Log In
New user? Click here to register. Have you forgotten your password?
NC State University Libraries Logo
    Communities & Collections
    Browse NC State Repository
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cox, William Charles, Jr."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    A 1 Mbps Underwater Communication System Using a 405 nm Laser Diode and Photomultiplier Tube
    (2008-12-07) Cox, William Charles, Jr.; Dr. Brian Hughes, Committee Member; Dr. John Muth, Committee Chair; Dr. Robert Kolbas, Committee Member
    Radio frequency communications in seawater are impractical due to high conductivity of seawater limiting the propagation of electromagnetic waves. Current methods, such as acoustic communication, are limited in bandwidth, and the use of cables, such as fiber optic, are expensive and not practical for autonomous vehicles. Underwater tethered communication systems are also very costly to repair if damaged. Optical wireless communications that exploit the blue/green transparency window of seawater potentially offer high bandwidth, although short range, communications. The goal of this Masters thesis was to build sufficient infrastructure to experimentally validate the performance of underwater optical communication systems under laboratory, but hopefully realistic, water conditions. An optical transmitter based on a 405nm blue laser diode was constructed. The transmitter is capable of sourcing 200mA of current to a blue laser diode at speeds of up to 200MHz. The receiver was based on a photomultiplier tube. The high gain and blue/green sensitivity of a photomultiplier tube make it ideal for underwater optical communications. Finally, a 1,200 gallon water tank was constructed that allows the water conditions to be appropriately controlled to simulate an ocean environment Experiments were conducted to validate the design and construction of the receiver, transmitter and water tank. An underwater optical data link was demonstrated that was capable of transmitting data at 500kpbs in return-to-zero format, or 1Mpbs in non-return-tozero format. The transmitted signal could then be optically detected, digitized and stored on a PC for later signal processing.
  • No Thumbnail Available
    Simulation, Modeling, and Design of Underwater Optical Communication Systems.
    (2012-02-27) Cox, William Charles, Jr.; John Muth, Chair; Edward Grant, Member; Brian Hughes, Member; C Philbrick, Member

Contact

D. H. Hill Jr. Library

2 Broughton Drive
Campus Box 7111
Raleigh, NC 27695-7111
(919) 515-3364

James B. Hunt Jr. Library

1070 Partners Way
Campus Box 7132
Raleigh, NC 27606-7132
(919) 515-7110

Libraries Administration

(919) 515-7188

NC State University Libraries

  • D. H. Hill Jr. Library
  • James B. Hunt Jr. Library
  • Design Library
  • Natural Resources Library
  • Veterinary Medicine Library
  • Accessibility at the Libraries
  • Accessibility at NC State University
  • Copyright
  • Jobs
  • Privacy Statement
  • Staff Confluence Login
  • Staff Drupal Login

Follow the Libraries

  • Facebook
  • Instagram
  • Twitter
  • Snapchat
  • LinkedIn
  • Vimeo
  • YouTube
  • YouTube Archive
  • Flickr
  • Libraries' news

ncsu libraries snapchat bitmoji

×