Hyaluronic Acid-based Nanofibers via Electrospinning
No Thumbnail Available
Files
Date
2006-12-11
Authors
Journal Title
Series/Report No.
Journal ISSN
Volume Title
Publisher
Abstract
Electrospinning is a novel technology that uses an electric field to form fibrous materials from a polymer solution. Unlike traditional spinning techniques, electrospinning can produce fibers, on the order of 100 nm, that can be utilized in applications where nanoscale fibers are necessary for specific applications, including tissue engineering and filtration. Outside of a smaller fiber diameter, electrospun nanofibers are also advantageous for biomedical applications because they have a larger surface area and pore size which promotes cell growth. A number of polymers have been electrospun successfully, including polyethylene (PEO) and polyvinyl chloride (PVC), which are two the most investigated electrospun materials. For the purpose of this study, hyaluronic acid (HA), a widely used biopolymer found in the extracellular matrix, was the chosen polymer to investigate the successful production of HA nanofibers for use in tissue engineering. Few studies have been conducted on electrospinning HA. Indeed, when this project was initiated, no investigations on electrospinning HA had been published. The goal of this research was to produce continuous fibrous strands of HA to be used as a mesh or scaffolding material. The high viscosity and surface tension of HA make it challenging to electrospin, as both are important parameters in successful production of nanofibers. To promote HA fiber formation by electrospinning, the effects of salt (NaCl), which is used to reduce the viscosity of aqueous HA solutions; molecular weight of the HA; and an additional biocompatible polymer (e.g., PEO) were investigated.
Description
Keywords
rheology, electrospinning, polymers, hyaluronic acid, tissue engineering, biomaterials, nanofibers
Citation
Degree
MS
Discipline
Materials Science and Engineering