we vary the TCP congestion control algorithm from
TCP CUBIC to TCP NewReno on the server side and repeat
the test in AT&T and Verizon’s 3G networks. As shown in
the Figure 3(c), the same problem is also observed for TCP
NewReno. At the initial phase,cwnd rapidly increases by
applying slow start because the slow start threshold (ssthresh)
is set as a large value in Linux implementation. But later
on, we observe thatcwnd keeps increasing during the con-
gestion avoidance phase without any packet loss event for a
long period of time.

As discussed in Section 2.1, the large buffers are intro-
duced for reasons. Simply removing them is not a viable
option. Adding AQM would definitely help, but is expen-
sive to deploy. Hence, we turn our attention to end-to-end
solutions that are easier to deploy.

3.2.2 TCP Behavior in Cellular Networks

Figure 4 depicts the evolution of TCP congestion win-
dow when the clients of various platforms download a large
file from a server over AT&T HSPA+ network. In the test,
the platforms applied consist of Android phones, iPhone,
Windows Phone 7, laptop running Ubuntu 10.04, Macbook
and laptop running Windows 7. To our surprise, two types
of cwnd patterns are observed: “flat TCP” and “fat TCP”.
Flat TCP, such as observed in Android phones, is the phe-
nomenon where the TCP congestion window grows to a static
value and stays there until the session ends. On the other
hand, fat TCP such as observed in Windows Phone and Linux
laptop is the phenomenon that packet loss events do not oc-
cur until the congestion window grows to a significantly large
value far beyond the BDP. Fat TCP can easily be explained
by the bufferbloat in cellular networks. But the abnormal
flat TCP behavior caught our attention and revealed an un-
told story of TCP over cellular networks which we detail in
the next subsection.

3.2.3 Understanding the Anomaly

How could the TCP congestion window stay at a static
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Samsung Galaxy S2 (AT&T) HTC EVO Shift (Sprint) Samsung Droid Charge (Verizon) LG G2x (T-Mobile)
Wi-Fi 110208 110208 393216 393216
UMTS 110208 393216 196608 110208
EDGE 35040 393216 35040 35040
GPRS 11680 393216 11680 11680
HSPA+ 262144 N/A N/A 262144
WiMAX N/A 524288 N/A N/A

LTE N/A N/A 484848 N/A
Default 110208 110208 484848 110208

Table 1: Maximum TCP receive buffer size (tcp rmem max) in bytes on different Android phones for different carrier s.
Note that these values may vary on customized ROMs and can be looked up by looking for ”setprop net.tcp.buffersize.*”
in the init.rc file of Android phones. Also note that different values are set for different carriers even if the network types
are the same. We guess that these values are experimentally determined based on each carrier’s network conditions
and configurations.
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Figure 5: Throughput and RTT performance measured for a whole day when downloading from a nearby server over
LTE and HSPA+ networks with various tcp rmem max values. For this test environment, 110208 may work better than
the default 262144 in AT&T HSPA+ network. Similarly, 262144may work better than the default 484848 in Verizon
LTE network. However, the optimal value depends on the environment and is hard to set statically in advance.

value? The staticcwnd first indicates that no packet loss
is observed by the TCP sender (otherwise the congestion
window should have decreased multiplicatively at any loss
event). This is due to the large buffers in cellular networks
and its link layer retransmission mechanism as discussed
earlier. Measurement results from [9] also confirm that cel-
lular networks typically experience close-to-zero packetloss
rate.

If packet losses are perfectly concealed, the congestion
window may not drop but it will persistently grow as fat
TCP does. However, it unexpectedly stops at a certain value
and this static value is different for each cellular network
or client platform. Our deep inspection into the TCP im-
plementation in Android phones (since it is open-source)
reveals that the value is determined by a parameter called
tcp rmem max that specifies the maximum receive window
advertised by an Android phone. This gives the answer to
flat TCP behavior: the receive window advertised by the
receiver crops the congestion windows in the sender. By
inspecting various Android phone models, we found that
tcp rmem max has diverse values for different types of net-
works as shown in Table 1. Generally speaking, larger values
are assigned to faster communication standards (e.g., LTE).

