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Conservation of threatened or endangered species relies critically on accurate population counts 1 

over time. In practice, many population censuses are conducted by non-governmental 2 

organizations or volunteer citizen scientists who are constrained by fiscal and temporal 3 

resources. Less than optimal sampling regimens (including frequency and timing) for conducting 4 

population censuses can result in woefully misleading population estimates - and thus have dire 5 

consequences for management and conservation. Motivated by an East African case study in 6 

which we parameterized a Leslie matrix model with nearly 15 years of bird data collected in the 7 

Arabuko-Sokoke Forest in coastal Kenya, we carried out mathematical and statistical modeling 8 

efforts with the Leslie models for simulated population estimates stemming from different 9 

population sampling schemes. We illustrate how resource managers might take a strategic 10 

approach, using simple quantitative models, to develop an optimal sampling scheme that 11 

balances the tradeoff between resources and accuracy. 12 

 13 
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Introduction 1 

Conservation science in practice is often constrained by resource availability, which has 2 

implications for data analysis and interpretation as well as management. Underpinning most 3 

conservation efforts, from local volunteer programs to large-scale population viability analyses, 4 

is an ongoing need to characterize population abundance and diversity based on population 5 

census counts (Simberloff 1988; Brook et al. 2000; Morris and Doak 2002; Karanth et al. 2003). 6 

Scarcity of resources often necessitates making difficult decisions about how often and when to 7 

collect data. Although amassing as much data as possible is of course generally recommended, 8 

many factors, (including some biotic and abiotic factors such as weather conditions that are 9 

unrelated  to resources) often conspire to prevent frequent and regular sampling of population 10 

abundance or diversity. A lack of resources often translates into data that are collected in a 11 

haphazard manner, with gaps in data collection during critical times in the life history of species 12 

being studied. Resulting poor quality data sets can lead to misleading population estimates and 13 

risk assessment (Holmes 2001).  14 

Bird counts provide an excellent means of illustrating the tradeoffs and nuances involved in the 15 

frequency and timing of data collection. Many bird population estimates rely on the efforts of 16 

local non-governmental agencies or citizen-science groups, or other volunteer organizations 17 

(Newson et al. 2005; Freeman et al. 2007). Coordinated long-term datasets, such as those 18 

generated by Christmas Bird Counts (Link et al. 2006) or the North American Breeding Bird 19 

Survey (Kendall et al. 1996) strive to maintain consistency in both the timing and regularity of 20 

sampling. In contrast, other less coordinated efforts, especially those done at a small local scale, 21 

are often conducted inconsistently with little regularity due to meager personnel resources. In the 22 

tropics, these activities often fall to non-governmental organizations (NGOs) and non-profits 23 
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with uncertain or ephemeral funding sources, which can result in inconsistent sampling 24 

frequencies and timing. 25 

We describe here a case study stemming from bird count data collected by staff and citizen-26 

science volunteers from A Rocha Kenya at the Mwamba Field Studies Centre, a non-profit 27 

conservation group in Watamu, Kenya. In particular, we use this case study to develop a 28 

methodology for determining the optimal sampling scheme to accurately estimate populations of 29 

a threatened bird population given limited monitoring resources. Motivated by nearly 15 years of 30 

population census counts of the East Coast Akalat, an Old World flycatcher in coastal Kenya, we 31 

employ a combined mathematical and statistical modeling approach to determine the optimal 32 

frequency and seasonal timing of mist-net capture sessions. Mist netting is a common means of 33 

sampling bird populations, and while some studies have suggested it is not an optimal technique 34 

for comparing species abundance across habitats (Remsen and Good 1996), it has been shown to 35 

be more accurate than point counts in estimating population abundance when employed in 36 

breeding habitats (Rappole et al. 1993). We explore the accuracy of several different sampling 37 

strategies and discuss implications for conservation in practice. 38 

 39 

Materials and methods  40 

Study organism/site 41 

The East Coast Akalat (Sheppardia gunningi sokokensis Haagner) is a small forest robin that is 42 

restricted to small coastal forests in East Africa (Matiku et al. 2000). Distributed among remnant 43 

forest patches, S. gunningi is vulnerable to continuing habitat threats such as logging and 44 

development and has been classified as near threatened (declining population trend) by the 45 
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World Conservation Union (IUCN 2014). Formerly abundant along the east African coast from 46 

