A New Approach to Unit Root Tests in Univariate Time Series Robust to Structural Changes

Show full item record

Title: A New Approach to Unit Root Tests in Univariate Time Series Robust to Structural Changes
Author: Kim, Seong-Tae
Advisors: Sastry G. Pantula, Committee Member
Alastair R. Hall, Committee Member
Bibhuti B. Bhattacharyya, Committee Member
David A. Dickey, Committee Chair
Abstract: Using methodology in panel unit root tests we propose a new approach to univariate unit root tests. Our method leads to an asymptotically normal distribution of the least squares estimator and is robust to contaminated data having structural changes or outliers while the power of the test does not drastically worsen. The main idea is that under the assumption that the process has a unit root we transform an AR(1) process [y t: 1 &#60;= t &#60;= T] to a double-index process [y [ij]: 1&#60;= i &#60;= m, 1 &#60;= j <= n, mn=T] in such a way that the segments are independent for $i=1,2, ..., m. For this transformed data, we apply the same sequential limit as in Levin and Lin (1992, 2002). First, as n goes to infinity we obtain asymptotic results for each i. These have the same form as in conventional univariate unit root tests. Second, as m goes to infinity, we obtain an asymptotically normal distribution for the OLS estimator by the Lindeberg-Feller CLT. An advantage of this technique is that an undetected break has a relatively minor effect which, in fact, disappears as m increases. We also show that for a general ARMA (p,q) model we still obtain the asymptotic normality of the unit root statistics under the sequential limit assumption.
Date: 2007-01-09
Degree: PhD
Discipline: Statistics
URI: http://www.lib.ncsu.edu/resolver/1840.16/4573


Files in this item

Files Size Format View
etd.pdf 2.892Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record