Novel Diluted Magnetic Semiconductor Materials based on Zinc Oxide

Abstract

The primary aim of this work was to develop a ZnO based diluted magnetic semiconductor (DMS) materials system which displays ferromagnetism above room temperature and to understand the origin of long-range ferromagnetic ordering in these systems. Recent developments in the field of spintronics (spin based electronics) have led to an extensive search for materials in which semiconducting properties can be integrated with magnetic properties to realize the objective of successful fabrication of spin-based devices. For these devices we require a high efficiency of spin current injection at room temperature. Diluted magnetic semiconductors (DMS) can serve this role, but they should not only display room temperature ferromagnetism (RTFM) but also be capable of generating spin polarized carriers. Transition metal doped ZnO has proved to be a potential candidate as a DMS showing RTFM. The origin of ferromagnetic ordering in ZnO is still under debate. However, the presence of magnetic secondary phases, composition fluctuations and nanoclusters could also explain the observation of ferromagnetism in the DMS samples. This encouraged us to investigate Cu-doped(+ ½ spin in the 2+ valence state) ZnO system as a probable candidate exhibiting RTFM because neither metallic Cu nor its oxides (Cu2O or CuO) are ferromagnetic. The role of defects and free carriers on the ferromagnetic ordering of Cu-doped ZnO thin films was studied to ascertain the origin of ferromagnetism in this system. A novel non-equilibrium Pulsed Laser Deposition technique has been used to grow high quality epitaxial thin films of Cu:ZnO and (Co,Cu):ZnO on c-plane Sapphire by domain matching epitxay. Both the systems showed ferromagnetic ordering above 300K but Cu ions showed a much stronger ferromagnetic ordering than Co, especially at low concentrations (1-2 %) of Cu where we realized near 100% polarization. But, the incorporation of Cu resulted in a 2-order of magnitude rise in the resistivity from 10-1 to 101 Ohm cm which can prove to be detrimental to the injection of polarized electrons. In order to decrease the resistivity and to understand the role of free carriers in mediating the ferromagnetic ordering, the Cu-doped ZnO films were co-doped with an n-type dopant like Al which increased the free carriers concentration by 3 orders of magnitude from 1017 to 1020 cm-3 without significantly altering the near 100% spin polarization in the Cu:ZnO system. This lack of correlation between free carrier concentration and the magnetic moment implied that a free carrier mediated exchange does not stabilize the long range ferromagnetic ordering. A reduction in the number of oxygen vacancies brought about by high temperature oxygen annealing had a large degrading effect on the ferromagnetism by reducing the total saturation magnetization by almost an order of magnitude. This strong dependence of magnetization on vacancy concentration and the corresponding weak relationship with free carriers pointed towards a defect mediated mechanism, such as a bound magnetic polaron mediated exchange as being responsible for stabilizing the ferromagnetic ordering in these systems. However, a BMP mechanism would not guarantee a strong coupling between the free carriers and the localized spins to produce spin-polarized current. To investigate this we have fabricated spin valve type device structures where a nonmagnetic ZnO layer was sandwiched between two ferromagnetic (Cu,Al):ZnO layers allowing us to study spin polarized carrier injection across the nonmagnetic semiconductor gap. Initial results have shown evidence of spin polarized carrier injection across the nonmagnetic semiconductor layer even at 300K. Hence, this work demonstrates that the (Cu,Al):ZnO system may become a viable solution for spin injection into spintronic devices.

Description

Keywords

Cu doped ZnO, Thin Film Epitaxy, Structure-Property Correlation, Ferromagnetism, Spintronic, Magnetoresistance

Citation

Degree

PhD

Discipline

Materials Science and Engineering

Collections