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ABSTRACT

In this paper it is shown that the logistic distribution can be represented as a scale

mixture of the standard normal distribution where the mixing density is related to the

Kolmogorov-Smirnov distribution. Two derivations of the theorem are presented that

give rise to two different representations of the Kolmogorov-Smirnov distribution. The

induced identity is of independent interest and is not widely published nor easily derived

directly.
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1. INTRODUCTION

Recently I encountered a problem in which it was advantageous to approximate the

(k = 1,2, ... ),

logistic distribution, F(t) = 1/(1 + e- t ), with discrete mixtures having the form

k

Fk(t) = LPk,i<P(tsk,i)'
i=l

(1.1 )

where <P is the standard normal cumulative distribution function. These approximations

provide a solution to a problem posed by Cox (1970, p. 110) and are useful in statistical

models involving convolutions of a normal distribution with F, such as logistic regression

measurement error models and random effects logistic regression models; see, for example,

Carroll, Spiegelman, Bailey, Lan and Abbott (1984). Monahan and Stefanski (1989) discuss

applications in detail and provide tables of {pk,i' sk,ilr=l that minimize

D'k = sup I F(t) - Fk(t) I,
t

(1.2)

for k = 1,2, .... The approximation for k = 3 is very good and improves significantly

with increasing k.

In this paper I prove the following theorem, providing explanation for the quality of

the approximations and mathematical justification for the class of approximants in (1.1).

THEOREM. Let F and <P denote the standard logistic and normal cumulative distribu-

tion functions respectively. Then

F(t) =100

<p(t/u)q(u)du,

where q(u) = (d/du)L(u/2) and L is the Kolmogorov-Smirnov distribution,

00

L(u) = 1 - 2 L(_1)(n+l) exp( _2n2 ( 2 ).

n=l

1

(1.3)

(1.4)



In Section 2, two derivations of (1.3) are presented that give rise to two different repre-

sentations of the Kolmogorov-Smirnov distribution. The induced identity is of independent

interest and is not widely published nor easily derived directly.

2. THE LOGISTIC DISTRIBUTION AS A GAUSSIAN SCALE MIXTURE

Consider the integral equation

(2.1)

when f(t) = e- t /(1 + e-t? and </> is the standard normal density. A change-of-variables

v = 1/2u2 in the integral and evaluation at t = VS, s > 0, shows that

where

h(v) = q(1/.,f2;)/V81rv2 •

It follows from (2.2) that f( Vi) is the Laplace transform of h.

(2.2)

(2.3)

Note that for t > 0, F(t) = (1 +e-tt1 = l::~=o( -l)n exp( -nt). Upon differentiation

and appeal to symmetry it follows that

00

f(t) = L(_l)(n+l)n exp{ -n I t I},
n=l

and thus

f(-/8) = L(-l)(n+l)nexp{-n-/8}.
n=l

(2.4)

(2.5)

Since e-avs is the Laplace transform of ha(t) = aexp{-a2 /4t}/V41rt3 , it follows from

(2.5) that

00 n2 {n2}h(t) = ~(_1)(n+l) exp -- ,
~ 2'V1rt3 4t

2



and from (2.3) that

Note that in (2.6), q((1) = (d/d(1)L((1/2) where L is given in (1.4).

(2.6)

o

An alternative method of solving (2.1) leads to an interesting identity that is not easily

derived directly. In terms of moment generating functions (2.1) becomes

The change-of-variables v = (12/2, evaluation at t = i-JS, and a geometric series expansion

of 1/{I - exp( -211"-JS)} results in the identities

100 211"-JS exp( -1I"-JS) LOO

}
e-SVg(v)dv = ( 2 -JS) = 211" VSexp{ -1I"(2n + 1)JS ,

O 1-exp - 11" S
n=O

where

g(v) = q(~)/~.

Since -JSexp( -a-JS) is the Laplace transform of

_(.!!-.) ha(t) = _ (.!!-.) [aexp{-a
2
/4t}] ,

da da ~411"t3

it follows from (2.7) that

Using (2.8) and integrating q term-by-term shows that q((1) = (d/d(1)L*((1/2) where

L*( ) = V2i~ {_ 1I"2(2n +1)2}
(1 ~exp 8 2 .(1 (1

n=O

3

(2.7)

(2.8)

(2.9)



Of course Land L* must be equal thus showing that the right-hand sides of (1.4) and (2.9)

are equal. This identity is not easily established directly; see for example, Feller (1948),

Smirnov (1948) and Monahan (1989). The alternative representation (2.9) is useful for

computing L(er) for small er, Monahan (1989).
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