Kenya to Malawi and Mozambique, S. gunningi is now found primarily in the coastal forests of 47 

Kenya, with the largest remnant population (approx. 7500 pairs) residing year-round in Arabuko-48 

Sokoke Forest (ASF), a 429km
2 

forest reserve that is the largest remnant patch of indigenous 49 

coastal forest in East Africa (Bennun and Njoroge 1999; Birdlife International 2008; Banks et al. 50 

2012). Because S. gunningi co-occurs with several other highly endangered and rare species, 51 

including several other bird species as well as the Sokoke Bushy-tailed Mongoose, Aders’ 52 

Duiker, and Golden-rumped Elephant Shrew, it has become an indicator species for habitat 53 

conservation efforts in the Arabuko-Sokoke Forest reserve.  54 

Data collection 55 

S. gunningi individuals were collected in mist nets by staff from the Mwamba Field Studies 56 

Centre/A Rocha Kenya in an area in the north-eastern corner of Arabuko-Sokoke Forest known 57 

as the Gede Nature Trail from 1999-2012. Standard mist netting protocols were followed: for 58 

each session, total net lengths measured 180m and samples consisted of captures from two 59 

consecutive dawn capture periods. After removal from the net, plumage characteristics, molt 60 

pattern, and age and sex were recorded for each akalat, and bands were placed on birds that were 61 

not recaptures. Akalats were categorized, where possible, into one of three age classes: 62 

immature, subadult, or full adult. In cases where a clear designation was not possible, birds were 63 

categorized initially as “unknown age”.  Birds were captured in 24 sessions over 14 years, at 64 

non-uniform time intervals with consistent ringing effort. The number of sampling sessions per 65 

year ranged from zero to eight, with a mean of approximately two.  Data consisting of the 66 

number of akalats in each age class for each mist-netting session (see Appendix I) were then 67 

incorporated into a predictive population model. In five of the ringing sessions, some captured 68 
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birds were difficult to age because they were at a transitional stage – these birds were added to 69 

the “full adult” category based on the time of year when they were captured and the likelihood 70 

that they were subadults transitioning to full adults. 71 

Mathematical Model 72 

We incorporated life history data into a Leslie matrix mathematical model (Leslie 1945) to 73 

generate S. gunningi population projections for the 13 year sampling period. The number of 74 

individuals in each of the three stage classes is denoted by ix  for 1,2,3i  , with the population  75 

expressed as a vector 1 2 3[ , , ] .Tx x xX   Then the population growth may be described by the 76 

mathematical model:  77 

( 1)t X  = =  = = A (       (Eqn. 1) 78 

                                  79 

where the  and  and represent the rate of individuals surviving from the  to the  80 

stage ( 2,1,10  iGi  and 10 3  P ),  denotes the reproductive rate of  full adults (3
rd

 life 81 

stage), and t is given in months.  82 

Statistical Models & Parameter Estimation 83 

Creating population projections using this model requires us to estimate the four life history 84 

parameters; in notation, we refer to a vector containing the parameters in the above matrix (Eqn. 85 

1). Let  in which the four parameters are as above, and are assumed to be in 86 

an admissible constraint set  that reflects all reasonable values of fecundity and survivorship 87 

for S. gunningi. We accomplished this by performing a least squares optimization using the data 88 
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collected by A Rocha Kenya. We estimated the S. gunningi fecundity rate by noting that an 89 

average clutch size for similar birds is roughly 3-5 eggs and halving this to reflect the fact that 90 

only females breed; thus we initially let F3 = 2 and only estimated  ( 1 2,G G , 3P ) .  Because they 91 

are probabilities, survivorship parameters ( 1 2,G G , 3P ) were constrained to lie between 0 and 1. 92 

