Log In
New user? Click here to register. Have you forgotten your password?
NC State University Libraries Logo
    Communities & Collections
    Browse NC State Repository
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Geof Smith, Committee Member"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Applications of Physiologically Based Pharmacokinetic Models in Veterinary Medicine.
    (2007-04-06) Buur, Jennifer Leeann; Mark Papich, Committee Member; Art Craigmill, Committee Member; Geof Smith, Committee Member; Jim Riviere, Committee Co-Chair; Ronald Baynes, Committee Co-Chair
    Classical approaches to pharmacokinetics, such as compartmental and non-compartmental analysis, provide the basis for most dosing regimens and meat and milk withholding intervals. These models are limited by their descriptive nature to dose, route of administration, and species. In addition, current pharmacokinetic modeling approaches are unable to predict possible adverse drug reactions due to drug interactions. As combination drug therapy is rapidly increasing, so too does the chance for an adverse drug reaction due to drug interactions. There is a need within veterinary medicine for more predictive and flexible pharmacokinetic modeling approaches that can also be used to explore the possibilities and consequences of adverse drug reactions. Physiologically based pharmacokinetic (PBPK) models predict drug disposition based on mass balance. This mechanistic approach is predictive and flexible in terms of dose, route of administration, and species. Current uses of PBPK models include human health risk assessment, design of rational dosing regimens, and mechanistic studies of drug interactions. In veterinary medicine, there are only a few validated models. Protection of the safety of the food supply is an important application of pharmacokinetics. By federal law, no animal products are allowed into the food chain until drug residue levels are below set tolerance limits. Sulfamethazine is a sulfonamide antibiotic that is commonly found above tolerance limits in swine. Sulfonamide drugs are associated with hypersensitivity reactions in humans and are carcinogenic in certain strains of rats. Thus violative residues could contribute to a significant public health hazard. To address this concern, a PBPK model was designed and validated for intravenous use of sulfamethazine in swine. This model had tissue blocks for all edible tissues. Correlation coefficients for each tissue ranged from 0.86 to 0.99. The model accurately predicted withdrawal intervals after intravenous extralabel drug use. This model was expanded to include population variability and oral route of administration. The model was subjected to Monte Carlo analysis where parameter values were defined by log normal distributions. After validation, this probabilistic PBPK model approach was used to establish the meat withdrawal time for the upper limit of the 95% confidence interval for the 99th percentile of the population for the labeled oral dose. The model predicted a withdrawal time of 21 days. Sulfamethazine has also been implicated in adverse drug reactions. It was postulated that the altered drug disposition in horses was due to protein binding interactions between sulfamethazine and flunixin meglumine. Flunixin meglumine has recently been approved for use in swine. Thus there is an increased likelihood that a drug interaction could be seen in swine. To explore this possibility, a PBPK model for sulfamethazine was designed that included linear plasma protein binding and competitive inhibition of plasma protein binding due to flunixin meglumine. The validated PBPK model accurately predicted both free and total sulfamethazine concentrations alone and in the presence of flunixin meglumine. The interaction predicted and identified in vivo was transient and would not contribute to a clinically relevant adverse drug reaction. However, this was the first time a validated PBPK model was used to predict drug interactions due to alterations in protein binding. Based on the success of the PBPK models for sulfamethazine in swine, it can be concluded that the PBPK approach can be effectively applied to problems in veterinary medicine. Ultimately, this type of modeling will enhance the safety and efficacy of dosing regimens while further protecting our food supply. In addition, the investigation of drug interactions based on physiological mechanisms will continue to enhance our understanding of basic pharmacology.
  • No Thumbnail Available
    Lactoferrin Supplementation to Holstein Calves During the Preweaning and Postweaning Phases
    (2007-03-08) English, Elizabeth Anne; Geof Smith, Committee Member; Lon Whitlow, Committee Co-Chair; Brinton Hopkins, Committee Co-Chair
    Sixty Holstein calves (30 bulls, 30 heifers) were used to examine the effects of supplemental lactoferrin on feed intake, growth, and health during the preweaning and postweaning periods. One of three levels of lactoferrin was added to whole milk in order to produce three dietary treatments: 1.) 0 g⁄d, 2.) 0.5 g⁄d, 3.) 1 g⁄d. Milk (3.8 L⁄d) was fed from bottles until weaning at 35 days. From days 36 to 56, lactoferrin supplements were added to water (15-25 mL) and fed from bottles. Lactoferrin supplementation did not have any significant effect on feed intake, body weight, average daily gain, heart girth, body temperature, fecal scores, respiratory scores, or haptoglobin concentrations. Calves were housed in individual pens in either an open-sided barn or hutches. Calves raised in the barn consumed more calf starter and therefore grew better than calves raised in hutches. In this study, lactoferrin supplementation was not beneficial. Further research is needed to fully elucidate lactoferrin's effects in whole milk as well as its role when fed postweaning.

Contact

D. H. Hill Jr. Library

2 Broughton Drive
Campus Box 7111
Raleigh, NC 27695-7111
(919) 515-3364

James B. Hunt Jr. Library

1070 Partners Way
Campus Box 7132
Raleigh, NC 27606-7132
(919) 515-7110

Libraries Administration

(919) 515-7188

NC State University Libraries

  • D. H. Hill Jr. Library
  • James B. Hunt Jr. Library
  • Design Library
  • Natural Resources Library
  • Veterinary Medicine Library
  • Accessibility at the Libraries
  • Accessibility at NC State University
  • Copyright
  • Jobs
  • Privacy Statement
  • Staff Confluence Login
  • Staff Drupal Login

Follow the Libraries

  • Facebook
  • Instagram
  • Twitter
  • Snapchat
  • LinkedIn
  • Vimeo
  • YouTube
  • YouTube Archive
  • Flickr
  • Libraries' news

ncsu libraries snapchat bitmoji

×