Life Cycle Assessment in Pharmaceutical Applications.

No Thumbnail Available

Date

2002-02-13

Journal Title

Series/Report No.

Journal ISSN

Volume Title

Publisher

Abstract

In the present work, life cycle information is developed to provide environmental input into process development and chemical selection within the pharmaceutical industry. The evaluation at various stages of the development process for Sertraline Hydrochloride, an effective chiral antidepressant, was conducted. This evaluation included the Life Cycle Inventory (LCI) and further Life Cycle Assessment (LCA) to compare several synthetic routes and production processes of this pharmaceutical product. To complete the Sertraline analysis, a methodology to generate gate-to-gate life cycle information of chemical substances was developed based on a transparent methodology of chemical engineering process design (an ab initio approach). In the broader concept of an LCI, the information of each gate-to-gate module can be linked accordingly in a production chain, including the extraction of raw materials, transportation, disposal, reuse, etc. to provide a full cradle-to-gate evaluation. Furthermore, the refinery, energy and treatment sub-modules were developed to assess the environmental burdens related to energy requirements and waste treatment. Finally, the concept of a 'Clean/Green Technology Guide' was also proposed as an expert system that would provide the scientists with comparative environmental and safety performance information on available technologies for commonly performed unit operations in the pharmaceutical industry. With the expected future application of computer-aid techniques for combinatorial synthesis, an increase of the number of parallel routes to be evaluated in the laboratory scale might be predicted. Life cycle information might also be added to this combinatorial synthesis approach for R&D. This input could be introduced in the earlier stages of process design in order to select cleaner materials or processes using a holistic perspective. This life cycle approach in pharmaceutical synthesis is intended to facilitate the evaluation, comparison, and selection of alternative synthesis routes, by incorporating the overall environmental impact of routes.

Description

Keywords

Citation

Degree

PhD

Discipline

Chemical Engineering

Collections