Fatigue Performance Prediction of North Carolina Mixtures Using Simplified Viscoelastic Continuum Damage Model

No Thumbnail Available

Date

2009-08-10

Journal Title

Series/Report No.

Journal ISSN

Volume Title

Publisher

Abstract

Fatigue performance modeling is one the major topics in asphalt concrete modeling work. Currently the only standard fatigue test available for asphalt concrete mixtures is the flexural bending fatigue test, AASHTO T-321. There are several issues associated with flexural fatigue testing, the most important of which are the stress state is not uniform but varies over the depth of the specimen and equipment for fabricating beam specimens is not widely available. Viscoelastic continuum damage (VECD) fatigue testing is a promising alternative to flexural fatigue testing. Different researchers have successfully applied the VECD model to asphalt concrete mixtures using constant crosshead rate direct tension test. However, due to the load level limitation of the new coming Asphalt Mixture Performance Tester (AMPT) testing equipment, there is an immediate need to develop a model that can characterize fatigue performance quickly using cyclic test data. In this study, a simplified viscoelastic continuum damage model developed at NCSU is applied to various North Carolina mixtures, which are used in the NCDOT HWY-2007-7 MEPDG local calibration project. It is shown that the simplified VECD model can predict fatigue tests fairly accurately under various temperature conditions and strain levels. It is also shown that the model can be further utilized to simulate both the strain controlled direct tension fatigue test and the traditional beam fatigue test. In this thesis, simulation results are presented. Conclusions regarding the applicability of the new model are advanced as well as suggestions for further work.

Description

Keywords

viscoelastic continuum damage, simplified model, fatigue, asphalt

Citation

Degree

MS

Discipline

Civil Engineering

Collections