Development of a Sliver Polymer Matrix Composite (SPMC) using Flax Fibers and Epoxy / Acrylated Epoxidized Soybean Oil Resin

No Thumbnail Available

Date

2007-04-11

Journal Title

Series/Report No.

Journal ISSN

Volume Title

Publisher

Abstract

Steel material is widely used in fabricating automotive seat frames. Unfortunately, these materials are not renewable and take a somewhat longer time to degrade in a landfill than natural based biodegradable materials. Unprecedented growth of bio-based textile composites has drawn interest from various industries, such as automotive and transportation. Bio-based composite materials offer products that are biodegradable, easily recycled and can exceed the physical performance of metallic materials that are commercially available. Additional performance characteristics that composite materials can offer include weight reduction and strength improvement. The purpose of this research is to investigate the physical and mechanical properties of bio-based composite materials incorporating different linear densities of the flax sliver and blend ratios of Epoxy-soybean oil resin. Sliver is defined as a "continuous bundle of loosely untwisted fibers" [46]. The proposed fabrication concept is the impregnation of soybean-Epoxy resin into flax sliver. After resin impregnation of the flax sliver and curing it with the curing agent, the flax sliver — resin mixtures become rigid and support an increase in fiber loading. The resin consolidation method with sliver form is also called Sliver Polymer Matrix Composite (SPMC). One of the potential applications for the particular bio-based composite is automotive seat frames. The properties provided by SPMC, strength, weight reduction and biodegradability, are important to this final product. Three different bundle sizes of flax sliver were used, namely 8, 9 and 10 ply flax sliver. Each of the flax slivers has individual linear density of 253.41 grains⁄yard. Thus plied sliver bundles had linear densities of 2027.3, 2280.7 and 2534 grains⁄yard respectively. Moreover, three blend ratios of Epoxy and Acrylated Epoxidized Soybean Oil (AESO) are also taken into consideration as another variable, namely 100% Epoxy resin, 30% AESO ⁄ 70% Epoxy resin, and 50% AESO ⁄ 50% Epoxy resin. This research analyzes the mechanical and physical properties of the rigid bio-based composite materials employing flax fibers. Physical testing was performed to determine the flexural rigidity (three-point bend), impact strength and biodegradability at varying sliver linear densities and Epoxy-soybean resin blend ratios. Flexural rigidity test utilized 9" x 1" (Length x diameter) samples, impact strength test utilized 3" x 1" (Length x diameter). The highest impact test value was achieved with samples of 10 ply flax sliver and 50% Epoxy ⁄ 50% AESO resin mixture. The impact test value for this particular sample was 57 ft-lb. The highest flexural rigidity test value was also achieved with samples of 10 ply of flax sliver with 50% ⁄ 50% Epoxy-AESO resin mixtures. The average flexural rigidity of this sample was 612.74 lbs. (278.5 kg).

Description

Keywords

Textiles, Composite, Flax, AESO, Acrylated Epoxidized Soybean Oil, SPMC, Sliver Polymer Matrix Composite

Citation

Degree

MS

Discipline

Textile and Apparel, Technology and Management

Collections