To understand the impact oftcp rmem max, we compared

the TCP performance under varioustcp rmem max settings
for Verizon’s LTE and AT&T’s HSPA+ networks in Figure 5.
Obviously, a largertcp rmem max value allows the conges-
tion window of the TCP sender to grow to a larger size and
hence leads to higher throughput. But this throughput im-
provement will flatten out once the link capacity is satu-
rated. Further increase oftcp rmem max brings nothing but
longer queuing delay. For instance, when downloading from
a nearby server, the end-to-end latency is relatively smalland
hence the BDP is small. The default values for both LTE and
HSPA+ are large enough to achieve full bandwidth utiliza-
tion as shown in Figure 5(a) but trigger excessive packets in
network and thus result in unnecessarily large RTT as shown
in Figure 5(b). This demonstrates the fundamental limita-
tions of the static parameter setting: it mandates one specific
trade-off point in the system which may be sub-optimal for
other applications. Two realistic scenarios are discussedin
the next section.

In summary, both flat TCP and fat TCP have performance
issues. On one hand, in small BDP networks, fat/flat TCP
will bring unnecessarily long end-to-end latency due to ex-
cessive queuing. On the other hand, flat TCP will suffer from
significant throughput degradation in large BDP links.
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Figure 7: Throughput and RTT performance measured for a whole day when downloading from a remote server
in Korea via LTE and HSPA+ networks with various tcp rmem max values. The static setting results in sub-optimal
throughput performance since it fails to probe maximum available bandwidth of the long fat pipe. 655360 for AT&T
and 917504 for Verizon provided much higher throughput thantheir default values.
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Figure 6: Web object fetching performance with and
without a concurrent long-term flow. The time taken to
fetch the same web objects becomes 2.6 times longer if a
file download coexists. If TCP maintains a smaller queue
in the network, the drastic performance degradation can
be mitigated.

3.3 Impact on User Experience
Web Browsing with Concurrent Flows: Top lines of smart
phones scheduled to be launched during 2012 are typically
equipped with a quad core CPU of about 1.5GHz per core,
more than 1GB RAM, and a high resolution screen (e.g.,
1280×720 pixels). Due to their significantly improved ca-
pability, the phones are expected to perform multi-tasking
more often. For instances, people will enjoy web brows-
ing or online gaming while downloading files such as books,
musics, movies or applications from on-line markets in the
background. In such cases, we found that the current TCP
implementation incurs long delays for the interactive flow
(Web browsing or online gaming) since the buffer is filled
with packets belonging to the concurrent flows.

Figure 6 shows that the Web object fetching time is severely
degraded when a concurrent long-term flow is under way.
Since Web objects are typically small (for instance, we use
8KB, 16KB, 32KB and 64KB in this test), their fetching time
mainly depends on RTT rather than throughput. When a con-
current long-term flow causes long queues to be built up at

the base station, the Web objects will be severely delayed.
As the figure shows, average Web object fetching time is 2.6
times longer with a concurrent background download1.
Throughput from Servers with Long Latency: The sites
that smart phone users visit are diverse. Some contents are
well maintained and CDNs (content delivery networks) are
assisting them to get “closer” to their customers via repli-
cation. In such cases, the throughput performance can be
well-supported by the static setting oftcp rmem max. How-
ever, there are still many websites or files showing long la-
tencies due to their remote locations, such as the most com-
mon usage of smart phones: web browsing, market appli-
cation download and streaming. In such cases, the static
setting of tcp rmem max (which is tuned for moderate la-
tency case) fails to provide the maximum possible through-
put since it cannot fill the long fat pipe. Figure 7 shows that
when downloading contents from a server abroad, the client
suffers from sub-optimal throughput performance under the
default setting. A largertcp rmem max can achieve higher
throughput, but if it is too large, packet loss will eventually
occur in which case throughput degradation will also occur.