With a broad spectrum of initial guesses within the admissible range of parameter values, we 93 

then solved the inverse problem using least squares optimization in order to generate optimal 94 

parameter values (see Banks and Tran 2009; Banks et al. 2013 for more details). The general 95 

form of this solution minimizes the discrepancy between the data and the model output of all 96 

possible vectors containing the life history parameters q.  This may be described for n 97 

observations by the following expression: 98 

                                                             (Eqn. 2) 99 

 where  denotes the data, and  denotes the model (as a function of time and the life history 100 

parameters in the vector ). We note that this formulation is based on an assumed statistical 101 

model , where  is an assumed true parameter and the errors for 102 

are independent identically distributed random variables (see Banks and Tran 2009 103 

for details).  104 

Because juvenile birds are less likely to be captured in mist nets than adults, we modified our 105 

model assumptions. In particular, we modified the least squares formulation to reflect the fact 106 

that one age class of data (full adults) was expected to be subject to less observation error than 107 

the other two classes, giving more weight to the full adult data points than to the immature or 108 

subadult points when searching for optimal parameters.  109 
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The functional that we minimize in this case is thus modified by weighting as follows:  110 

                                                                                             111 

(Eqn. 3) 112 

where we weighted each age class in increasing order from youngest to oldest. This corresponds 113 

to a statistical model    where , ), with 114 

 and  corresponding to immatures, subadults, and full adults, respectively. The 115 

weighted least squares method can be particularly advantageous over the ordinary least squares 116 

method when one class of data is known to have greater error than others (Banks and Tran 2009). 117 

 Therefore, the appropriate method to use is highly dependent on the data at hand.  With both 118 

ordinary and weighted least squares estimates, one can calculate the standard variance and 119 

underlying distribution of each parameter by employing bootstrapping (see Banks et al. 2009, 120 

and Banks et al. 2013  for examples).  In studying the S. gunningi data, we found there appeared 121 

to be relatively high error in the data collection process. More importantly, the irregularity with 122 

which the data was collected was striking. Motivated by these observations, we turned to the 123 

more important fundamental question: Given limited resources that that may be inherent, how 124 

should one best collect data in order to validate a given class of models. For these investigations 125 

we choose the Leslie matrix models that we had been using in our Akalat studies. 126 

Simulation-Based Experimental Design 127 

 128 

We thus turned to the question of how the population is projected to grow or decrease over time. 129 

 Our fundamental question was thus the following: with the limited resources of small non-profit 130 
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organizations such as A Rocha Kenya that are engaged in many conservation efforts globally, 131 

what is the optimal yearly data collection schedule that is both realistic given resource 132 

constraints and sufficient to demonstrate population dynamics? Choosing a parameter set  = [2, 133 

0.3, 0.8, 0.9] (which was chosen given knowledge of similar species and our previous analysis of 134 

the akalat data), we used the matrix model to generate population values for each month for five 135 

years (12 sessions per year times 5 years = 60) by repeatedly multiplying the transition matrix 136 

(A) and each successive population vector (with the initial population vector fixed at = [1, 1, 137 

2], reflecting the average number of akalats caught per session and the ratio among age classes).   138 

From this simulated data set, we then compared life history parameter estimates generated from 139 

four different sampling schemes. For the effort we report on here, we used ordinary least squares 140 

estimation (although similar results were found using weighted least squares.) Rather than 141 

present an exhaustive list of all possible sampling schemes, we describe the results stemming 142 

from several illustrative and contrasting combinations of sampling schemes. The schemes we 143 

report on are (1) sampling each month for the entire five years, (2) sampling four months each 144 

year during January, April, July and October, which includes one sample during the breeding 145 

season, (3) sampling four months each year during January, February, March and December, 146 

which includes two samples during the breeding season, and (4) sampling four months each year 147 

during May, July, September and November that excludes sampling during the breeding season. 148 

In order to quantify which sampling scheme gives us the most accurate fit to the actual 149 

population size (which is known, as it was simulated using the fixed life history parameter 150 

values), we again solved the inverse problem based on simulated data for each sampling scheme. 151 

We compared the schemes (2), (3), and (4) to the actual simulated data by examining how 152 
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closely the solution to the inverse problem recovered the original life history parameters (see 153 

