Application of Ground-Penetrating Radar to Map Stratigraphy of a Drained Carolina Bay and Aid Its Wetland Restoration

Show simple item record

dc.contributor.advisor C. W. Zanner, Committee Member en_US
dc.contributor.advisor Rodney L. Huffman, Committee Member en_US
dc.contributor.advisor Michael J. Vepraskas, Committee Co-Chair en_US
dc.contributor.advisor Jeffrey G. White, Committee Co-Chair en_US
dc.contributor.author Szuch, Ryan Paul en_US
dc.date.accessioned 2010-04-02T18:17:35Z
dc.date.available 2010-04-02T18:17:35Z
dc.date.issued 2005-01-14 en_US
dc.identifier.other etd-01052004-122100 en_US
dc.identifier.uri http://www.lib.ncsu.edu/resolver/1840.16/2805
dc.description.abstract Carolina Bays (bays) are a wetland type found along the Atlantic Coastal Plain that occur as oval-shaped depressions. Knowledge of bay stratigraphy might improve inconclusive theories on bay formation and aid attempts at wetland restoration of drained bays. Ground-penetrating radar (GPR) provides high-resolution and continuous profiles of the subsurface but has seldom been used for large-scale investigations or in Carolina Bays. A GPR survey was performed at Juniper Bay, a 300 ha drained bay in Robeson County, North Carolina. The survey included 23.2 km of GPR transects and soil borings at 174 locations. The broad objective of the survey was to map Juniper Bay's stratigraphy, particularly to determine the depth, extent, and continuity of clayey horizons likely to act as aquitards. To prevent ambiguity in identifying the ground surface on GPR transects, a 'lift-test' was developed that delineated the surface. Spatial variation in wave velocity was addressed using a "reflector-interface matching" technique to determine velocity at multiple locations and at various depths within the bay. A linear calibration equation relating travel time of GPR waves to depth of soil interface was developed. The average deviation between observed and predicted depth to clayey horizons was 0.25 m (16% error). Error was mainly attributed to the survey's large scale, subsurface complexity, presence of organic soils, and depth of the horizons. The lift-test improved accuracy by 10%, and the use of multiple calibration points limited extrapolation of the calibration equation. These calibration methods should prove valuable for future study of GPR accuracy on large-scale, complex sites. Information obtained during the GPR survey and associated coring was used to describe Juniper Bay's stratigraphy and develop theories on its formation. The bay's stratigraphy consists of alternating layers of sands and clays. Clayey layers appear continuous over much of the bay except where truncated by features that seem to be paleochannels. Historic geomorphic events at Juniper Bay have varied spatially and temporally but have included repeated lacustrine deposition, fluvial deposition, and fluvial incision. The original bay probably expanded and incorporated a smaller bay and fluvial feature. Future GPR work and integration of geologic and hydrologic studies may aid our assessment of Juniper Bay's stratigraphy and evolution. Many bays have been drained for conversion to agriculture. Clayey subsurface strata commonly occurs in bays and act as aquitards, restricting vertical water flow. Modification to drainage systems could lead to restoration of wetland conditions. The North Carolina Department of Transportation (NCDOT) intends to restore Juniper Bay for wetland mitigation credit. Ground-penetrating radar interpretation found that clayey aquitards underlay most of the bay at an average depth of 1.64 m. An anomalous GPR reflection in the southeast corner of the bay was interpreted as a fluvial deposit that does not contain aquitards until 3 to 5 m. NCDOT should consider alternative restoration plans for this area. By comparing the depths of aquitards and drainage ditches, several areas were identified as likely locations of ditch-induced aquitard discontinuity. NCDOT should fill or line suspect ditches to prevent potential water losses. Hypothetical proposals by professional firms indicated that GPR could provide large volumes of data with cost and time efficiency. Ground-penetrating radar surveys are suggested as a useful tool for determining suitability of potential wetland restoration sites. en_US
dc.rights I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to NC State University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. en_US
dc.subject restoration en_US
dc.subject Carolina Bays en_US
dc.subject stratigraphy en_US
dc.subject wetlands en_US
dc.subject geophysics en_US
dc.subject ground-penetrating radar en_US
dc.title Application of Ground-Penetrating Radar to Map Stratigraphy of a Drained Carolina Bay and Aid Its Wetland Restoration en_US
dc.degree.name MS en_US
dc.degree.level thesis en_US
dc.degree.discipline Soil Science en_US


Files in this item

Files Size Format View
etd.pdf 4.136Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record