Log In
Have you forgotten your password?
NC State University Libraries Logo
    Communities & Collections
    Browse NC State Repository
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mo, Hongxiang"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Formation of Low-Resistivity Germanosilicide Contacts to Phosporous Doped Silicon-Germanium Alloy Source/Drain Junctions for Nanoscale CMOS
    (2003-12-30) Mo, Hongxiang; Douglas Barlage, Committee Member; Gregory Parsons, Committee Member; Mehmet Ozturk, Committee Chair; Veena Misra, Committee Member
    Conventional source/drain junction and contact formation processes can not meet the stringent requirements of future nanoscale complimentary metal oxide silicon (CMOS) technologies. The selective Si[subscript 1-x]Ge[subscript x] source/drain technology was proposed in this laboratory as an alternative to conventional junction and contact schemes. The technology is based on selective chemical vapor deposition of in-situ boron or phosphorus doped Si[subscript 1-x]Ge[subscript x] in source/drain areas. The fact that the dopant atoms occupy substitutional sites during growth make the high temperature activation anneals unnecessary virtually eliminating dopant diffusion to yield abrupt doping profiles. Furthermore, the smaller band gap of Si[subscript 1-xGe[subscript x] results in a smaller Schottky barrier height, which can translate into significant reductions in contact resistivity due to the exponential dependence of contact resistivity on barrier height. This study is focused on formation of self-aligned germanosilicide contacts to phosphorous-doped Si[subscript 1-x]Ge[subscript x] alloys. The experimental results obtained in this study indicate that self-aligned nickel germanosilicide (NiSi[subscript 1-x]Ge[subscript x]) contacts can be formed on Si[subscript 1-x]Ge[subscript x] layers at temperatures as low as 350°C. Contacts can yield a contact resistivity of 1E-8 ohm-cm² with no sign of germanosilicide induced leakage. However, above a threshold temperature determined by the Ge concentration in the alloy, the NiSi[subscript 1-x]Ge[subscript x]/Si[subscript 1-x]Ge[subscript x] interface begins to roughen, which affects the junction leakage. For phosphorus doped layers considered in this study, the threshold temperature was around 500°C, which is roughly 100°C higher than the threshold temperature for NiSi[subscript 1-x]Ge[subscript x contacts formed on boron doped Si[subscript 1-x] Ge[subscript x] layers with a Ge percentage of ~ 50%. Nickel and zirconium germanosilicides were also considered as contact candidates but they were found to result in a contact resistivity near 1E-7 ohm-cm².

Contact

D. H. Hill Jr. Library

2 Broughton Drive
Campus Box 7111
Raleigh, NC 27695-7111
(919) 515-3364

James B. Hunt Jr. Library

1070 Partners Way
Campus Box 7132
Raleigh, NC 27606-7132
(919) 515-7110

Libraries Administration

(919) 515-7188

NC State University Libraries

  • D. H. Hill Jr. Library
  • James B. Hunt Jr. Library
  • Design Library
  • Natural Resources Library
  • Veterinary Medicine Library
  • Accessibility at the Libraries
  • Accessibility at NC State University
  • Copyright
  • Jobs
  • Privacy Statement
  • Staff Confluence Login
  • Staff Drupal Login

Follow the Libraries

  • Facebook
  • Instagram
  • Twitter
  • Snapchat
  • LinkedIn
  • Vimeo
  • YouTube
  • YouTube Archive
  • Flickr
  • Libraries' news

ncsu libraries snapchat bitmoji

×