Banks et al. 2013 for more details). 154 

Results 155 

The solution to the inverse problem with no error in the statistical model generated, as expected, 156 

an initial vector of life history values of . Population projections for the 157 

baseline monthly sampling scheme across five years generated cyclical peaks accurately 158 

reflecting the akalat breeding season (Figure 1). However, the other sampling schemes had 159 

varying success (Table 1) in capturing these akalat population dynamics broken down by life 160 

stage. Samples during four months per year that included one breeding sample (Figure 2) 161 

resulted in a close match to the original population trajectories stemming from five years’ 162 

simulated data. The scheme that included two breeding season samples was slightly less accurate 163 

(Figure 3), with less distinct peaks and troughs, especially for immature and full adult akalats 164 

(Figure 3a, c). The scheme that excluded any breeding season samples fared much worse, 165 

especially for immature and sub-adult dynamics (Figure 4). Overall, four monthly samples per 166 

year including one breeding season in the sample resulted in the best parameter recapture and 167 

lowest cost functional of the three options when compared with the baseline simulated data 168 

(Table 1). These results were consistent with those obtained when we carried out the same 169 

estimation procedures with different levels of noise in the statistical models.  170 

Discussion 171 

The importance of accurate population estimates in conservation science cannot be overstated. 172 

Failure to detect dynamics accurately can lead to overoptimistic assessments of how populations 173 

are faring, which can have disastrous consequences for management (Gilroy et al. 2012). In 174 
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many tropical conservation settings, population census efforts are severely restricted due to 175 

underfunding or insufficient personnel and resources. These challenges are exacerbated by the 176 

fact that population counts are often done by ephemeral initiatives and oft-changing staff at non-177 

profit NGOs – so that both sampling frequency and timing are inconsistent. In the current 178 

exercise we used population counts for a near threatened bird endemic to East Africa to highlight 179 

features of sampling schemes critically important for accurately assessing population dynamics 180 

given constrained resources. Our results highlight the need to establish regular, consistent 181 

sampling schemes to establish accurate bird population counts – with special attention given to 182 

including at least one sample during the breeding season. This may present special challenges for 183 

planning population counts of tropical birds such as S. gunningi, as the breeding season in 184 

tropical birds is notoriously narrower and less predictable than temperate birds (Stauffer et al. 185 

2013). Other recent ornithological studies have shown that multiple sampling periods within the 186 

year generally produce more accurate results, especially with respect to reproductive output (e.g., 187 

Betts et al. 2004). 188 

Several complicating factors are worth noting in interpreting the results of this simple modeling 189 

exercise. First, aging birds is an imperfect process, with much uncertainty due to both 190 

observation and sampling error. In a few exceptional cases, clear correlates have been identified 191 

among traits such as wing color, age, and reproductive potential (Blanco and Fargallo 2013). In 192 

the current exercise we made some simple assumptions regarding the handful of birds that we 193 

captured that proved difficult to age. However, much more emphasis needs to be placed on 194 

developing accurate, dependable methods of precisely determining age.  195 

Second, better information on life history ecology, dispersal and/or recruitment rates, and other 196 

ecological attributes of rare or endangered species are needed to generate more accurate 197 



10 

 

predictions of population growth/dynamics in the long term (Clark and Martin 2007; Hernández-198 

Matías et al. 2013). For birds such as S. gunningi, this will require much more intensive study 199 

and focus – a challenge for activities in important sites such as the Arabuko-Sokoke Forest and 200 

other underfunded conservation efforts.  201 

Finally, some aspects of the matrix mathematical model formulation presented here may heavily 202 

influence outcomes and interpretation. In the present model, we used constant estimates for the 203 

vital rates to generate population projections, which ignores potentially complex shifting 204 

conditions likely to be influential drivers of survivorship and fecundity through time (Caswell 205 

2001; Gotelli and Ellison 2006). A different approach worth considering would be to use a model 206 

incorporating time-varying vital rates (e.g., Banks et al. 2008). Furthermore, Yearsley (2004) 207 

cautions that ignoring the initial population structure may result in unreliable short-term or 208 

transient population dynamics assessments in demographic analyses using matrix models. 209 