4. DYNAMIC RECEIVE WINDOW ADJUST-
MENT (DRWA)

4.1 Candidate Solutions and Our Approach
In order to address TCP’s problem in buffer-bloated cellu-

lar networks, there are a few possible solutions. One obvious
solution is to reduce the buffer size in cellular networks so
that TCP can function the same way as it does in wired net-
works. However, as explained earlier these extra buffers are
essential to ensure the performance of cellular links under
dynamic conditions and cannot be easily removed. Further,
the modification of TCP protocols could be simpler than

1Note that the fetching times of multiple small objects in parallel
do not affect each other since the bandwidth is not saturated.
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Algorithm 1 DRWA
Initialization:
RTTmin ←∞;
cwndest ← data rcvd in the firstRTTest;
rwnd← 0;

RTT and Minimum RTT Estimation:
RTTest ← the time between when a byte is first acknowl-
edged and the receipt of data that is at least one window
beyond the sequence number that was acknowledged;

if TCP timestamp option is availablethen
RTTest ← averaging the RTT samples obtained from
the timestamps within the last RTT;

end if

if RTTest < RTTmin then
RTTmin ← RTTest;

end if

DRWA:
if data is copied to user spacethen

if elapsed time < RTTest then
return;

end if

cwndest ← α ∗ cwndest + (1− α) ∗ data rcvd;
rwnd← λ ∗ RTTmin

RTTest

∗ cwndest;
Advertiserwnd as the receive window size;

end if

modification of network infrastructure.
An alternative to this solution is to employ certain AQM

schemes like RED [5] or REM [1]. By randomly dropping
or marking certain packets before the buffer is full, we can
notify TCP sender in advance and avoid the excessively long
delay. However, despite being studied extensively in the lit-
erature, few AQM schemes are actually deployed over the
Internet due to the complexity of their parameter tuning, the
extra packet losses introduced by them and the limited per-
formance gains provided by them.

Another possible solution to this problem is the modifica-
tion of the TCP congestion control algorithm at the sender
side. As shown in Figure 8, delay-based TCP congestion
control algorithm (e.g., TCP Vegas) perform normally while
all of the loss-based TCP congestion control algorithms (e.g.,
CUBIC, BIC [16], NewReno) face the flat TCP problem.
Since delay-based congestion control backs off when RTT
starts to increase rather than waiting until packet loss hap-
pens, they may serve the over-buffered cellular networks
better than loss-based congestion control. However, as Fig-
ure 9 shows, although delay-based TCP congestion control
decreases RTT to a great extent, they suffer from throughput
degradation. This agrees with the observation over a cellular
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Figure 8: Delay-based TCP variants are free from
bufferbloat problem.

network in [12]. Further, adopting delay-based congestion
control requires modifications on the sender side (typically
large-scale servers) which may incur considerable deploy-
ment cost and affect both wired and wireless users.

In light of the problems with the above-mentioned solu-
tions, we suggest to handle the problem on the receiver side
by changing the static setting oftcp rmem max. That is be-
cause receiver (mobile device) side modification has mini-
mum deployment cost. Vendors may simply issue an OTA
update to the protocol stack of the mobile devices so that
they can enjoy a better TCP performance without affecting
other wired users. It is a light-weight, effective and imme-
diately deployable solution to the problem. Therefore, we
propose a dynamic receive window adjustment (DRWA) al-
gorithm to ensure full utilization of the available bandwidth
while maintaining a small RTT.

4.2 Algorithm of DRWA
The aim of DRWA is to adaptively set the receive win-

dow to a proper size in different environment. Sometimes, it
should be larger than the current static limit to achieve more
throughput and other times it should become smaller than the
current value to avoid unnecessary queues in the link. The
challenges in this work consist of three parts. First, DRWA
should remove the static setting of a relatively small max-
imum receive buffer size. Second, DRWA should bear the
capability to estimate the proper pipe size of a link via a
new window adjustment algorithm. Finally, DRWA should
be compatible with the current TCP protocol and easy to de-
ploy.

DRWA is built on top of DRS. Instead of an unidirectional
adjustment where the advertised window is non-decreasing,
we need a bidirectional adjustment algorithm to rein TCP in
the buffer-bloated cellular networks but at the same time to
ensure full utilization of the link. To accomplish that, DRWA
needs to keep the queue size within a proper range dynami-
cally. Algorithm 1 gives the details.

