Log In
New user? Click here to register. Have you forgotten your password?
NC State University Libraries Logo
    Communities & Collections
    Browse NC State Repository
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Webb, Mathew Douglas"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Carbon, Chloride, and Oxygen Isotopes as Tracers of Interbasin Groundwater Flow at La Selva Biological Station, Costa Rica
    (2007-04-04) Webb, Mathew Douglas; David Genereux, Committee Chair; Neal Blair, Committee Member; John Fountain, Committee Member
    Groundwater and surface water samples were taken at 14 locations at a lowland rainforest site (La Selva Biological Station) in Costa Rica for the analysis of DIC, DOC, 14C, 13C, 36Cl, 18O, and other geochemical parameters. The data are consistent with the mixing of two endmember groundwaters. One is a local water having low Cl concentrations (<0.07 mM), low DIC (<3.0 mM), high 14C (>100 pmc), δ13C between -22‰ and -26‰, and highly variable 36Cl⁄Cl ratios. This chemistry is consistent with locally recharged shallow groundwaters having short residence times in which the DIC originates from plant root respiration and atmospheric deposition is the only source of Cl. The other endmember is bedrock groundwater, representing interbasin groundwater flow (IGF) into La Selva and having relatively high Cl concentration (>0.9 mM), high DIC (about 14 mM), low 14C (<8 pmc), high δ13C (-3‰ to -5‰), and a low and more consistent 36Cl⁄Cl ratio. This chemistry is consistent with the expectations for bedrock groundwater recharged on the flanks of Volcan Barva to the north of La Selva, with a majority of the DIC and Cl derived from magmatic degassing and dissolution of the volcanic rocks that make up the aquifer. A 14C age of 750 — 4650 years before present was estimated for the bedrock groundwater endmember using NETPATH geochemical mass-balance modeling software, suggesting an average linear velocity of 3-20 m⁄yr for this groundwater; the actual age is probably closer to the upper limit, and velocity closer to the lower limit. The results of this study are consistent with prior work using major ion, 18O, and physical hydrologic data, suggesting that the conclusions about IGF and groundwater mixing at this site are correct. Also, new DIC data for bedrock groundwater and previous hydrologic data on bedrock groundwater inputs to the Arboleda watershed at La Selva suggest that IGF of bedrock groundwater is responsible for a large inorganic carbon flux into lowland watersheds (about 740 grams of carbon per m2 of watershed each year for the Arboleda).

Contact

D. H. Hill Jr. Library

2 Broughton Drive
Campus Box 7111
Raleigh, NC 27695-7111
(919) 515-3364

James B. Hunt Jr. Library

1070 Partners Way
Campus Box 7132
Raleigh, NC 27606-7132
(919) 515-7110

Libraries Administration

(919) 515-7188

NC State University Libraries

  • D. H. Hill Jr. Library
  • James B. Hunt Jr. Library
  • Design Library
  • Natural Resources Library
  • Veterinary Medicine Library
  • Accessibility at the Libraries
  • Accessibility at NC State University
  • Copyright
  • Jobs
  • Privacy Statement
  • Staff Confluence Login
  • Staff Drupal Login

Follow the Libraries

  • Facebook
  • Instagram
  • Twitter
  • Snapchat
  • LinkedIn
  • Vimeo
  • YouTube
  • YouTube Archive
  • Flickr
  • Libraries' news

ncsu libraries snapchat bitmoji

×