Although we focus here on long-term asymptotic outcomes, it is worth noting the importance of 210 

accurate parameter estimation in seeding such models. Overall, however, our results should 211 

prove to be generalizable to diverse taxa in both tropical and temperate ecosystems. 212 
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FIGURE LEGENDS: 299 

Figure 1. Simulated akalat population size for monthly samples over five years for (a) immature, 300 

(b) sub-adult, and (c) full adult akalats. 301 

Figure 2. Simulated akalat population size for four monthly samples per year over five years 302 

including one breeding sample for (a) immature, (b) sub-adult, and (c) full adult akalats. 303 

Figure 3. Simulated akalat population size for four monthly samples per year over five years 304 

including two breeding samples for (a) immature, (b) sub-adult, and (c) full adult akalats. 305 

Figure 4. Simulated akalat population size for four monthly samples per year over five years 306 

including no breeding samples for (a) immature, (b) sub-adult, and (c) full adult akalats. 307 

 308 
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Observation Schedule 

(4 samples per year) 

Cost functional value Parameter Estimates 

 (F3, G1,G2,P3) 

One breeding sample 1.3804x10
-9

 (2.0000, 0.3000, 0.8000, 

0.9000) 

Two breeding samples 1.9711x10
-9

    (2.0000, 0.3000, 0.8000, 

0.9000)  

No breeding samples 1.0363x10
-10

 (1.5286, 0.4942, 0.6354, 

0.9000) 

 

Table 1. Cost functional and life history parameter estimates values generated from inverse 

problems (ordinary least squares) using different sampling schemes.  

 



FIGURE LEGENDS: 

Figure 1. Simulated akalat population size for monthly samples over five years for (a) immature, 

(b) sub-adult, and (c) full adult akalats. 

Figure 2. Simulated akalat population size for four monthly samples per year over five years 

including one breeding sample for (a) immature, (b) sub-adult, and (c) full adult akalats. 

Figure 3. Simulated akalat population size for four monthly samples per year over five years 

including two breeding samples for (a) immature, (b) sub-adult, and (c) full adult akalats. 

Figure 4. Simulated akalat population size for four monthly samples per year over five years 

including no breeding samples for (a) immature, (b) sub-adult, and (c) full adult akalats. 



Figure 1(a): Monthly samples; immatures.



Figure 1(b): Monthly samples; sub-adults.



Figure 1(c): Monthly samples; full adults.



Figure 2(a): 4 samples per year (1 breeding sample); immatures.



Figure 2(b): 4 samples per year (1 breeding sample); sub-adults.



Figure 2(c): 4 samples per year (1 breeding sample); full adults.



Figure 3(a): 4 samples per year (2 breeding samples); immatures.



Figure 3(b): 4 samples per year (2 breeding samples); sub-adults.



Figure 3(c): 4 samples per year (2 breeding samples); full adults.



Figure 4(a): 4 samples per year (0 breeding samples); immatures.



Figure 4(b): 4 samples per year (0 breeding samples); sub-adults.



Figure 4(c): 4 samples per year (0 breeding samples); full adults.



APPENDIX I 

Number of East Coast Akalats (Sheppardia gunningi) captured in mist nets in ringing sessions in 

Arabuko-Sokoke Forest from 1999 to 2012. 

Session Immature Subadult Full Adult Total 

Dec 1999 0 1 0 1 

Feb 2000 2 0 0 2 

Oct 2000 3 1 5 9 

Nov 2000 1 0 1 2 

June 2001 0 1 2 3 

Aug 2001 0 0 6 6 

Aug 2002 0 0 3 3 

Sept 2002 0 1 1 2 

May 2003 0 0 1 1 

Feb 2005 0 1 4 5 

Sept 2005 0 2 4 6 

Oct 2007 0 0 1 1 

Apr 2008 0 0 1 1 

June 2008 0 0 2 2 

July 2008 0 0 2 2 

Aug 2008 0 6 3 9 

Sept 2008 3 0 0 3 

Oct 2008 1 0 2 3 

Nov 2008 1 0 2 3 

May 2009 0 1 3 4 

Feb 2010 0 0 2 2 

Sept 2010 1 0 1 2 

Feb 2012 2 0 4 6 

May 2012 1 0 2 3 
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