Electrostatic Self-assembled Nanolayers on Textile Fibers

Show full item record

Title: Electrostatic Self-assembled Nanolayers on Textile Fibers
Author: Hyde, Gary Kevin
Advisors: Dr. Lei Qian, Committee Member
Dr. Juan Hinestroza, Committee Chair
Dr. William Oxenham, Committee Member
Dr. Peter Hauser, Committee Member
Abstract: This project reports the deposition of nanolayers of poly(sodium 4-styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) over cotton fibers using the electrostatic self-assembly method (ESA). While glass, silicon wafers, gold coated particles, quartz and mica have dominated the choice of substrates for ESA, the use of textile fibers has been rarely considered. Cotton, in particular, offers a unique challenge to the deposition of nanolayers because of its unique cross section as well as the chemical heterogeneity of its surface. The deposition of the nanolayers involved the preparation of cotton substrates via immersion in 2,3-epoxypropyltrimethylammonium chloride solutions to produce cotton with a high density of cationic groups. The cationic cotton was processed further by repeated sequential dipping into aqueous solutions of PSS and PAH with rinsing between each deposition step. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and Transmission Electron Microscopy (TEM) were used to verify the presence of deposited nanolayers. This research work demonstrates the possibility of using the ESA method to tailor the surface of textile fibers at the molecular level by depositing nanolayers of biocidal, charged nanoparticles, non-reactive dyes, and polyelectrolytes in a controlled manner. Preliminary results indicate that the thickness and sequence of the nanolayers can be controlled to tailor and enhance the selectivity, diffusivity, and permeability of the textile fibers while maintaining their comfort and physical properties.
Date: 2006-04-19
Degree: MS
Discipline: Textile Chemistry
URI: http://www.lib.ncsu.edu/resolver/1840.16/1379

Files in this item

Files Size Format View
etd.pdf 2.775Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record