DRWA uses the same technique as DRS to measure RTT
on the receiver side if TCP timestamp option is unavailable.
However if TCP timestamp option is available, DRWA uses
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Figure 9: Throughput and RTT performance of TCP Vegas in cellular networks: although delay-based congestion
control reduces the RTT, it suffers from throughput degradation.

it to obtain a more accurate estimation of the RTT (Times-
tamps can provide multiple RTT samples within an RTT
whereas the traditional DRS way provides only one sam-
ple per RTT). We surveyed the support for TCP timestamp
option in Windows Server and Linux and found that when
DRWA runs on Android phones, it could turn on timestamp
regardless of whether talks to a Linux server or a Windows
server. With the assistance of timestamps, DRWA is able to
achieve robust RTT measurement on the receiver side and
thus conquers the well-known problem of accurately mea-
suring RTT in dynamic networks, as shown in Figure 10.
In addition to RTT measurement, DRWA also records the
minimum RTT ever seen in this connection and uses it later
to determine the receive window size. Since the minimum
RTT approximates the round-trip propagation delay between
the two hosts when no queue is built up in the intermediate
routers especially in the cellular base station, we use it asan
indication of what the network and channel conditions are.
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Figure 10: With timestamp option, DRWA is able to
achieve robust RTT measurement on the client side. The
testing was conducted over AT&T HSPA+ network by
using Samsung Galaxy S2 phone. The two RTT measure-
ments are consistent though there exists minor deviation.

After knowing the RTT, DRWA counts the amount of data
received within one RTT in the same way as DRS. However,
DRWA further smooths the estimated congestion window by
using a moving average with a low-pass filter (α is set to 7/8
in our current implementation). This smoothed value is used
to determine the receive window we advertise. In contrast to
DRS who always setsrwnd to 2 ∗ cwndest, DRWA sets it to
λ ∗ RTTmin

RTTest

∗ cwndest. WhenRTTest is close toRTTmin,

implying the network is not congested,rwnd will increase
quickly to give the sender enough space to probe the avail-
able bandwidth. AsRTTest increases, we gradually slow
down the increment rate ofrwnd to stop TCP from over-
shooting. The operation of taking the maximum of the newly
calculatedrwnd and the previousrwnd in DRS is also re-
moved so that DRWA makes bidirectional adjustment of the
advertised window and controls theRTTest to stay around
λ ∗ RTTmin. More detailed explanation ofλ will be given
in the following section.

This algorithm is simple yet effective. Its ideas stem from
delay-based congestion control algorithms but work better
than they do for two reasons. First, since DRWA onlyguides
the TCP congestion window by advertising an adaptiverwnd,
the bandwidth probing responsibility still lies with the TCP
congestion control algorithm at the sender side. Therefore,
typical throughput loss seen from using delay-based TCP
will not appear. Also, due to some unique characteristics of
cellular networks, RTT based control can work more effec-
tively. In wired networks, a router may handle hundreds of
TCP flows at the same time and they may share the same out-
put buffer. That makes RTT measurement noisier and delay-
based congestion control less reliable. However, in cellular
networks, a base station typically has separate buffer space
for each user and a mobile user is unlikely to have many
simultaneous TCP connections. This makes RTT measure-
ment a more reliable signal for network congestion.

4.3 Adaptive Nature of DRWA
DRWA allows a TCP receiver to report a proper receive

window size to its sender in every RTT rather than adver-
tising a static limit. Due to its adaptive nature, DRWA is
able to track the variability of channel conditions. Figure11
shows the evolution of the receive window size and the cor-
responding RTT performance. During this test, we moved
the Android phone from a good signal area to a weak sig-
nal area (from 0 second to 40 second) and then returned it
to the good signal area (from 40 second to 80 second). As
shown in Figure 11(a), the receive window size dynamically
adjusted by DRWA well demonstrates the signal change in-

8



0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

Time (second)

R
ec

ei
ve

 W
in

do
w

 S
iz

e 
(K

B
yt

es
)

 

 

Untouched Android
With DRWA

(a) Receive Window Size

0 10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time (second)

R
T

T
 (

m
s)

 

 

Untouched Android
With DRWA

(b) RTT Performance

Figure 11: TCP behavior comparison between un-
touched Android phones and phones with DRWA: in this
test the phones are moved from an area with good sig-
nal to an area with weak signal and then moved back
again. In contrast to the static setting of the receive win-
dow in untouched Android phones, DRWA nicely tracks
the variation of the channel conditions and dynamically
adjusts the receive window. Due to the dynamic adjust-
ment, DRWA is able to keep the RTT constantly low
while the untouched Android phone experiences drastic
increase in RTT under weak signal.

curred by the movement. This leads to a steadily low RTT
while the static setting of untouched Android results in an
ever increasing RTT as the signal strength decreases and the
RTT blows up in the area of the weakest signal strength.

4.4 Impact of λ on TCP Performance
λ is a key parameter in DRWA. It tunes the operation

region of the algorithm and reflects the trade-off between
throughput and delay. Note that whenRTTest/RTTmin

equals toλ, the advertised receive window will be equal
to its previous value, leading to a steady state. Therefore,
λ reflects the target RTT of DRWA. If we setλ to 1, that
means we want RTT to be aroundRTTmin so that almost
no queue is built up. This ideal case only guarantees high
throughput if 1) the traffic has constant bit rate, 2) the avail-
able bandwidth is also constant and 3) the constant bit rate
equals to the constant bandwidth. In practice, Internet traffic
is bursty and the channel condition varies over time. Both
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Figure 12: Impact of λ on the throughput and RTT per-
formance of TCP with DRWA in different cellular net-
works. λ = 3 gives a good balance between throughput
and RTT in four major U.S carriers as well as the largest
Korean carrier.

necessitate the existence of some buffers to absorb the tem-
porarily excessive traffic and drain the queue later on when
the load becomes lighter or the channel condition becomes
better. Otherwise, we cannot fully utilize the link.λ deter-
mines how aggressive we want to be in keeping the link busy
and how much delay penalty we can tolerate. The largerλ
is, the more aggressive the algorithm is. It will guarantee the
throughput of TCP to be saturated all of the time but at the
same time introduce extra delays. Figure 12 gives the com-
parison of performance among different values ofλ. This
test combines multiple scenarios ranging from local to re-
mote access, good to weak signal. Each has been repeated
400 times over the span of 24 hours in order to find the op-
timal parameter setting. In our current implementation, we
setλ to 3 which works very well for most cellular networks.
However, a better approach may exist and may make this
parameter adaptive. We leave this as our future work.

4.5 Improvement in User Experience
Section 3.3 lists two scenarios where existing TCP imple-

mentation may have a negative impact on user experience.
In this section, we demonstrate that, by applying DRWA,
we can drastically improve user experience in such scenar-
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Figure 13: Web browsing with a concurrent long-term flow overAT&T HSPA+: DRWA reduces the RTT experienced
by the TCP flows and hence improves Web browsing performance.
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Figure 14: Throughput improvement brought by DRWA
when clients in U.S. download from a server in Korea:
Each test lasts for 24 hours. The improvement ratios are
23% in AT&T HSPA+ network and 30% in Verizon LTE
network.

ios. More comprehensive experiment results are provided in
Section 5.

Figure 13 shows Web object fetching performance with a
concurrent long-term flow. Since DRWA reduces the length
of the queue built up in the cellular networks, it brings on av-
erage 42% reduction in the RTT experienced by all the TCP
flows coming down to the receiver. This translates into 39%
speed-up in Web object fetching since the download comple-
tion time of (typically small) Web pages and the embedded
objects (e.g., images, flash clips) are mainly determined by
the RTT.

Figure 14 shows the scenario where a mobile user in the
U.S. downloads from a remote server in Korea. Since the
RTT is very long in this scenario, the BDP of the underlying
network is fairly large. The static setting oftcp rmem max
is too small to fill the long, fat pipe and results in through-
put degradation. With DRWA, we are able to fully utilize
the available bandwidth and achieve 23-30% improvement
in throughput.

5. MORE EXPERIMENTS
We implemented DRWA in Android phones by patching

their kernels. It turned out to be fairly simple to implement

DRWA in the Linux/Android kernel. It only takes around
100 lines of code. We downloaded the original kernel source
codes of different Android models from their manufacturers’
website, patched the kernels with DRWA and recompiled
them. Finally, the phones were flashed with our customized
kernel images. We provided a procfs entry for users to eas-
ily turn on or off DRWA. We did head-to-head comparisons
between untouched Android phones (without DRWA) and
Android phones with DRWA. The test environment is illus-
trated by Figure 2.

5.1 Throughput Improvement
Figure 15 shows the throughput improvement of Android

phones with DRWA over untouched Android phones. The
test involved file downloading (file size is 100MB) via differ-
ent cellular networks operated by various carriers. For each
network we ran the test for 24 hours. During the test, we
appliednetem, the built-in network emulator in Linux [8] on
the server side to emulate the scenarios of different propaga-
tion delay. From the figure, we see that Android phones with
DRWA significantly improve the throughput in all cellular
networks as the propagation delay increases. The scenario
over the Sprint EVDO network with the propagation delay
of 754 ms shows the largest improvement (as high as 51%).
In LTE networks, the phones with DRWA show throughput
improvement up to 39% under the latency of 219 ms.

The reason behind the improvement is obvious. When the
latency increases, the static values fail to saturate the pipe,
resulting in throughput degradation. In contrast, networks
with small latencies do not show such degradation. Accord-
ing to our experiences, RTTs between 400 ms and 700 ms are
easily observable in cellular networks, especially when us-
ing services from foreign servers. In the LTE networks, TCP
throughput is even more sensitive totcp rmem max setting.
The BDP can be dramatically increased by a slight RTT in-
crease. Therefore, the static configuration easily becomes
far from optimal. However, DRWA is able to keep pace with
the increasing BDP without any problem.

5.2 End-to-End Latency Reduction
In networks with small BDP, the statictcp rmem max set-
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Figure 15: Throughput improvement provided by DRWA for vari ous cellular networks under different network laten-
cies: we see significant throughput improvement when the end-to-end latency is long.

ting is sufficient to fully utilize the bandwidth of the net-
work. However, it has a side effect of long RTT. In such net-
works, the static receive window reported by current imple-
mentations misleads a TCP sender to put excessive packets
in the network, resulting in unnecessarily long RTT. How-
ever, DRWA manages the RTT to beλ times of theRTTmin,
which is substantially smaller than that of current implemen-
tations in networks with small BDP. Figure 16 shows the
improvement in RTT brought by DRWA while throughput is
preserved.

In Figure 16, we downloaded a file from a nearby server
installed at a university campus in U.S. to Android phones
in U.S. to explore the throughput and end-to-end delay per-
formance in small BDP networks. We measured the per-
formance for a whole day per each carrier and compared
the performance between Android phones with and without
DRWA. During the entire day run, each round of file down-
loading took three minutes, resulting in over 400 runs within
a day. From Figure 16, we can verify that remarkable reduc-
tion of RTT up to 49% is achieved while the throughput is
guaranteed in a similar level (4% difference at maximum).

Another important observation from the experiments is
that the current implementation with a static receive win-
dow experiences much larger RTT variation than DRWA. As
Figures 16(a) and 16(c) show, the RTT values of untouched
Android phones are distributed over a much wider range
than that of phones with DRWA. The reason is clear because

DRWA intentionally enforces the RTT to remain around the
target value ofλ ∗ RTTmin. This property of DRWA will
potentially benefit jitter sensitive applications such as live
video communications and voice chats.

6. CONCLUSION
In this paper, we thoroughly investigated TCP’s behav-

ior and performance over cellular networks. We reveal that
the excessive buffers available in existing cellular networks
void the loss-based congestion control algorithms and the
naive solution adopted of setting a statictcp rmem max is
sub-optimal. Built on top of our observations, a dynamic
receive window adjustment algorithm is proposed. This so-
lution requires modifications only on the receiver side and is
backward-compatible as well as incrementally deployable.
We ran extensive experiments over various cellular networks
to evaluate the performance of our proposal and compare it
with the current implementation. Experiment results show
that our scheme makes RTT 24∼ 49% lower than the cur-
rent implementation of TCP while throughput is guaranteed
to be the same in general cases or up to 51% higher in a high
speed network with long latency. The bufferbloat problem is
becoming more and more prevalent in the Internet. It is not
specific to cellular networks although it might be the most
prominent in this environment. A more fundamental solu-
tion to this problem may be needed. Our work provides a
good starting point and is an immediately deployable solu-
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Figure 16: RTT improvement in networks with small BDP: DRWA p rovides huge RTT reduction without throughput
loss across different cellular networks. The RTT reductionratios are 49%, 35%, 49% and 24% for AT&T HSPA+,
Verizon LTE, Verizon EVDO and Sprint EVDO networks respectively.

tion for smart phone users.
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